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Abstract: The aim was to use high resolution Aerial Lasem8oay (ALS) data and aerial
images to detect European aspBogulus tremuld..) from among other deciduous trees.
The field data consisted of 14 sample plots of 30 m size located in the Koli
National Park in the North Karelia, Eastern FinlaAdCanopy Height Model (CHM) was
interpolated from the ALS data with a pulse density3.86/nf, low-pass filtered using
Height-Based Filtering (HBF) and binarized to ceefte mask needed to separate the
ground pixels from the canopy pixels within indival areas. Watershed segmentation was
applied to the low-pass filtered CHM in order teate preliminary canopy segments, from
which the non-canopy elements were extracted taimlhe final canopy segmentation, i.e.
the ground mask was analysed against the canopy. amanual classification of aerial
images was employed to separate the canopy segmwiedeciduous trees from those of
coniferous trees. Finally, linear discriminant & was applied to the correctly classified
canopy segments of deciduous trees to classify themsegments belonging to aspen and
those belonging to other deciduous trees. The entgnt variables used in the
classification were obtained from the first pulse.SA point data. The accuracy of
discrimination between aspen and other deciducesstwas 78.6%. The independent
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variables in the classification function were thiegmrtion of vegetation hits, the standard
deviation of in pulse heights, accumulated intgraitthe 98 percentile and the proportion
of laser points reflected at the "6theight percentile. The accuracy of classification
corresponded to the validation results of earlie6Aased studies on the classification of
individual deciduous trees to tree species.

Keywords: Airborne laser scanning, digital aerial imageseasgndividual tree detection,
tree species classification

1. Introduction

High resolution remote sensing data enable thepgratation of forests at the tree level. By using
airborne laser scanning (ALS) data with a pulsesigof several pulses per square metre and aerial
images with a resolution of less than 50 centinseitebecomes possible to detect individual treet a
accurately classify them by species [1-8].

ALS data have been used in remote sensing sincE98@s [9]. In order to apply the technique to
the delineation of individual trees, however, inecessary to construct a canopy height model (CHM)
capable of distinguishing the tree crowns from eaitter [4]. In general, the methods used in laser
scanning-based single tree detection are only caabjfeto those applied in high or very high-
resolution aerial imagery-based surveys [1, 6].iRdividual tree detection based on searches fmllo
maxima, a low-pass filtered CHM is needed, duatgd number of false local maxima in an unfiltered
model.

Although ALS data can be successfully used to detetividual trees and measure the layer of
dominant trees, the results regarding its applitahbo suppressed tree layers have been less phogni
[5, 7]. The tree crowns of suppressed trees arallygoartly or completely covered by the crowns of
larger trees, and therefore their tops are hiddem fthe ALS point cloud. ALS-based detection of
individual trees has been studied, for instance;lyyppé and Inkinen [10], Perssenal [3], Pitkanen
et al [6], Koukoulas and Blackburm [11], Solbespal [7] and Kochet al. [12].

Perssoret al [3] used Gaussian filtering for image smoothimgl @ region growing method to
detect individual trees from a canopy height magierated from ALS data for an area that consisted
mainly of middle-aged or old coniferous forest. Tdetection rate was 71% for all trees and 90% for
trees with a DBH over 20 cm.

In their comparison of smoothing methods, Pitkagieal. [6] defined sample plots in mature forests
with stand volumes from 127 to 533’/ima. Many of the stands had a multilayered canomgcsire.
The methods used were Gaussian filtering, heigbédbdiltering, elimination of maxima and Laplacian
filtering. The identification rates for all treesaned from 36.7% (Gaussian filtering) to 41.5%
(elimination of maxima), and those for dominanetsrdrom 61.2% (height-based filtering) to 68.7%
(elimination of maxima).

Koukoulas and Blackburn [11] detected 80% of tiees semi-natural forest using a CHM derived
from ALS data and extracting treetops by a contgumethod. Solbergt al [7] developed a region
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growing algorithm for delineating the tree segmearid succeeded in detecting 93% of the dominant
trees altogether and 19% of the suppressed trees.

A classification of tree species with high-resa@utiALS data can be based on: 1) the features of
crown shape and characteristics of pulses refleficted the crown [5]; 2) proportions of canopy areas
of dominant tree species, using linear discriminanalysis [13]; 3) directed graphs describing
instances of laser points of single tree segmerdgesulting point groups [14]; 4) segments deliega
with a digital surface model generated from leafAir$ data [15]; 5) the use of leaf on-off data [16]
and 6) ALS intensity values [17].

It is also possible to combine ALS data with agpiabtographs for automatic detection of both trees
and their species. Packalén and Maltamo [18], ietaince, estimated accurate species-specific stand
variables at the plot level. Perssetmal [19] divided tree species into three classebatiee level by
combining near-infrared images with tree crown rekdition with ALS data. Korpela [8] detected the
species of individual trees by visual interpretataf aerial photographs, combining this information
with single tree ALS data.

The European asperPdpulus tremulal.), referred to below as ‘aspen’, is commonlynfbu
throughout Finland, but pure aspen or aspen-doetinfarests are rare [20]. Its growth is most rapid
fertile stands, where trees can reach a heighDah8tres and a diameter at breast height of 90 cm.
According to Koukiet al [21], large aspen are hosts for hundreds of tierbus and saproxylic
invertebrates, polypore fungi and epiphytic lichem&any of which are threatened species and about
150 are strictly specialised to aspen. There @@ \&rtebrates such as woodpeckers [22] and timg fly
squirrel [23] that are partly dependent on aspdris means that large aspens are extremely valuable
for maintaining the biodiversity of boreal foresks.the past, however, forest management practices
discriminated against large aspens and aspen-assbapecies, so that aspen frequencies are law eve
in recently established conservation areas [21].

The aim of this work was to apply ALS data and agvhotographs to the discrimination of aspens
from other deciduous trees. In particular, we cotreged on identifying large aspens (diameter at
breast height >25 cm). Following the delineationnafividual trees using a filtered CHM based oretre
heights derived from ALS data, the deciduous treese separated from the conifers by visual
interpretation of digital aerial photographs. Fipathe deciduous tree segments were classifiea int
aspens and other species by linear discriminanysisaising predictor variables obtained solelyrfro
the ALS data.

2. Materials and preprocessing
2.1 Field data

The field data were obtained from 14 sample pl6t30om x 30 m size located in the Koli National
Park in Eastern Finland. The locations of the sanpbbts were selected to maximise the variation in
the structure, age and number of tree specieseofotiest stands containing aspen. Other tree specie
represented in the data were Scots pilys sylvestrid.), Norway spruce Ricea abies(L.) H.
Karst.), silver birch Betula pendulaRoth), downy birch Betula pubescenkhrh.) and alderAlnus
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spp). The plots included the following forest typds: nutrient-rich forests(xalis-Maianthemum
type, OMaT) 2) upland forests with grass-herb vaig@t Oxalis-Myrtillustype, OMT) and 3) fresh
mineral soil forestsMyrtillus-type, MT) (Cajander 1926). Most of the plots wkreated on mature or
multilayered forest stands, but some were in middjed stands.

The tree-level field measurements of diameter @agtrheight (DBH, mm) of trees larger than 5 cm,
diameter at six metres gpmm), species, height (H, dm) and crown height ¢h) were carried out in
September 2005, in connection with which the treese also classified as living or dead and
belonging to the dominant or suppressed tree pbpnlain addition, thex andy coordinates of all
trees were recorded in the field. Stem volumes weaieulated using the volume functions of
Laasasenaho [24], which included DBH, H angab predictors. Since these functions are intefoted
use with Scots pine, Norway spruce and birchesytih@me estimates for aspens with a diameter at
breast height smaller than 20 cm were calculatédgushe function for birches, whereas those for
aspens with a diameter at breast height of 20 clarger were obtained using the function for piae,
suggested by Kinnuneet al [25]. The stem volumes of the other deciduousstigere calculated with
the function for birch.

The descriptive statistics for characterizationpoges were obtained at the stand level (Table 1).
The lowest and highest values obtained for thegmtagie of aspen in the total stand volume were 13%
and 78%, respectively, whereas the percentagespehan the total number of trees varied from 3% to
46%.

Table 1.Main characteristics of the forest stands.

Variable Tree species Mean Min  Max Std

Volume, n/ha Total 333.3 79.0 4129 82.2
Aspen 123.7 426 2876 179
Number of stems/ hi Total 1167.9 433.3 2883.3 562.1
Aspen 269.4 11.1 1316.7 329.5
Mean height, m Total 145 89 164 2.3
Aspen 224 16.1 28.0 2.9

Differentially corrected Global Positioning Systé@PS) measurements were used to determine the
position of the four corners of each of the 14 gldthe accuracy of positioning in the x/y directivas
about one metre. Tree locations within a plot wasasured using one corner as the origin. Findlly, a
the trees on each plot were projected into thedinate system of the ALS data by means of the affin
transformation, using the measured corner positeneference points.

2.2 Remote sensing data
The ALS data were collected using an Optech ALTNM@laser scanning system in the middle of

July 2005. A total of nine flight lines were runttvia flight altitude of 900 metres, a flight sped#d’5
m/s and a scan angle of 11 degrees. Given a pepsition rate of 100 kHz, a nominal pulse density
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of 3.86 pulses/Mwas achieved. The x, y and z-coordinates, the eumbthe flight line, the intensity
and pulse type (only echo, first of many echoetermediate echo, and last of many echoes) were
recorded for every reflected pulse. The data wepplged in the EUREF-FIN coordinate system.

In the digital terrain model (DTM), which was inpetated from the last pulse data using the
method described by Axelsson [26], every pixel wssigned a height relative to the geoid. Using the
point cloud of the DTM, the CHM was then interpelhtaccording to the maxima within a radius of
0.5 metres. The height values of the pixels inGh¥M were expressed relative to ground level.

Aerial images were captured with a Vexcel UltraCaxiBital frame camera in September 2005.
The area was covered by the two flight lines ofgten10 kilometres, and images were taken at an
altitude of 3,000 metres above ground level wigidelap of 67% and an endlap of 80%. As a part of
the standard data processing, chains of the VéxtelCamD multispectral bands (red, green, blue,
NIR) were fused with the higher-resolution panchatim band by means of the pan-sharpening
procedure. Only the pan-sharpened NIR, red anchdraeds are used in this paper, however. The pan-
sharpened images were finally orthorectified bemefice to the ALS-based DTM and resampled to a
resolution of 25 cm.

3. Methods
3.1 Low-pass filtering

The purpose of the low-pass filtering of the CHMs®o smooth out high-level frequencies in order
to reduce the number of local maxima and increlasgtoportion of true local maxima, i.e. actuaétre
tops. The main goal was to detect large aspenscasradely as possible. A smoothing method
proposed by Pitkanen et al. [6] was used. It ralie&ernels which are based on Gaussian distrifutio

G(xy) =

X2+y2

1
2]702 e 202 (1)

where x andy are the distances from the kernel centre ant the standard deviation of the
distribution. The size of the smoothing window dhd intensity of smoothing increase stepwise as a
function of the heights of the CHM. The size of thiemdow is smallest and the smoothing mildest in
the lowest class, and correspondingly, the smogtisimlways most intense at the greatest heighis. T
parameters required in the height-based filterimdude a sigmac( and a class height. Here a fixed
class height of 6 metres was used, and the sigjnpafameter was given for the lowest (0-6m) and
highest height classes, allowing its value to cleasigpwise at intervals of 6 metres between these
extremes. Individual sigma values were obtainedalig for every sample plot. Sigma values and the
number of height classes are presented in Table 2.
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Table 2. Parameters used in height based filtering: the #imog intensity in the lowest
height class (low) and in the highest class (higimd the number of height classes
(height fixed to 6 meters).

Sample plo o low o high  Number of height classe
1 04 2.2 4
2 0.8 1.6 5
3 04 1.€ 4
4 1 1.1 5
5 0.8 1.2 5
6 1 1.1 5
7 04 2.4 5
8 04 1.6 5
9 04 1.2 5
1C 1 1.2 5
11 04 1.2 5
12 0.€ 1.6 4
13 04 1.4 4
14 0.4 1.€ 4

3.2 The search for local maxima and binarization

Local height maxima in the low-pass filtered CHMrevéirst searched for by a method in which all
the pixels were initially marked as possible maxifé after which they were examined iteratively
and any pixel having a neighbour (in an eight-cated neighbourhood) with a higher value was
labelled as a non-maximum. Local maxima were tlidemtified in the highest sections of the CHM
and also in the lowest sections (ground), and lfitake maxima in the highest sections were taken as
representing tree tops, whereas those in the lcseesions were masked out by the binarization.

In the binarization, all the pixels were classifiasl belonging either to the tree canopy or to the
background area by defining a threshold value, @ha@gparately for each plot. As the binarizatios wa
performed on the smoothed CHM, fairly high threshehlues were needed in order to eliminate the
undergrowth from the local maxima in the backgroareh.

3.3 Segmentation

Watershed segmentation was performed on the snb@hid/l. Watershed algorithms are counted
among the hybrid techniques which combine boundad/region-based methods [27]. In watersheds,
an image is visualized in three dimensions: x afmbgrdinates and grey levels [28]. The image is
regarded as a topographic surface, where the dagt@®svalues represent low points and the brightes
ones the top points of the surface. Starting froenrhinimum values of the image, the surface iedill
with water. Basins surrounding two of the minimaynmaerge at some points. To avoid this, a dam
consisting of single pixels is built on the edgetlodé basins. Finally, all the basins are bounded by
dams, which constitute the boundaries of the setgri@8, 29]. Watershed algorithms produce closed
boundaries even if the transitions between areaaa@requally strong [27].



Sensor008,8 5043

Since the algorithm used here processed the negatithe CHM, the segmentation was started
from the local minima, which were actually the looexima of the CHM, i.e. the assumed top points
of the canopies. Pixels belonging to the local mmiwere labelled with a new segment number,
whereas pixels not belonging to the minima werkedihto their neighbouring pixels with the smallest
pixel value. Each pixel was linked to one minimugnfbllowing the path already formed. After this
the flooding algorithm was implemented.

Finally, the binarization image and the segmentatiere combined, the pixels labelled as the
background in the thresholding being set as backgtan the segmentation image as well. Thus the
canopy segments did not include any pixels witreigtt value smaller than the threshold value, and
local maxima lying outside the canopy were not tak#o account. No parameters need to be chosen
in the watershed segmentation itself, but becauseoperation is performed on a filtered CHM, the
intensity of the low-pass filtering defines the lifysof segmentation.

3.4 Linking local maxima with field trees

The height value of every local maximum was comgavéh the nearby measured tree heights. If
height values were almost equal, and the xy-distdvetween the maximum and the measured tree
coordinates was not too much, the measured treelimieed to the local maximum and its canopy
segment. More variation in heights (z) and distaneg) was allowed among the large trees. In some
cases the measured heights were allowed to be &noumetres greater than the local maximum z
value in the CHM, but measured heights that wess than the values of the local maxima were
restricted to an accuracy of two metres. The méstartte was 1.21 metres in the z direction and 1.38
metres in the xy direction between field coordisaad local maxima.

3.5 Classification of coniferous and deciduousdree

The trees were classified into coniferous and dexid visually using aerial images. Tree segments
and the corresponding local maxima were overlaith eerial images on the screen. Due to radial
displacement the segments and the canopies inl aeages did not match perfectly, but as radial
displacement is strongest near the edges of thgeinmaly images with a plot located not very fairir
the nadir were used. For the most of the plots awthree images were used for classification. This
work was done by a person who was not familiar whéhdata but who had worked with aerial images
before. All the segments were gone through andl&bas coniferous or deciduous trees.

3.6 Classification of aspen and other deciduousgre

A classification of aspen and other deciduous tvegs based on ALS data only. The first step was
to convert ALS data to above-ground scale by sabirg the DTM from the orthometric heights. The
ground hits were excluded by assuming that anytpeith a canopy height less than 0.5 metres is a
ground hit and that the remaining points are carwisy After that the ALS points were extractedhiro



Sensor2008,8 5044

the tree segments and height distribution was edefatrr each tree. Only the first pulse data wasl use
the separation of aspens from the other decidueas.t

The variables calculated for each tree segment wefi®, 20, ..., 90, 95 percentiles of the laser
height (m), the proportion of laser points reflece each percentile relative to all first pulsée
proportion of vegetation hits, average height, déad deviation, average intensity, standard denati
of intensity, intensity values at the,@d", ..., 90" intensity percentiles, and the ratio between crown
area and height. More predictors were created bggusatios between percentile heights and
proportions. Since the mean height of the aspefd (®) was greater than that of the other deciduous
trees (20.5 m), the height percentiles were notl uleectly in the classification, in order to avoid
excessively optimistic results.

A linear discriminant analysis was performed tatidguish the aspens from the other deciduous
trees. To test the overall relationship betweengtioeips to be discriminated and the predictorsssero
product matrices were formed [30]. A cross-produatrix associated with differences between groups
and within groups can be determined as follows:

Stotal = S)g + SWg (2)

where §q refers to systematic variation angy$o unexplained variation [31]. AR ratio is calculated
to test whether the groups can be distinguishetherbasis of the predictors (the null hypothesis is
rejected) [30, 31]. If the Lambda for the test bé toverall relationship does not reject the null
hypothesis, it is not relevant to investigate taeanical discriminant functions any further, ButhéF
ratio exceeds the criticél and the p-value shows significance, further ingasibns can be made [31].
In the two-group case, i.e. aspens versus othedutmgas trees, the canonical discriminant functi®n i
as follows [31]:

Z=a X +a,X,+..+a X, 3)
wherea;—a, andX;—X, are coefficients and predictor variables, respebti

The functionZ has a characteristic valiwenhich is obtained by comparing the within and besn-
sums-of-squares for the two groups. This leads il&sNMambda (\) and to the--relation, which is to
be maximized when choosing values for the paramaies, [31]. The ALS-based predictors used in
the discriminant analysis were chosen by a stepwis¢hod based on Wilks’ lambda [32]. The
criterion for the choice of a predictor was thelability of the significances df: 0.01 for the enter
value and 0.05 for the remove value.

4. Results

The detection of individual trees was based orhthight value of a local maximum and the heights
of the nearby trees as measured in the field. 27#%eotrees were detected overall, while the highes
and lowest proportions at the plot level were 41d 23%. The total proportion of true maxima was
79%, with values varying from 56% to 96%. 64% d trees with a diameter at breast height of 15 cm
or more were correctly detected with the HBF datiathe plot level a maximum of 79% of the trees
were detected, whereas the lowest detection rasedd®. When only trees with a DBH of 25 cm or
more were considered, 87% were detected correbitydetection rates for individual plots varying
from 75% to 100%.



Sensor008,8 5045

The detection rate for individual aspens was 5784l \aaried from 27% to 100% between plots.
When considering aspens with a diameter at bregightof 15 cm or more, 81% were detected,
varying from 43% to 100% at the plot level. The @iegproportion for aspens with a DBH of 25 cm or
more was 96%. The total number of these large ag@=n90, and 86 of them were detected. There
was at least one large aspen on every plot.

Manual classification of the trees into deciduond aoniferous using the digital aerial images, led
to an overall success rate of 74% (Table 3), rangirthe plot level from only 55 % on plot 6 to 96%
on plot 7.

Table 3. Results of the classification into deciduous amiiferous trees.

Sampl Cano Corre.c.tly %

plot classified
1 17 13 76%
2 22 18 82%
3 28 22 79%
4 27 19 70%
5 34 28 82%
6 33 18 55%
7 25 24 96%
8 22 16 73%
9 28 21 75%
10 48 36 75%
11 52 41 79%
12 45 29 64%
13 21 13 62%
14 16 10 63%

Total 418 308 74%

The data used to distinguish the aspens from theradeciduous trees consisted of correctly
detected and correctly classified deciduous traksgether 140 aspens and 56 other deciduous trees.
The average values of the tree variables DBH, kKamd H were on average greater for the aspens
than for the other deciduous trees, and their stahdeviations were also correspondingly greatiéh w
the exception of H. Also, the mean value gfHHobtained for the aspens was higher than foiother
deciduous trees, which means that the aspens hatively shorter crowns, while the standard
deviation of the |IH values was lower for the aspens.

The maximum absolute value of the Pearson coroelati the estimated discriminant function was
set at 0.60. Altogether 78.6% of the trees wereectly classified with the function:

Z =-21.093-0.825% f _hstd+0.039x f _i90-0.105x f _veg+0.476x f _ p60 4
wheref _vegis the proportion of vegetation hits,hstdis the standard deviation in the heights of the
reflected first pulsed, i90 is the intensity value at the"®@ercentile, and_p60 is the proportion of
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laser points reflected at the '®®eight percentile. The proportions of successfabsifications of
aspens and other deciduous trees using Eqn (3)82e9&6 and 67.9%, respectively.

The lowest classification accuracy at the plot lavas only 60% (Table 4). No trees of height less
than 16 metres were misclassified (Figure 1), andespondingly, none of the tree with the smalbest
largest DBH values were misclassified (Figure 2).

Table 4.Proportions of correctly classified trees on eauhe plot

Sample Treestobe Correctly

plot classified classified
1 1 100%
2 3 100%
3 15 60%
4 7 71%
5 15 60%
6 10 70%
7 14 79%
8 12 83%
9 14 86%
10 33 79%
11 32 91%
12 22 73%
13 11 91%
14 7 86%

Figure 1. Correctly classified and misclassified trees, by&re height classes.
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Figure 2. Correctly classified and misclassified trees, iy DBH classes.
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5. Discussion

The aim here was to discriminate aspens from atkerduous trees by a method that involved the
delineation of individual trees based on ALS dagparation of the deciduous from the coniferous
trees by reference to digital aerial photograpimgl finally separation of the aspens from the other
deciduous trees using ALS-based data variables.fif$tephase consisted of filtering of the CHM,
searching for maxima in this model, binarizationtbé smoothed CHM and segmentation of the
detected tree canopies. The trees were classiftedconiferous and deciduous visually from digital
images, whereas the classification into aspensather deciduous trees was performed by linear
discriminant analysis using the first pulse ALSad@ariables as predictors.

The test area was challenging for individual treg¢edtion because of the multi-layered canopy
structure and the size of the large aspens. Tlesifization into aspens and other deciduous trees
succeeded reasonably well, however, as 82.9% aigpens were correctly identified. Only 57% of the
aspens were found in the tree delineation phagsethbuproportion was still 96% in the case of large
aspens (DBH> 25 cm).

The choice of parameters for the low-pass filtetrags mainly based on their ability to improve the
accuracy of aspen detection. The parameters wergenhin order to obtain a smoothing for large
aspens so as to have only one local maximum. iéthwes a high variation in the size of aspens en th
plot, the largest ones were favoured. Since, lagpens often had several maxima in light smoothing,
quite intense smoothing was needed for many pldts.natural result was that the smoothing became
less efficient for other trees, i.e. smaller orgace less local maxima are obtained with intensive
smoothing and less trees are detected [10]. Afterdass filtering, a search for local maxima was
performed and the height values of the detecteestw@ere compared with the heights of those
measured in the field. This comparison indicatagyhty whether the maxima were true canopy tops or
not.
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A clear effect of the intensive filtering on thesudting segmentations was the loss of true local
maxima. Figure 3 is a typical example of the effewtintensity on smoothing. In the left-hand image
the smoothing was so intense that the large asparkéd 'A’) was given only one local maximum, and
therefore the segment became large enough. Inghielrand image, however, the smoothing is lighter
and the canopy of the large aspen has four locaimaaand four separate canopy segments. On the
other hand, at least one local maximum is lost ftbenupper left-hand corner of the image and amothe
from north-east of the aspen marked in the leftdhiamage. Some trees have been lost because their
canopies have been joined to the crowns of neigifparees, resulting in one larger segment. This
was the situation in the case of many of the plotarder to obtain only one local maximum from a
canopy, an increased intensity of smoothing is edddr the large aspens, which will simultaneously
reduce the accuracy of segmentation for the othest

Figure 3. An example of the effects of smoothing intensithefie is an unsmoothed
CHM in the background. Trees measured in the et marked with circles of a size
related to their DBH. The boundaries of the car®pie the result of the segmentation.
A large aspen has been marked with an A and loeaima are marked with triangles.
The smoothing parameterhad the value 0.40 in the lowest height class2a@d in the
highest in the left-hand image, the correspondiwglues in the right-hand image being
0.40 and 1.20.

In the detection of individual trees, the heightsh® detected trees as measured in the field were
restricted to being no more than four metres greatetwo metres less than their laser height
counterparts. When the heights measured in the fere less than the laser heights, it was liked t
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a mistake had been made in measuring the heigtitabrthe local maximum had reflected from a
neighbouring tree. It did indeed prove difficultrtieasure the heights of the tallest aspens witlilair
canopies in the field, and sometimes it was impixs$0 see the top of the tree because of the eaten
the crown, which definitely detracted from the aexy of the field measurements and later caused
difficulties in the detection of individual trees.

It is a typical situation in laser scanning, tha taser beam does not reflect from the highest tre
top, and this causes underestimation in laser t&[@h5, 33, 34]. There is also a possibility afdres
in laser height measurements caused by inaccuracig® DTM. If there are gaps in the last pulse
data, the interpolated DTM will have pixels with @actual ground reflections. The discrepancies
between the real ground value and the interpolafick in 'no data’ areas can be substantial wgh hi
gradients, as found on our plots. Hyyppa and Inkifi®], using laser scanning data to measure tree
heights under Finnish conditions, achieved an aoyubetter than 1.0 m, whereas Maltamo et al. [5]
managed an accuracy of 0.97 m. Altogether 46% ef tlee heights in the latter case were
underestimated by more than 1 metre, 37.4% bythess 1 metre, and 16.6% were overestimated due
to errors in the field measurements [5]. In thespr¢ material the heights were underestimated on
average by 1.2 metres.

The maximum differences between the tree basei@osiimeasured in the field and the laser-
measured tree top positions were almost five méaesrage 1.4 m). It is obvious that the difference
can be a matter of several metres, especially artalhtees. The top of a tall tree can be slighdy
one side of the base, and many of the present Ipdwtsa varying topography, so that some of thestree
would have been leaning. A greater difference wesefore allowed among the tallest trees than
among the smaller ones. The present differencegeletthe trees measured in the field and the laser
maxima were of the same order as the deviatiormtegh by Hyyppa and Inkinen [10], less than 1.5 m.

Perssoret al [3] detected 71% of all trees by means of lasanser data when their field data were
derived from middle-aged and old spruce and pineidated forest stands, while Pitkéneinal [6]
found about 40% of all trees in “mainly mature, Vigastocked forest stands, many of which had
multi-layered canopy structure”. Pitkanest al. [6] also compared several smoothing methods,
including HBF and Gaussian, which gave detecticlesraof 36.7% and 37.0%. About the same
accuracy level was achieved by Heurehal [35], applying an algorithm developed for Swedish
forests to an area in south-eastern Germany, asdétected 44% of the trees, with 5.4% false
identifications. The accuracy of their method waghbst in pure spruce stands and lowest in dense
beech and spruce stands. Koukoulas and Blackbdindgtected 80% of trees in semi-natural forest
using ALS data, delineating the canopies by comgueind manipulating the resulting polygons. In the
present study, 27% of the 1540 trees were detestddhe accuracy was related to the stand density.
The low detection rates can partly be explainedth®y intensive low-pass filtering, and another
explanation could be that small trees are almopbssible to detect when the are located under talle
mature trees [5]. The area concerned was situatedniational park, and most of the plots were in a
natural or semi-natural state with a multilayeradapy structure. The larger trees were detected wit
greater success, and the proportion of successfathcted aspens (57%) was considerably higher than
the overall detection rate. This is partly expldiney the preponderance of small trees, as the
proportion of trees with a DBH of 15 cm or more vagher among the aspens (64%) than for all trees
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(38%). The low proportion of trees detected on s@imtés was due to the increased intensity of
smoothing, as the proportions of true maxima wemr ®0% on these plots, which is also a mark of
intensive smoothing.

The original idea was to use automatic methodsldssify deciduous and coniferous trees from
aerial images, the classification eventually hatbéodone visually due to problems in combining the
data sets. The problem was radial displacementhambéeises tree tops in aerial images not to align
properly with ALS data. The weaknesses of the neetsed were that it is not objective and that the
manual work involved is time consuming. Also, tlagial displacement caused some problems in
visual classification, as it was not always clediok was the canopy that was to be classified én th
aerial image, even if there were several imagdsctnad be used. Canopy segments obtained from the
CHM and tree canopies shown in aerial images didmaich completely, or at all in some cases, and
brightness values differed between the images atmihvan image. This meant that there was variation
in radiometric values and texture even among tmomas of the same species, which complicated
visual interpretation. Also, some of the trees wasepletely shadowed by larger trees. As a result,
74% of the tree canopy segments were correctlgifi@ad as coniferous or deciduous trees.

Three-way tree species classification (pine, spamntkdeciduous trees) using aerial images has been
reported by Haara and Haarala [2], Perssbml [19] and Korpelaet al [8], for example. When
comparing the present results with these, it shbaldoted that the classes, methods and airbotae da
are of a different kind. The results of Haara arahidla [2] were slightly better than ours, in thét
90% of the trees were classified correctly wheming data from the same image were used and 59-
83% when the training sets originated from the oimages. Perssagt al. [19] achieved an accuracy
level of 90%, and although two of the classes (@nd spruce) have relatively similar radiometric
values, misclassifications between them wereatily 5% (pine classified as spruce) and 14% (spruce
classified as pine), while 6% of the deciduousdreere misclassified. Korpekt al [8] achieved an
accuracy level of 93.7% by visual tree speciessdiaation in managed forests.

The separation of aspens from other deciduous #et&sled the use of a total of four predictor
variables in a discriminant function and achievedassification accuracy of 78.6%. These predictors
describe the characteristic shape of the tree crwehdifferences in reflected pulse intensity (@)i9
between the species in question. Higher proportaingegetation hits were obtained for aspens than
for the other deciduous trees, which means thabtiwers are characterised by a more star-like essl |
uniform crown. The proportions of laser points eefed at the 6Dheight percentile indicate smaller
crown heights in aspens, since lower values wetairtdxd for this species on average. This was also
discovered in the field measurements. The standiewthtion of the heights of the reflected firstgad
was also greater for aspen, which may indicate ttietcrowns more often have several tops or that
some of the reflections originating from the topsacge side branches. Finally, the intensity at 9"
height percentile was lower for aspen than foratiner deciduous trees.

The aspen trees in this area were on average ldrgerthe other deciduous trees and the aspens
were classified more precisely, although the ave@gwn area of the misclassified trees was larger
the case of the first function. This may have beaused by the intensive smoothing, causing the
number of local maxima to be relatively small anthe of the segments to be too large as a reselt (se
Figure 3). There are likely to be more large segsm&@rmed from the canopies of two or more trees



Sensor008,8 5051

among the misclassified trees than among the dbtyrelassified ones, and it is probable that the
misclassifications can partly be explained by tlagiation in dimensions between individual trees,
especially among those classified as 'other deosluoees’. As shown in Figures 1 and 2, the
distributions of misclassified trees are narrowsnt those of the correctly classified trees, ared th
successful classification of the smallest tregzairticular is somewhat surprising. The numbersedd

in the smallest and largest height and DBH claasesot high, however.

Holmgren and Persson [4], who classified pinessprdces using linear and quadratic discriminant
analyses with varying numbers of predictors, oladitheir best results (94.8% correctly classified)
with six predictors (standard deviation of the nsi¢y of the returned pulses, proportion of first
returns, proportion of surface hits, mean valuahaf parameters of the parabolic surface, relative
standard deviation of laser heights, and tHB 9€ight percentile divided by the estimated treight
The absolute value for the correlation betweenpifeglictors was at most 0.70. The better results of
Holmgren and Persson [4] relative to ours may b#ypaxplained by the differences in crown shapes
between the species concerned. As Holmgren anddtefd] pointed out, spruce is usually more
conical than pine, especially in the case of otces. With aspen, birch and alder it is more dlifi to
implement such a generalization regarding crowrpebaBrandtberg [14] classified three deciduous
tree species using ALS data with a point density2fif and achieved an accuracy of 64%, which is a
little less than here. It should be noticed thought he had three classes whereas we neededaanly t
Moffiet et al [13] demonstrated that the proportion of singulaser hits had the strongest
discriminating power in the classification of paplbox and cypress pine-dominated forest sites.dStan
level classification clearly differs from tree léwatassification, however. Nevertheless, similastcan
be found in the predictors, as the proportion n§siar returns had most of the discriminatory poimer
analysis of Moffietet al [13], whereas the proportion of vegetation ks an important predictor for
us.

Radiometric values and textural features [36] gitdl images used with ALS data variables could
improve the results. The results of the tree sgedassifications by Haara and Haarala [2] anddeers
et al [19] show that those based on aerial images chiewe high accuracy levels with the three most
common Scandinavian tree species. A combinatioAL& data variables and aerial image variables
could be very efficient, since both the shape progee and radiometric characteristics of the crown
would then be utilized.

The intensity values and the standard deviatiorthef intensity vary from one tree species to
another and between forest sites with differerésrdominant [4, 13, 17]. In addition, intensity-4as
variables had discriminating power in the casehef preliminary discriminant functions used here.
There are many factors affecting intensity valuesyever, and more research into intensity-based
variables may be of help in classifying trees tecsgs.

Future developments in the airborne laser scaneictgnique will undoubtedly ensure not only that
denser data can be obtained at reasonable costisbuhat the crown structures of individual treas
be described more accurately. In addition, the ldgweent of full waveform lidar could provide
suitable solutions for tree species classificatiotine future [37].
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