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Abstract: Moderate resolution satellite imagery traditionahgs been thought to be
inadequate for mapping vegetation at the speciesl.|@his has made comprehensive
mapping of regional distributions of sensitive spsc such as whitebark pine, either
impractical or extremely time consuming. We sougiitdetermine whether using a
combination of moderate resolution satellite imgdéandsat Enhanced Thematic Mapper
Plus), extensive stand data collected by land ne&mnagt agencies for other purposes, and
modern statistical classification techniques (bedstlassification trees) could result in
successful mapping of whitebark pine. Overall dfasgtion accuracies exceeded 90%,
with similar individual class accuracies. Accuractn a localized basis varied based on
elevation. Accuracies also varied among adminiggatnits, although we were not able to
determine whether these differences related tor@mtespatial variations or differences in
the quality of available reference data.
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1. Introduction

Whitebark pine Rinus albicaulisEngelm., WBP) seeds have long been identifiednasngortant
food source for grizzly beardJ(sus arcto}¥ in the Greater Yellowstone Ecosystem (GYE) arel ar
therefore, an important element of suitable grizzbar habitat [1]. WBP also serves as a keystone
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species because its presence increases the bmtivef both plant and animal communities
throughout the ecosystem [2]. The overall healtd atatus of WBP is currently threatened by
infestation by mountain pine beetgndroctonus ponderospand the spread of whitepine blister rust
(Cronartium ribicolg.

Mapping WBP distribution is integral to the successong-term monitoring since, before we can
study, understand and mitigate the mechanismsndyrdestructive agents of WBP, we must first know
its distribution across the landscape. Severabfachowever, make mapping WBP within the GYE
difficult. This area encompasses approximately @7 Jnt, making consistent ground mapping within
a reasonable time infeasible. Ground mapping effeatve been conducted over several decades by the
national forests and national parks administering area, but methods and efforts have not been
consistent, and the time required has made thisoapp impractical for monitoring current threats.
Satellite remote sensing has the potential to pegiynoptic coverage of the area. Even for moderate
resolution imagery, such as Landsat, several imagesequired to cover this area. Such imagery,
however, historically has been deemed inappropriateconducting species-level mapping [3].
Previous efforts to map WBP in the northern Rocknes with low accuracies [4, 5]. We believed that
these low accuracies might be a result of sevarbfs, including (1) lack of adequate trainingadat
represent the wide variability of this species asrthe region, (2) mapping WBP concurrently with
other land cover types, resulting in approaches riight have compromised accuracy of the WBP
class to increase overall accuracy and relativeiracyg across all classes, and (3) use of traditiona
classification algorithms that are less accuraa@ some more recent algorithms.

The Interagency Grizzly Bear Study Team initiated edfort to map the distribution of WBP
throughout the GYE in the fall of 2003. We soughtdetermine whether an approach focusing on a
single species and using recent advances in ¢tzggh methods could result in increased accusacie
over those previously reported.

2. Methods

Our study area covered the GYE, including portiohsix national forests and all of two national
parks (Figure 1). Landsat 7 Enhanced Thematic Maphes (ETM+) satellite imagery was used as the
primary mapping data source. Seven ETM+ sceneSdptember 1999 covering the core of the GYE
(Figure 2) were provided with geometric and raditmoecorrections by the EROS Data Center, Sioux
Falls, South Dakota.

We intended for reference data to use informatiollected by U.S. Forest Service and National
Park Service in conjunction with their standard@nstand exams, vegetation plots, soil surveys, an
other field activities, because the extent of tinelys area made extensive ground collection impzatti
The agencies responded well to our requests fa, daid we were able to compile a large pool of
vegetation data that collectively constituted alyasufficient representation of the spatial conxies
of the ecosystem. The types and amount of infoomatecorded for these data varied greatly due to
multiple data sources and differing purposes foictvithe data were collected. For those locations
where the percent of WBP present in the canopy neesrded, we considered WBP present for the
purposes of our study if whitebark pine accountad26% or more of the upper canopy and thus was
visible from a satellite.
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Figure 1. Location of study area, showing administrative simithin the national forest
and national park systems.
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Figure 2. Study area classification divisions based on essst and middle paths of
Landsat ETM+ satellite imagery, including natiofakst and national park boundaries.
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The reference data also exhibited varying degréespatial accuracy. Some data were collected
without GPS units, and various methods were use@stimating ground locations resulting in
disparate degrees of spatial accuracy. A substgmdrdion of the data collected with GPS also had
considerable error (up to 300 m), due to selectvailability and the lack of post-differential
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correction. Locational accuracy commensurate withltandsat 30-m resolution was required. Spatial
reliability checks were performed on each of therox,000 collected locations by overlaying datum on
digital orthographic quads (DOQs). Aerial photogevesed to correct locations over distances ranging
from ten to a few hundred meters to their most gbdd location based on characteristics recorded wit
the data and identification of WBP stands on thet@h Points that could not be corrected with & hig
degree of certainty (29% of the collected data)ensdiminated from the analysis. We were also able t
generate additional reference data using aerialogh@®,000+ points) accessed from Forest Service
offices across the GYE. A total of 15,110 trainoigfa points, excluding random points generated in
the image overlap areas, were compiled. Photogrgexd points comprised 54% and agency supplied
field data comprised 46%. 85% of our reference datzations were selected randomly for
classification model development, while the remagnl5% was reserved for accuracy assessment.

Spectral and spectrally derived predictor variablesd in our classifications included (1) at-saéeell
reflectances scaled to 8-bit values by EROS DatateCefor the six ETM+ reflective bands (the
thermal band was not provided), (2) re-scaled teHga tasseled cap brightness, greenness, and
wetness values [6], (3) principal component dataesafor all six bands, and (4) normalized diffeen
vegetation index (NDVI), where NDVI = (near infrdre- red)/(near infrared + red). The derived
predictor variables do not provide additional im@tion beyond what is contained in the original
spectral bands, but we included them because they leen shown to be well correlated to vegetation
types and might be used by the classification #lyorto map types more efficiently than the origina
bands. Ancillary data considered to have strondiptige powers for WBP occurrence and included as
predictor variables included latitude and threeadatyers derived from the USGS 30-m National
Elevation Dataset Digital Elevation Models, inclougli elevation, slope, and aspect. Aspect was
transformed by taking the cosine of aspect in ragiand stretching it to 0 - 200 by adding 1 and
multiplying by 200. Latitude was generated from-kni regular grid and then re-sampled to 30Am (
latitude[10.00011 degrees per km).

Classification tree analysis (CTA) has been showrbe an effective tool for classification of
remotely sensed data in conjunction with ancilldata [7]. CTA examines the input reference
observations (populated with predictor variableuea) and recursively partitions the data based on
binary splits of individual predictor variables suthat deviance in the response variable is miredhiz
[8]. We used the See5 software program for ouryarsa|9, 10]. A potential advantage to See5 was the
option for boosting, a technique reported to sigaiitly reduce the training error and enhance the
classification accuracy [11, 12]. Boosting genataeiser-specified number of classification treehs
that each successive tree attempted to correctlasssiication of the previous tree [13]. The final
predicted classification was based on a pluralitevfrom the complete set of classification tréde.
used the maximum of 99 boosts provided by the pragbased on previous statistical research [12].
The development by the USGS of an interface betvssd and ERDAS Imagine made it particularly
useful when compared to other boosting algorithms.

Classifications were conducted separately on tbe¢®of images covering the study area (Figure 2),
the middle-path (path 38, rows 28-30), the eadt-fiadith 37, rows 29-30), and the west-path (path 39
rows 28-29). Classification was first performedtbe middle path, yielding high accuracy rates that
justified using the classification results of thaddie-path in areas of path-overlap to identify
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supplemental training samples for the classificatid the east- and west-paths [14]. This method

ensured a smooth and seamless transition acrosntiemerged classified image. Four thousand

random points in each overlap area were generaidgapulated with the corresponding classification

codes from the middle-path results. These point®aedded to the training samples for the east- and
west-paths, respectively. Accuracy was assessag tis reserved 15% of the reference data.

Figure 3. Distribution of field validation points across th@reater Yellowstone
Ecosystem.

[] U.S.Forest Service b

[] National Park Service
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A

We conducted an additional field-based accuracgsassent to analyze the sensitivity of the
analysis to varying densities of WBP, the effedt®levational gradients on map accuracy, and the
variation of accuracy associated with differentadsdurces. Sampling strategy was dictated by #ee si
of the study area (approximately 57,000%fiscal limitations, time constraints, and inassieility of
sizeable roadless wilderness areas within the starsy A subset for field investigation was selected
from the total number of sites predicted as WBResEhfield sites were stratified using distance from
nearest road(4 miles) as well as wide geographic coverage. vat& also collected on a stand scale
by mapping timber stands of close proximity todisltes on aerial photographs. GPS data collegted b
the Bridger Teton National Forest, the GAP projact] the Inter-Agency Whitebark Pine Monitoring
Program were also included to augment the fielé datlected. The resulting field validation points
were distributed throughout the study area, butleédrto cluster, making them potentially inadequate
for testing overall map accuracy (Figure 3). Thegrevused, rather, for evaluating variations in
accuracy related to WBP density, elevation, andyggahic location.
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3. Results

Classification of the middle path resulted in oUeaacuracy of 95.8%, with similarly high class
accuracies (Table 1). Classification of the eadtwaest paths provided substantially similar acdesac
except that producer’s accuracy for the west pasiulted in more errors of omission for WBP and
fewer errors of omission for non-WBP (Table 1). Tl classified image (Figure 4a) yielded an
overall accuracy of 95.7% and a user’s class acguia@ WBP of 92.9%. The KHAT statistic was
calculated at 0.90.

Table 1. Comparative accuracies for classification of gaatih Landsat ETM+ imagery.

Producer’s User's
Image Path Overall
WBP Non-WBP WBP Non-WBP
middle 93.6% 97.0% 94.1% 96.6% 95.8%
east 94.6% 95.9% 92.7% 97.0% 95.4%
west 89.0% 97.8% 93.7% 96.0% 95.4%

Figure 4. (a) Final classified image of whitebark pine distition within the GYE (left)
and (b) compilation of previously mapped WBP looas within the Greater Yellowstone
Ecosystem (right). Whitebark pine is mapped in méae

The classification showed substantial differenaesnfa map that combined existing USFS and
NPS maps of WBP distribution (Figure 4b). The emgstmaps used a variety of techniques and
minimum mapping units, so a direct comparison waisappropriate. Close visual inspection of the
resulting map revealed non-forested areas in thleehielevations (> 2,900 m) that were misclassified
as WBP.
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A series of accuracy assessments using field vadiddata was conducted to determine a threshold
value of percent WBP needed in the upper canoplelioeate “presence” versus “absence” (Table 2).
Each assessment assumed a different threshold fealUéBP. The defining threshold was determined
as the value that returned the highest accuradhefpredictive model. A threshold value of 15%
optimized the user’'s accuracy for both WBP and WBP (83.1% and 83.3%, respectively) while
maintaining a 91.4% producer’s accuracy and 83 @%verall classification accuracy. Locations with
less than 10% to 15% WBP in the canopy were oftasstfied as non-WBP at low thresholds, while
areas with less than 15% to 20% were generallyectyr classified as WBP, resulting in lower
accuracies at higher thresholds.

Table 2. Accuracy assessments at different presence / edseresholds for WBP.

Threshold WBP Non-WBP WBP User’'s| Non-WBP Overall

Producer’s | Producer’'s | Accuracy User’'s Accuracy
Accuracy Accuracy Accuracy

> 5% 84.6% 76.7% 90.9% 64.5% 82.5%

>10% 89.3% 71.8% 85.7% 78.0% 83.2%

> 15% 91.4% 69.8% 83.1% 83.3% 83.2%

> 20% 91.6% 67.1% 80.8% 84.0% 81.8%

> 25% 91.9% 64.7% 78.2% 85.3% 80.5%

Table 3. Accuracy assessments at successive elevationstange

Elevation Range WBP Non-WBP | WBP Non-WBP | Overall
Producer’s | Producer’'s | User’s User’s Accuracy
Accuracy | Accuracy Accuracy | Accuracy
Range 1 (7470-8376 m) 0% 100% NA 95.9% 95.9%
Range 2 (2553-2691 m) 87.0% 83.0% 81.9% 87.8% 84.9%
Range 3 (2692-2805 m) 92.8% 76.0% 91.4% 79.3% 88.3%
Range 4 (2806-2900 m) 92.1% 47.8% 78.4% 74.8% 77.6%
Range 5 (2901-3025 m) 94.4% 43.7% 80.4% 76.0% 79.7%
Range 6 (3026-3104 m) 85.9% 76.2% 89.5% 69.6%0 83.0%

A natural breaks classification based on the JewiBmization was applied to partition the
validation points into six discrete elevation cks®f minimal variance [15]. Accuracy assessmehts 0
field validation data were conducted at each o$e¢helevation ranges (Table 3). Inspection of therer
matrices associated with the mid-to-high elevatiiasiges 3 — 6) consistently demonstrated lower
accuracies for non-WBP than WBP. WBP was over-ptediat these elevations. At lower elevations
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(ranges 1 and 2), however, where WBP tends to septea relatively low presence in mixed
coniferous stands, the classification tended teeupdedict WBP presence.

We also conducted separate accuracy assessmeetsdrathe field validation data for each of the
national parks and national forests included in shedy area (Table 4). Caribou-Targhee National
Forest and the national parks are included for detepess, but are of limited value as no WBP
present stands were sampled in those jurisdictiBobstantial differences in accuracy existed. The
Shoshone National Forest on the eastern side obtity area (Figure 1) had the lowest overall
accuracy (74.5%), while the Beaverhead Nationak$toon the northwest corner of the study area
(Figure 1) had the highest overall accuracy (94.4%d) other accuracies were in the 83% to

88% range.

Table 4. Accuracy assessments for different administrativiés.

WBP Non-WBP | WBP Non-WBP Overall
National Park or Forest Producer’s | Producer’s | User’s User’s Accuracy

Accuracy Accuracy | Accuracy | Accuracy
Beaverhead 95.0% 92.7% 97.0% 88.4% 94.4%
Bridger-Teton 86.1% 81.0% 80.1% 86.8% 83.4%
Caribou-Targhee NA 100.0% NA 100.0% 100.0%
Custer 87.0% 50.0% 95.5% 24.0% 84.2%
Gallatin 95.6% 61.8% 89.1% 81.0% 87.6%
Shoshone 92.5% 44.7% 73.4% 78.4% 74.5%
Yellowstone & Grand Teton 0.0% 92.3% 0.0% 94.7% 8%y .

4. Discussion

Our classifications resulted in very high accuraates, demonstrating considerable success in
detecting WBP in pure and mixed stands. This wpeaally notable considering Landsat is generally
not expected to be adequate for classificatiomaitspecies level, and previous attempts had not bee
successful. There are several factors that we Jgeleere important in our classification success,
although it is not possible to quantify the impaicthe factors individually.

We used classification algorithms that have beeantty developed and applied to remotely sensed
data [16]. Classification tree analysis generallg hesulted in improved accuracies when compared to
other classification accuracy, and boosting alporg have been commonly reported to increase
classification accuracies by 10% or more compareddn-boosted classification trees, although
increased accuracy is not guaranteed [13]. We asaohple boosting algorithm [10]; it is possiblatth
recent advances in boosting and related baggingitdgs might have further improved accuracies
[13, 16]. A disadvantage of using boosting was thegsulted in no single classification tree tbatild
be interpreted to evaluate how the algorithm swsfodg distinguished WBP from other
conifer species.
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We also believe that focusing on a single classhimiigive improved our accuracies compared to
previous classifications. Classification of mulapand cover types in a single classification negely
entails trade-offs; an approach that improves awmyuof one class might decrease accuracy of another
class. We were able to select from among multifderdhms and approaches and select the one that
would improve WBP accuracy without concern for otlspecies. Results of other classification
methods are not included in this paper becausevissnot a rigorous study of algorithms, but migtip
approaches were examined.

We also were able to assemble an extensive referdata set as a result of a high level of
cooperation from national forests and national pavkhin our study area, as well as the availabdit
excellent aerial photography coverage. These @ajained extensive review and filtering to make them
acceptable for use in a remote sensing study, gadh digh levels of cooperation for local land
managers was extremely valuable in this process.

A fourth factor that might have been important mr guccess compared to other species-level
studies with Landsat data was the spatial disiobubf WBP. Exploratory data analysis of our result
indicated that elevation was the most importantigter variable for the occurrence of WBP. WBP
distribution is heavily controlled by elevation aitccan occupy nearly pure homogeneous stands in
harsh, dry, windy mountainous terrain, althouglypically co-exists with other conifers in moistad
more protected high-elevation sites [17]. This aten control on distribution likely reduced specie
confusion with other pines, which typically exisi@ver elevations within the study area.

Elevation also created issues for our classificat®d/BP can be completely out-competed by
subalpine fir and Engleman spruce in localized saxdehigher moisture, for example along drainages.
Our model over predicted WBP by 20% in these hilglvagion sites (Table 3). Adding a hydrologic
index as a predictor variable might improve accyfac these sites. Bedrock geology, geomorphology,
and soil types also impact WBP distribution [18] danmight be evaluated for
future classifications.

We also noted differences in accuracy across awdysarea associated with different national
forests and national parks. The reasons for thestas differences in accuracy were unclear, but we
believe there were multiple possibilities. Thesgatans might have been a function of differences
the quality of reference data from each jurisdictibower quality data might have less accurately
represented the spatial and spectral variabilithat location and resulted in a model that dicbarer
job in predicting WBP locally. Another possibilityas that these differences represented a broader
spatial trend in accuracy across our study areauracies tended to be highest on the west sideeof t
study area and lowest on the east side when eedllgt national forest/national park (Table 4). This
same trend, however, was not present when accu@sgvaluated by Landsat path (Table 1).

Our comparison of our final map with our compilatiof existing maps showed some important
differences in WBP distribution (Figure 4). Our msipowed greater WBP presence in the southern
part of the GYE and generally less in the soutlpam of Yellowstone National Park. These two maps,
however, were derived in very different ways. Thenpilation of existing maps, in particular, should
be viewed with care as it entailed numerous mappmeghods and minimum mapping units. Our
Landsat-based map was the first to provide comgista/erage at high accuracies across the GYE.
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The results of this study are potentially valualole several on-going efforts, including: (1) GYE
Interagency Whitebark Pine Monitory Program fromichhprobabilistic samples will be derived from
the WBP map resulting from this study; (2) expansbefforts to conduct a habitat-based grizzlyrbea
Population Viability Analysis [19, 20], which is wently restricted to areas inside the recoveryezon
(3) updates to data layers for the Yellowstone @yiBear Cumulative Effects Model [21, 22]; (4)
modeling the potential effects of declines in mdmod sources or global climate change; (5) use in
habitat selection models evaluating the effectsnoforized recreation on denning and active grizzly
bears; and (6) use in two studies examining GYBieare population dynamics that are sponsored by
the USGS, National Park Service, and the Wildlifen€ervation Society. Other efforts that might
benefit include: (1) monitoring the distribution white pine blister rust in the GYE as part of key
foods monitoring required by the grizzly bear remgvplan [20] and conservation strategy [23];
(2) use by state wildlife and federal land agen@egplanning and evaluation of management efforts;
and (3) distribution through National Biologicalfégnmation Infrastructure (http://www.nbii.gov/),
making this data layer available to the public.
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