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Abstract: With the recent advances in microelectronic fabricatiachtelogy, it has now
become now possible to fabricate thin imagers, less thanahailillimeter thick. Dubbed
TOMBO (an acronym for Thin Observation Module by Bound Optiesj)hin camera-on-a-
chip integrates micro-optics and photo-sensing eleméoggther with advanced processing
circuitry, all on a single silicon chip. Modeled after thengoound-eye found in insects and
many other arthropods, the TOMBO imager simultaneouslyurapta mosaic of low res-
olution images. In this paper, we describe and analyze al mpextral-based blind algo-
rithm that enables the restoration of a high resolution ienfagm the captured low resolution
images.The proposed blind restoration method does notresguor information about the
imaging system nor the original scene. Furthermore, ivetes the need for conventional
de-shading and rearrangement processing techniquesriemal results demonstrate that
the proposed method can restore images for Signal-to-Nisegy Ratio (SNER) lower than
3 dB.

Keywords: Image Restoration, TOMBO, CMOS Imager, Back-Projection, Cooseelation,
Spectra.
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1. Introduction

Rapid advances in semiconductor CMOS fabrication techndhagg enabled the realization of the
concept of a camera-on-a-chip, i.e., a CMOS imaaer [1]. Tkegnation of an increased number of
camera functions onto a single silicon chip offers signiftcadvantages in terms of system miniatur-
ization and manufacturing co& [1]. As a result, CMOS imagears now be found in a wide range of
consumer electronic products from mobile phones, PC micevwabcams to fax machines, to name
a few. Other examples of applications of CMOS imagers inchidel spot detection and rear vision
in cars, automated industrial product quality inspectmgtography, digital radiography, fluoroscopy,
microscopy and even implantable microimager retinal Stiton tj/] CMOS camera manufacturers
have been continuously improving the performance of thedpcts in terms of resolution, power con-
sumption, and read-out speed [1]. The continuous aggeessiling of the minimum feature size in
CMOS technology offers the possibility to further miniakgiCMOS imagers, while still integrating
increased built-in functionalities and advanced on-chiepssing for improved imaging performance
[B]. However, a further miniaturization of the optics is mpatssible since this would cause light to pass
through a very small opening and to diffract or spread dubeariterference of light waves. Diffraction
would cause so much spreading that the image would be veryland essentially useless. To achieve
a thin camera-on-a chip, Tanighal have recently proposed an imaging system called TOI\/BO [3] (an
acronym for Thin Observation Module by Bound Optics) emulgtihe visual system of insects and
other arthropod:ﬂzﬂ 5]. In contrast to traditional cameiteams, TOMBO is not based on a single lens
system |ﬂ%]. Instead, a TOMBO imager comprises a collectiomafying units, each of which consists
of a microlens unit associated to a subset of the pixel aFay[{l). Adjacent imaging units are separated
by an opaque wall to prevent crosstalk. Each individual iimg@init is thus optically isolated and im-
ages part of the scene. As a result, the TOMBO sensor captuléplmlow resolution (LR) images at
the same time and the output is a compound image formed bydkaimof low resolution unit images.
Advanced Digital signal processing can then be used to staat a high resolution image from the
available set of low resolution imageg E 10]. Tanedal have demonstrated that the restoration of a
high resolution image is possible since each imaging unitiges a different view of the scer@ [ﬂlZ].
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Figure 1. The TOMBO architecture
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In [E], Tanidaet al proposed an image restoration algorithm which uses the pag&ction (BP) method.
This algorithm requires complete knowledge of the imagiygfesm point spread function (PSF). To re-
construct the original image, the inverse (pseudo-inyarsine known PSF is multiplied by the captured
low resolution images. This approach has a number of liroitat (i) the PSF differs from one camera
to another and cannot be easily identified from the systemrpahersﬂO] (ii) poor performance when
used in an experimental TOMBO system, due to the variationamptoperties of the individual imaging
units ] (iif) the matrix representing the PSF can be siagu.e. non-invertible.

To overcome the above limitations, Tanigtal proposed a new image reconstruction approach called,
pixel rearrange methoﬂlO], which could be integrated @bénthe realization of a compact, low cost
thin imaging system. In their approach, a cross-corratdb@sed technique is used to arrange and align
unit image pixels. To correct for the misalignment, a unference image is used. The relative shift
values ¢z anddy in Fig.[2) of each unit image with respect to the referencegenare determined by
identifying the peak location of the cross-correlationdion between the unit image and the reference
one. Interpolation techniques were used to identify thesi@rrelation peaEﬂLO]. The cross-correlation
based pixel rearrange method is illustrated in Eig. 2.

cross-correlation amplitude

A misaligned unit image

Align unit image by
™| &y iny-direction

Align unit image by
oz in x-direction

Figure 2. Cross correlation-based pixel rearrange method

Reference image

E:ross-Correlati%«.

In the rearrangement process, it is assumed that the coosdation function is ideally symmetric
around a single peak. In other words, there is a single shifvéen the considered unit image and
the reference image, i.e., the spatial PSF function has @méyparameter. In reality, however, there
would be more than one parameter in a PSF (i.e., several-cooeslation peaks). This will limit the
performance of the rearrange method when aligning unit @sagurthermore, the presence of several
cross-correlation peaks introduces additional blur inrédstored image. Inverse filtering is subsequently
required. This operation is not only computationally cptiit also unstable if at least a single non-
minimum phase component is present. It also requires fdP8feto be known. Besides the spatial PSF,
additive noise can also introduce false cross-correlgigaks, which further degrades significantly the
performance of rearrange meth@[lO].
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In the same paper, Tanid#h al proposed a method to minimize the problems associated \{ijth:
TOMBO's intrinsic PSFs (ii) imager internal noise, and (8hading introduced by the separating walls
(Fig.[d). To overcome these problems, Tanétlal introduced a de-shading pre-processing step, which
uses a black picture and a white one for calibration. We catyaa the de-shading process by noting
that,

B(Jf,y) = hmt(ajvy)Bi(:an) +VB($ay) (1)
Wz, y) = hin (2, y) Wiz, y) + Viv (2, y) (2)

where,z andy define the pixel locatiom;,;(x, y) represents the intrinsic PSF of the TOMBO imager,
Bi(xz,y) and W;(z,y) are the black and white pictures to be capturBdz,y) and W (z,y) are the
captured black and white images, ariglz, y) andVyy (z, y) are the additive internal noise for the black
and white images respectively.

By subtracting Eqn[{1) from Eqri](2) and after some manijrate have,

(W<I7y) - B(l’,y)) — (Vw<$,y) - VB(xay»
Wz(:l:vy) _Bz(way)

Ping (95, y) = (3)

When normalized, a black pixel correspond to a '0’ value whil@hite pixel has a value of '1’, i.e.,
Bi(z,y) = 0 andW;(x,y) = 1, thus

hmt(ZE,y) = (W(I’,y) - B(Ivy)) - (Vw(l',y) - VB(xvy)) and B(I’,y) = VB(xvy) (4)

Tanidaet al assumé/y (x,y) andVg(z,y) to be equal. As a result, the intrinsic PSF will take the form,

hint (2, y) = W(z,y) — B(x,y) (5)

The model representing the intrinsic characteristics Ardie-shading pre-processing step can be seen
in Fig.[3.

Divide " O(z,y)
1 |
W(mvy)fB(xvy) :

Original Multiply

image W(x7y) - B(xay)

De-shading pre-processing step

Figure 3. A model for the shading and de-shading pre-processing step

When an imag®(x, y) is captured, the de-shading pre-processing stepl(Fig.r@rgtes the image:

A _ O(:U?y) _ B(Jﬁ,y)
Ol y) = O ey~ Blay)

(6)

whereC' > 0 is an amplification factor.
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From the above equations, it is clear that dividing by theinsic PSF can introduce nonlinearity
problems and unrealistic large pixel values in the de-sthaml@ge. Furthermore, it is assumed that the
internal noised/yy (z,y) and Vz(x,y) are equal while in reality they are not and can differ from one
image to another and from one imager to another.

In this paper, a spectral-based blind image restoratioorigiign is proposed for TOMBO thin im-
agers]. The mathematical analysis for the algorithnorsdeicted in the frequency domain. Unlike
conventional TOMBO image restoration methdas [3] EELd @},[bur method:

e does not require prior information about the imaging systei. intrinsic PSF and internal noise)

e does not require prior information about the original scand the PSFs (mapping the original
scene into the pixel array)

e isrobustin the presence of additive noise whether extgmtalnal, correlated or uncorrelated and
at low signal to noise ratios (SNR)

e does not require a de-shading pre-processing step

e does not require pixel rearrangement since this is autcaibtidone in the frequency domain
through the restoration process

e is able to restore original images that are blurred withbatuse of inverse filtering

e requires less than 30 iterations at SNRZ dB to restore the original image

The paper is organized as follows. Section 2 gives a moddiefTOMBO system. Section 3 de-
scribes the proposed spectral-based image restorationagbp Section 4 presents the blind image
restoration algorithm. The experimental results are dised in Section 5. Finally, a conclusion is given
in Section 6.

2. System Model

If the original image can be regarded as either a deternuroststochastic signal and if the cause
of image degradation can be modeled, then the original incagebe reconstructed. However, in real
situations, it is difficult to accurately model image degrtoh since it has many origins: atmospheric
turbulences, an out-of-focus camera, relative motion betwthe camera and the scene, electronic imag-
ing components, the number of pixels used to capture theamtagname a few. In other words, an
image can be degraded or blurred by a linear or nonlineaegmdlistorted by an additive or multiplica-
tive noise procestlw].

Consider the TOMBO system shown in Higj. 1 witfyax 1) imaging units. Each captured unitimage
can be modeled by,

gz,](x7y):[hl,j<xﬂy)**f(x7y)+vl,j(x7y)] lD7 iuj:1727"'7/1’ (7)
Where,
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e g, i(z,y) represents the captured j) blurred, low resolution (LR) and noisy unit image with

dimension(M x N) pixels

e h; i(z,y) is atwo-dimensional (2-d) PSF with dimensi@hx ¢), representing the channel blur for

the (4, j) image unit

e "« x” represents the 2-d convolution operator

e f(z,y) is the original image with resolutiop\ x N)

e v; ;(x,y) is the additive 2-d zero mean white Gaussian noise intratiuden capturing thé;, ;)

unit image

e | D isthe down-sampling factor modeling the LR operation daréhé captured images

The overall system model is illustrated in Higj. 4

v1,1(, y)

%[’h,l(%?J)]—»

¢ D %@»m,ﬂx, y)

v1,2(, y)

G ) E—

|
|
Original image |
|
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Captured noisy LR unitimages

Figure 4. A mathematical model for the TOMBO system

3. Spectral-Based | mage Restor ation Approach

Our objective is to restore or estimate the original im@ge v), given only the blurred, LR and noisy
imagesy; ;(z,y), i,j = 1,2,..., u captured by the TOMBO. This objective should to be achievel wi
minimal information about the original image, PSFs and eaisntribution. To tackle the problem, we
propose a spectral-based image restoration technique. ovader the 2-d z-transform of the model

given by Eqn.[(7), i.e.,

D—-1D-1

Gij(z1,22) D2ZZH”< 2 _J;Wk

k=0 [=0

where,z; = e—12mh andzy, = e J2rf2,
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Fig.[3 illustrates the spectra of all involved signals. Far sake of clarification, the spectra are shown
for one-dimension signals. The figure also shows the impllobth the down-sampling operator}™
and the noise in degrading the original image.
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Figure5. A spectral representation for the captured images in the BOMystem.
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Eqn. [8) can be partitioned into,

1 1 1 11 1 1
Gij(z1,22) = 2 [Hm' <21D>ZQD> F <Z1DvZQD) +Vij <Z1D722D>}

(a)
D—1D-1
1 1 —j2rk 1 —j2mnl 1 —j2nk 1 —j2xl
D D
+ = Hi;jlzle D ,z5e D e D L zye D
k=1 I=1 (9)
(b)
D-1D-1
1 % —Jj27k 1 —gj27l
+ = Vijlzle o ,zy5e D
k=1 I=1

and can be rewritten as,
1 1 1 1 1 1
Gij(z1,22) = 2 [Hm (Zf)aZzD) F (ZleZQD) + Vij <ZlD722D)i|
1 1
Tz‘ljj <21D722D> (10)
(:.2F)
2

where,

e (a) represents the image of interest and the noise terngnad-bseful terms

1 1

e (b) symbolized b j’j (zP, zf) represents the aliasing out-off band image terms

1 1

e (c) symbolized by, (z?, zf) represents the aliasing out-off band noise term
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By multiplying both sides of Eqn[_(10) with the complex corgigofH, ; (zl%, zf) ,i.e  H; (zl%, zf)
and applying the ensemble averaBd,} and after some manipulation we have,

B{Gu (12} = g [B{F (F, o) Hustlyy (0,28 ) |+ E{Vist (o027 ) }]
1 1
E {ﬂb,jHi*j (ZlD ) 22D>

(11)
which can rewritten as,

1 1 1 1 1 1
_ 1 D D D D D D
Caiymz,(21,22) = 3o [F <21 ) 23 )CHi,jH-*,- (21 s 23 ) + Cv,, 1y, (21 s 23 )}
1
D
2

+

Where the cross-spect€agy« (21, z2) = E{X (21, 20)Y*(z1, 20) }, [IE]

1 1 1 1 . 1 1
SinceT}, (le , 22D> andT; (le : 22D> are not located in the same frequency band wlﬁﬁrje<z1’3 : zQD)
1 1

1 1 1 1
is located, thus the second and the last cross-spectrad ey, (le : 22D> andCre py, (le : z2D> in
1,77 71,7 7, Z,
Eqn. [12) will disappear, leading to,
1 11 11 11
Coyriy,(o12) = 33 [F (2 #F) Cuyary, (28 28 ) + Cuyy, (o 2F ) | (13)
Similarly and by following the same previous procedure,

Ca, ,r (21, 22) = % [Hi,j <zl%,z2%> Crp~ (zl%, zf) + Cv;, , p (zl%, 22%)} (14)
whereCy, ;i (zl% ,zz% ) andCy, g~ <z1%, zf are residual errors representing the in-band cross spec-
tral terms between original image, PSFs and the indeperatktitive noise in Eqn[{11) respectively.
This error can be assumed to be a zero mean, 2-d independeiteantically distributed signal (i.i.d)
under some regularity conditions. In addition, these eeons represent the cross-spectra between sig-
nals and noise, i.e. smaller in amplitude when comparedtivélspectra of the signals themsel\B [14].

Eqgns. [18) and(14) suggest that it is possible to estimatetiginal image and the PSFs with minimal
prior information/constrlaintls on the PSFs/original imager instance, if the PSF associated with each
(4, 7) unitimage,H, ; (zlﬁ, zf), is known or can be estimated, then the original image carestenred
using,

1 1 CGi,jHi*,j (21, 22) - # CVi,jHi*’j (Zlﬁ> z2ﬁ>
F(=F,2F) = (15)

2,2y "
3 Cunri, (4,28
However, there are three main problems when using image 8kdeBtimation methods in real situa-
tions. The first is the unknown size of the PSF. The secondeid®®F itself, and the third and most
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critical one, is the residual error term, which can signifibaaffect the restoration proceg[la[ZZ].

Since TOMBO imaging systems provide multiple observatidnhe scene, it is possible to signif-
icantly reduce the impact of the error terms using averagessespectral techniqu13]. To demon-
strate this, consider a TOMBO system with{;a x 1) unit images. Since the span of= 1,2,...u
andj = 1,2,..., u, thus the averaged spectral and cross-spectral techniquelse applied similar to
Eqns [1B) and(14), but using spectral estimates insteddedfrie ones. Thereford, (zl%, zf > and

1 1
similarly H; ; (le , ZQD) can be estimated iteratively using the equation,

iiéc‘i,jl{;j(zb@) ( v %) iiéH@jH& ('Zl 172 >+ii0 Vil <Zl 2 ) (16)

=1 j=1 =1 j=1 i=1 j=1

Whereéxy*(zl,@) = X(z1,29)Y*(21, 20) is an estimate of the cross-spectra betwégn; , z;) and
Y (21, 22). LQ is here not considered since it is only a scaling factor.

For large values ofu x i) unit images, the last summation error term of Eqnl (16), ibing but the
mean value of an i.i.d signal which has a zero m&h Eb][hﬁthls situation, we will have,

A R i=1j=1
Pebd)m g — an)

Fig.[8 is a spectral diagram illustrating how signals’ crepsctra are estimated so that the original
image can be restored while minimizing the effect of additmise and aliasing terms resulting from
down-sampling. A similar diagram can be drawn for the PSIEtion.
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4. Blind Image Restoration Algorithm

Blind image restoration is to reconstruct an original imagetdegraded, blurred and noisy observa-
tion(s) without any knowledge about either the original gaar the degradation process, which includes
the noise and the blur P 1@22].

Using the analysis carried out in the previous section, wee lteveloped a blind image restoration
algorithm capable of restoring the original image usingydhke captured, noisy and LR unit images.
The proposed algorithm is given in FIg. 7.

During the restoration process, the algorithm will only msp two constraints on the restored image and
the PSFs: the positivity and the support region. The two ttaimds can be described mathematically as
follows,

e For the image

. f(z,y)|, <x,y> € supportregiofLM, LN
flany) = |/, y)] y pport regior ] (18)
0 otherwise
e For the PSFs
. hii(z,y)|, <, y> € supportregiori, (
e (y) = { | ,j<0 y)l. <.y > € supportregiori/, 19)
otherwise

where,L > D is the up-sampling factor needed to restore the high raealirhage,(LM x LN) is the
size of the restored image which can be greater or equal wizhef the original imagéM x N), and
(¢ x ¢) is the size of the estimated PSF.

For the purpose of implementations and to evade the divisyorero in Eqn.[(T]7), a small value
can be added to the denominator (Elg. 7). Finally, the upgdiamis done by zero-padding in the spatial
domain between the image samples, then Fast Fourier Tramgfe=T) is applied and in the Fourier
domain, a single spectrum is then taken out of the repesiextrums using a low pass filter with cut-
off frequency(%) and zeroing the rest of the spectrum. Finally, the inverse (#H-T) is used to return
to the image domain. Notice that the zero-padding must bk that the zero frequency components
remain the same and that zero-padding is applied to bothiy@mand negative frequencies. The whole
process is symbolized Ky L) in Fig.[4. Other interpolation techniques could also be used

5. Experimental Resultsand Discussion

In this section, we applied the proposed method to restayle tesolution images from LR noisy
images captured by an experimental TOMBO imagers. Capturagaemfor a letter 'A’ picture (Fid.|8),
were provided byﬂS]. The letter 'A’ picture was located 28 from the TOMBO imager, which com-
prises (1& 10) imaging units. Each unit has (6060) pixels and each pixel is 6.2bnx 6.25um. The
microlens array has the following characteristits3 mm focal length, 0.5nm diameter of aperture,
and a 0.5mm pitch for the microlens array.
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Figure 7. Blind Image Restoration Algorithm

To assess the robustness of the proposed method in the peesfaroise, a zero mean correlated and
uncorrelated Gaussian noise is added manually to the espbionages. We consider the restoration of
the original image for the following four different cases: (o added noise (ii) additive external noise
(i) additive internal and external noise (iv) additivetesnal correlated noise. Information about test
input data and output images can be found in Table 1.

Table 1. Test input data

| Figure | 1xpused] M x N | SNR | ¢ [1L ][ LM xLN | o [ #oflterations
Fig.[8, No added noise 6 x 6 60 x 60 - 3| 4 240 x 240 | 0.01 30
Fig.[9, External noise 6 X6 60 x 60 7dB 3 4 240 x 240 | 0.01 30
Fig.[IQ, Internal and external noise 6 x6 60 x 60 | 40dB (In)and 7 dB (Ex)| 3 4 240 x 240 | 0.01 30
Fig.[11, External correlated noiseH 6 x6 60 x 60 2.8dB 3 4 240 x 240 | 0.01 30

The external noise is directly added to the captured imagleie the internal noise is increased by al-
tering the blackB(x,y), and whitelV (x, y) images (Eqns[{1) andl(2) ).

In Fig.[8 (no added noise), our blind restoration method énde perform slightly better than the pixel
rearrangement method.

In Fig.[9, under external noisy conditions, one can see thatreethod performs better than the pixel
rearrangement method.

In Fig.[10, under internal and external noisy conditions oan see that the de-shading pre-processing
step further degrades the captured images. As a resultjxbkrparrangement method was unable to
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restore the original image, while our proposed method is &l We have considered the effect of the
internal noise because the conditions under which the laadkvhite calibration images have been cap-
tured can change. In other words, when a new image is captineedystem will encounter noise levels
and nonlinearities that are different from the ones enaexdt when calibrating the system using the
black and white images.

In Fig.[11, under an external correlated noise, it is cleatr tthe pixel rearrangement method is unable to
restore the original image accurately, while our methodreatore the original image. The reason behind
the lower performance of the rearrangement method is thetlated noise creates false peaks (spares)
that significantly affect the alignment performance of tbarrangement method (FIg. 2). In contrast, in
our method, spectral information is not affected by misatignts (shift$x anddy in Fig.[2).

In summary, the results of Figsl[8111 show that our spebiakd blind image restoration method
can reconstruct the original image in noisy conditions.sTiiachieved whether the source of noise is
internal or external, uncorrelated or correlated, andwatdignal-to-noise Energy ratio (SNER) as seen
in Table1.

Note also, the impact of the de-shading pre-processingistEjgs.[8E11, with the values of pixels in-
creasing especially at the periphery of each unit image.

To compare the performance of our approach with the pixefaegement method, when the blur is
significant and the down-sampling is high, a "Lena” imag€][23z, y) of (M =256x N =256) pixels
is used to represent the original image. To accurately maddiworld conditions, the original image
is first convolved with(x: x 1) different PSFs representing the blur. A rotationally syrtrinéruncated
Gaussian PSF (blur) combined with a motion-like PSF/, with standard deviation is used as a ref-
erence. From the reference PSF, all PSFs are generatedati¢h f(x, y) = ho(z,y) +r; ;(z,y) where
ri.j(x,y) is a random variable uniformly distributed betwee, §]. To model a captured TOMBO unit
imageg; ;(z, y), the resultant blurred image plus the noise is then dowrpkai(| D) in a way that

mimics the function of the imager. Mathematically we have,
) (z+1)D—1 (y+1)D—-1
’L’,':C7 - 2 Zi7'£é,/,
g ]( y) D2 m;}ﬂ y;;y J( y) (20)
2ig(£,9) = hig(&,9) * fi;(£,9) + vi(£, )

Simulation parameters are given in Table 2.

Table 2. Simulation input data

’ Figure H Lo ‘ D ‘ SNER\ uxuunitimages‘ M x N ‘ T L ‘ LM><LN‘ «@ ‘#oflterations‘
| Figm2|7.4] 4 | - | 4 x4 | 64x64 | 4 | 256 x 256 | 0.01 | 30 |

From Fig[12, it is clear that with realistic PSFs, our restion method outperforms the pixel rearrange-
ment method. This is because the pixel rearrangement methiodble to align the captured unit images
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for the simulation parameters in Table 2. To illustrate,ttiie cross-correlation function between a ref-
erence image and a unit image is represented by the contasrii Fig_IR. Note that there is a single
peak atz = 0,y = 0). However, there should be at least 7 peaks due to the makiefrEFs since each
has(7 x 7) coefficients. Instead, only a single peak is recognized bypikel rearrangement method,
leading to the observed blurred output image, which requireerse filtering.

6. Conclusions

A spectral-based blind image restoration method for thiMB® imagers is described and analyzed.
The proposed method does neither require conventionahalirsy or pixel rearrangement as these op-
erations are performed automatically through the blintbrasion process. As a result, errors associated
with misalignment, nonlinearities, singularities andhgxel values are overcome. Experimental results
demonstrate that the proposed method can reconstructitieadimage wether the source of additive
noise is internal or external, uncorrelated or correlatedontrast to conventional pixel rearrangement
method, it is able to restore the original at SNER lower thdB.3The proposed method can also be
extended to color images.
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