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Abstract: With the recent advances in microelectronic fabrication technology, it has now

become now possible to fabricate thin imagers, less than half a millimeter thick. Dubbed

TOMBO (an acronym for Thin Observation Module by Bound Optics), a thin camera-on-a-

chip integrates micro-optics and photo-sensing elements,together with advanced processing

circuitry, all on a single silicon chip. Modeled after the compound-eye found in insects and

many other arthropods, the TOMBO imager simultaneously captures a mosaic of low res-

olution images. In this paper, we describe and analyze a novel spectral-based blind algo-

rithm that enables the restoration of a high resolution image from the captured low resolution

images.The proposed blind restoration method does not require prior information about the

imaging system nor the original scene. Furthermore, it alleviates the need for conventional

de-shading and rearrangement processing techniques. Experimental results demonstrate that

the proposed method can restore images for Signal-to-NoiseEnergy Ratio (SNER) lower than

3 dB.

Keywords: Image Restoration, TOMBO, CMOS Imager, Back-Projection, Cross-correlation,

Spectra.
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1. Introduction

Rapid advances in semiconductor CMOS fabrication technologyhave enabled the realization of the

concept of a camera-on-a-chip, i.e., a CMOS imager [1]. The integration of an increased number of

camera functions onto a single silicon chip offers significant advantages in terms of system miniatur-

ization and manufacturing cost [1]. As a result, CMOS imagerscan now be found in a wide range of

consumer electronic products from mobile phones, PC mice and webcams to fax machines, to name

a few. Other examples of applications of CMOS imagers includeblind spot detection and rear vision

in cars, automated industrial product quality inspection,photography, digital radiography, fluoroscopy,

microscopy and even implantable microimager retinal stimulation [2]. CMOS camera manufacturers

have been continuously improving the performance of their products in terms of resolution, power con-

sumption, and read-out speed [1]. The continuous aggressive scaling of the minimum feature size in

CMOS technology offers the possibility to further miniaturize CMOS imagers, while still integrating

increased built-in functionalities and advanced on-chip processing for improved imaging performance

[1]. However, a further miniaturization of the optics is notpossible since this would cause light to pass

through a very small opening and to diffract or spread due to the interference of light waves. Diffraction

would cause so much spreading that the image would be very blurry and essentially useless. To achieve

a thin camera-on-a chip, Tanidaet al have recently proposed an imaging system called TOMBO [3] (an

acronym for Thin Observation Module by Bound Optics) emulating the visual system of insects and

other arthropods [4, 5]. In contrast to traditional camera systems, TOMBO is not based on a single lens

system [3]. Instead, a TOMBO imager comprises a collection ofimaging units, each of which consists

of a microlens unit associated to a subset of the pixel array (Fig. 1). Adjacent imaging units are separated

by an opaque wall to prevent crosstalk. Each individual imaging unit is thus optically isolated and im-

ages part of the scene. As a result, the TOMBO sensor captures multiple low resolution (LR) images at

the same time and the output is a compound image formed by the mosaic of low resolution unit images.

Advanced Digital signal processing can then be used to reconstruct a high resolution image from the

available set of low resolution images [3, 10]. Tanidaet al have demonstrated that the restoration of a

high resolution image is possible since each imaging unit provides a different view of the scene [7]-[12].

Separation walls

unit images

Captured, blurred, low resolution

TOMBO architectureOriginal image

Microlens array Pixel array

Figure 1. The TOMBO architecture
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In [3], Tanidaet al proposed an image restoration algorithm which uses the back-projection (BP) method.

This algorithm requires complete knowledge of the imaging system point spread function (PSF). To re-

construct the original image, the inverse (pseudo-inverse) of the known PSF is multiplied by the captured

low resolution images. This approach has a number of limitations: (i) the PSF differs from one camera

to another and cannot be easily identified from the system parameters [10] (ii) poor performance when

used in an experimental TOMBO system, due to the variation in the properties of the individual imaging

units [10] (iii) the matrix representing the PSF can be singular, i.e. non-invertible.

To overcome the above limitations, Tanidaet al proposed a new image reconstruction approach called,

pixel rearrange method [10], which could be integrated to enable the realization of a compact, low cost

thin imaging system. In their approach, a cross-correlation based technique is used to arrange and align

unit image pixels. To correct for the misalignment, a unit reference image is used. The relative shift

values (δx andδy in Fig. 2) of each unit image with respect to the reference image are determined by

identifying the peak location of the cross-correlation function between the unit image and the reference

one. Interpolation techniques were used to identify the cross-correlation peak [10]. The cross-correlation

based pixel rearrange method is illustrated in Fig. 2.
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Figure 2. Cross correlation-based pixel rearrange method

In the rearrangement process, it is assumed that the cross-correlation function is ideally symmetric

around a single peak. In other words, there is a single shift between the considered unit image and

the reference image, i.e., the spatial PSF function has onlyone parameter. In reality, however, there

would be more than one parameter in a PSF (i.e., several cross-correlation peaks). This will limit the

performance of the rearrange method when aligning unit images. Furthermore, the presence of several

cross-correlation peaks introduces additional blur in therestored image. Inverse filtering is subsequently

required. This operation is not only computationally costly but also unstable if at least a single non-

minimum phase component is present. It also requires for thePSF to be known. Besides the spatial PSF,

additive noise can also introduce false cross-correlationpeaks, which further degrades significantly the

performance of rearrange method [10].
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In the same paper, Tanidaet al proposed a method to minimize the problems associated with:(i)

TOMBO’s intrinsic PSFs (ii) imager internal noise, and (iii)shading introduced by the separating walls

(Fig. 1). To overcome these problems, Tanidaet al introduced a de-shading pre-processing step, which

uses a black picture and a white one for calibration. We can analyze the de-shading process by noting

that,

B(x, y) = hint(x, y)Bi(x, y) + VB(x, y) (1)

W (x, y) = hint(x, y)Wi(x, y) + VW (x, y) (2)

where,x andy define the pixel location,hint(x, y) represents the intrinsic PSF of the TOMBO imager,

Bi(x, y) and Wi(x, y) are the black and white pictures to be captured,B(x, y) and W (x, y) are the

captured black and white images, andVB(x, y) andVW (x, y) are the additive internal noise for the black

and white images respectively.

By subtracting Eqn. (1) from Eqn. (2) and after some manipulation we have,

hint(x, y) =
(W (x, y) − B(x, y)) − (VW (x, y) − VB(x, y))

Wi(x, y) − Bi(x, y)
(3)

When normalized, a black pixel correspond to a ’0’ value whilea white pixel has a value of ’1’, i.e.,

Bi(x, y) = 0 andWi(x, y) = 1, thus

hint(x, y) = (W (x, y) − B(x, y)) − (VW (x, y) − VB(x, y)) and B(x, y) = VB(x, y) (4)

Tanidaet al assumeVW (x, y) andVB(x, y) to be equal. As a result, the intrinsic PSF will take the form,

hint(x, y) = W (x, y) − B(x, y) (5)

The model representing the intrinsic characteristics and the de-shading pre-processing step can be seen

in Fig. 3.

image

∑ Divide
1

W (x,y)−B(x,y)

B(x, y)

De-shading pre-processing step

O(x, y) Ó(x, y)Original ∑
+

Multiply

W (x, y) − B(x, y)

B(x, y)

−

Figure 3. A model for the shading and de-shading pre-processing step

When an imageO(x, y) is captured, the de-shading pre-processing step (Fig. 3) generates the image:

Ó(x, y) = C
O(x, y) − B(x, y)

W (x, y) − B(x, y)
(6)

whereC > 0 is an amplification factor.
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From the above equations, it is clear that dividing by the intrinsic PSF can introduce nonlinearity

problems and unrealistic large pixel values in the de-shaded image. Furthermore, it is assumed that the

internal noisesVW (x, y) andVB(x, y) are equal while in reality they are not and can differ from one

image to another and from one imager to another.

In this paper, a spectral-based blind image restoration algorithm is proposed for TOMBO thin im-

agers [13]. The mathematical analysis for the algorithm is conducted in the frequency domain. Unlike

conventional TOMBO image restoration methods [3] and [7]-[12], our method:

• does not require prior information about the imaging system(e.g. intrinsic PSF and internal noise)

• does not require prior information about the original sceneand the PSFs (mapping the original

scene into the pixel array)

• is robust in the presence of additive noise whether external, internal, correlated or uncorrelated and

at low signal to noise ratios (SNR)

• does not require a de-shading pre-processing step

• does not require pixel rearrangement since this is automatically done in the frequency domain

through the restoration process

• is able to restore original images that are blurred without the use of inverse filtering

• requires less than 30 iterations at SNRs≤ 7 dB to restore the original image

The paper is organized as follows. Section 2 gives a model of the TOMBO system. Section 3 de-

scribes the proposed spectral-based image restoration approach. Section 4 presents the blind image

restoration algorithm. The experimental results are discussed in Section 5. Finally, a conclusion is given

in Section 6.

2. System Model

If the original image can be regarded as either a deterministic or stochastic signal and if the cause

of image degradation can be modeled, then the original imagecan be reconstructed. However, in real

situations, it is difficult to accurately model image degradation since it has many origins: atmospheric

turbulences, an out-of-focus camera, relative motion between the camera and the scene, electronic imag-

ing components, the number of pixels used to capture the image, to name a few. In other words, an

image can be degraded or blurred by a linear or nonlinear process, distorted by an additive or multiplica-

tive noise process [16].

Consider the TOMBO system shown in Fig. 1 with a(µ×µ) imaging units. Each captured unit image

can be modeled by,

gi,j(x, y) = [hi,j(x, y) ∗ ∗f(x, y) + vi,j(x, y)] ↓ D , i, j = 1, 2, . . . , µ (7)

Where,
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• gi,j(x, y) represents the captured(i, j) blurred, low resolution (LR) and noisy unit image with

dimension(M × N) pixels

• hi,j(x, y) is a two-dimensional (2-d) PSF with dimension(ℓ× ℓ), representing the channel blur for

the(i, j) image unit

• ′′ ∗ ∗” represents the 2-d convolution operator

• f(x, y) is the original image with resolution(M×N )

• vi,j(x, y) is the additive 2-d zero mean white Gaussian noise introduced when capturing the(i, j)

unit image

• ↓ D is the down-sampling factor modeling the LR operation done to the captured images

The overall system model is illustrated in Fig. 4
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Figure 4. A mathematical model for the TOMBO system

3. Spectral-Based Image Restoration Approach

Our objective is to restore or estimate the original imagef(x, y), given only the blurred, LR and noisy

imagesgi,j(x, y), i, j = 1, 2, . . . , µ captured by the TOMBO. This objective should to be achieved with

minimal information about the original image, PSFs and noise contribution. To tackle the problem, we

propose a spectral-based image restoration technique. We consider the 2-d z-transform of the model

given by Eqn. (7), i.e.,

Gi,j(z1, z2) =
1

D2

D−1∑

k=0

D−1∑

l=0

Hi,j

(

z
1
D

1 e
−j2πk

D , z
1
D

2 e
−j2πl

D

)

F
(

z
1
D

1 e
−j2πk

D , z
1
D

2 e
−j2πl

D

)

+Vi,j

(

z
1
D

1 e
−j2πk

D , z
1
D

2 e
−j2πl

D

)

,

(8)

where,z1 = e−j2πf1 andz2 = e−j2πf2.
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Fig. 5 illustrates the spectra of all involved signals. For the sake of clarification, the spectra are shown

for one-dimension signals. The figure also shows the impact of both the down-sampling operator, ”↓”

and the noise in degrading the original image.

���
���
���

���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

������
������
������
������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

������
������
������
������

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

True image

F (f1)

H1(f1)

Hµ(f1)

H2(f1)

V1(f1)

Vµ(f1)

V2(f1)

G1(f1)

G2(f1)

Gµ(f1)

DownBlurred
Images Sampling

Additive Noise

f1

PSFs

C
ap

tu
re

d
bl

ur
re

d,
LR

an
d

no
is

y
un

it
im

ag
es

Sampling effects
LR, Streching and aliasing

Figure 5. A spectral representation for the captured images in the TOMBO system.

Eqn. (8) can be partitioned into,

Gi,j(z1, z2) =
1

D2
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F
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(9)

and can be rewritten as,

Gi,j(z1, z2) = 1
D2

[

Hi,j

(

z
1
D

1 , z
1
D

2

)

F
(

z
1
D

1 , z
1
D

2

)

+ Vi,j

(

z
1
D

1 , z
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D
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)]
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z
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(10)

where,

• (a) represents the image of interest and the noise term, in-band useful terms

• (b) symbolized byT b
i,j

(

z
1
D

1 , z
1
D

2

)

represents the aliasing out-off band image terms

• (c) symbolized byT c
i,j

(

z
1
D

1 , z
1
D

2

)

represents the aliasing out-off band noise term
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By multiplying both sides of Eqn. (10) with the complex conjugate ofHi,j

(

z
1
D

1 , z
1
D

2

)

, i.e.,H∗
i,j

(

z
1
D

1 , z
1
D

2

)

and applying the ensemble average,E {} and after some manipulation we have,

E
{
Gi,jH

∗
i,j(z1, z2)

}
= 1

D2

[

E
{

F
(

z
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D

1 , z
1
D

2

)

Hi,jH
∗
i,j
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z
1
D

1 , z
1
D

2

)}

+ E
{

Vi,jH
∗
i,j

(

z
1
D

1 , z
1
D

2

)}]

+ E
{
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i,jH

∗
i,j
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z
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1 , z
1
D

2

)}

+ E
{
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i,jH

∗
i,j

(

z
1
D

1 , z
1
D

2

)}

(11)

which can rewritten as,

CGi,jH∗

i,j
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D2

[

F
(

z
1
D

1 , z
1
D

2

)

CHi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

)
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(

z
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D
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1
D

2
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2
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z
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Where the cross-spectraCXY ∗(z1, z2) = E {X(z1, z2)Y
∗(z1, z2)}, [13]

SinceT b
i,j

(

z
1
D

1 , z
1
D

2

)

andT c
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z
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1
D

2

)

are not located in the same frequency band whereH∗
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z
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2

)

is located, thus the second and the last cross-spectral termsCT b
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)
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Eqn. (12) will disappear, leading to,

CGi,jH∗

i,j
(z1, z2) =

1

D2

[

F
(

z
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2
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+ CVi,jH∗
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z
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1 , z
1
D
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)]

(13)

Similarly and by following the same previous procedure,

CGi,jF ∗(z1, z2) =
1

D2

[

Hi,j

(

z
1
D

1 , z
1
D

2

)

CFF ∗
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+ CVi,jF ∗
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whereCVi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

)

andCVi,jF ∗

(

z
1
D

1 , z
1
D

2

)

are residual errors representing the in-band cross spec-

tral terms between original image, PSFs and the independentadditive noise in Eqn. (11) respectively.

This error can be assumed to be a zero mean, 2-d independent and identically distributed signal (i.i.d)

under some regularity conditions. In addition, these errorterms represent the cross-spectra between sig-

nals and noise, i.e. smaller in amplitude when compared withthe spectra of the signals themselves [14].

Eqns. (13) and (14) suggest that it is possible to estimate the original image and the PSFs with minimal

prior information/constraints on the PSFs/original image. For instance, if the PSF associated with each

(i, j) unit image,Hi,j

(

z
1
D

1 , z
1
D

2

)

, is known or can be estimated, then the original image can be restored

using,

F
(

z
1
D

1 , z
1
D

2

)

=
CGi,jH∗

i,j
(z1, z2) −

1
D2 CVi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

)

1
D2 CHi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

) (15)

However, there are three main problems when using image and PSF estimation methods in real situa-

tions. The first is the unknown size of the PSF. The second is the PSF itself, and the third and most



Sensors 2008, 8 6116

critical one, is the residual error term, which can significantly affect the restoration process [15]-[22].

Since TOMBO imaging systems provide multiple observations of the scene, it is possible to signif-

icantly reduce the impact of the error terms using averaged cross-spectral techniques [13]. To demon-

strate this, consider a TOMBO system with a(µ × µ) unit images. Since the span ofi = 1, 2, . . . µ

andj = 1, 2, . . . , µ, thus the averaged spectral and cross-spectral techniquescan be applied similar to

Eqns (13) and (14), but using spectral estimates instead of the true ones. Therefore,F
(

z
1
D

1 , z
1
D

2

)

and

similarly Hi,j

(

z
1
D

1 , z
1
D

2

)

can be estimated iteratively using the equation,

µ
∑

i=1

µ
∑

j=1

ĈGi,jH∗

i,j
(z1, z2) = F

(

z
1
D

1 , z
1
D

2

) µ
∑

i=1

µ
∑

j=1

ĈHi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

)

+

µ
∑

i=1

µ
∑

j=1

ĈVi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

)

(16)

whereĈXY ∗(z1, z2) = X(z1, z2)Y
∗(z1, z2) is an estimate of the cross-spectra betweenX(z1, z2) and

Y (z1, z2). 1
D2 is here not considered since it is only a scaling factor.

For large values of(µ × µ) unit images, the last summation error term of Eqn. (16), is nothing but the

mean value of an i.i.d signal which has a zero mean [13][14]. In this situation, we will have,

F̂
(

z
1
D

1 , z
1
D

2

)

≈

µ∑

i=1

µ∑

j=1

ĈGi,jH∗

i,j
(z1, z2)

µ∑

i=1

µ∑

j=1

ĈHi,jH∗

i,j

(

z
1
D

1 , z
1
D

2

) (17)

Fig. 6 is a spectral diagram illustrating how signals’ cross-spectra are estimated so that the original

image can be restored while minimizing the effect of additive noise and aliasing terms resulting from

down-sampling. A similar diagram can be drawn for the PSF function.
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4. Blind Image Restoration Algorithm

Blind image restoration is to reconstruct an original image from degraded, blurred and noisy observa-

tion(s) without any knowledge about either the original image or the degradation process, which includes

the noise and the blur PSF [15]-[22].

Using the analysis carried out in the previous section, we have developed a blind image restoration

algorithm capable of restoring the original image using only the captured, noisy and LR unit images.

The proposed algorithm is given in Fig. 7.

During the restoration process, the algorithm will only impose two constraints on the restored image and

the PSFs: the positivity and the support region. The two constraints can be described mathematically as

follows,

• For the image

f̂(x, y) =

{

|f̃(x, y)|, < x, y > ∈ support region[LM,LN ]

0 otherwise
(18)

• For the PSFs

ĥi,j(x, y) =

{

|h̃i,j(x, y)|, < x, y > ∈ support region[ℓ, ℓ]

0 otherwise
(19)

where,L ≥ D is the up-sampling factor needed to restore the high resolution image,(LM ×LN) is the

size of the restored image which can be greater or equal to thesize of the original image(M×N ), and

(ℓ × ℓ) is the size of the estimated PSF.

For the purpose of implementations and to evade the divisionby zero in Eqn. (17), a small valueα

can be added to the denominator (Fig. 7). Finally, the up-sampling is done by zero-padding in the spatial

domain between the image samples, then Fast Fourier Transform (FFT) is applied and in the Fourier

domain, a single spectrum is then taken out of the repetitivespectrums using a low pass filter with cut-

off frequency
(

π
L

)
and zeroing the rest of the spectrum. Finally, the inverse FFT (IFFT) is used to return

to the image domain. Notice that the zero-padding must be such that the zero frequency components

remain the same and that zero-padding is applied to both positive and negative frequencies. The whole

process is symbolized by(↑ L) in Fig. 7. Other interpolation techniques could also be used.

5. Experimental Results and Discussion

In this section, we applied the proposed method to restore high resolution images from LR noisy

images captured by an experimental TOMBO imagers. Captured images for a letter ’A’ picture (Fig. 8),

were provided by [3]. The letter ’A’ picture was located 285mm from the TOMBO imager, which com-

prises (10× 10) imaging units. Each unit has (60× 60) pixels and each pixel is 6.25µm× 6.25µm. The

microlens array has the following characteristics:1.3 mm focal length, 0.5mm diameter of aperture,

and a 0.5mm pitch for the microlens array.
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Figure 7. Blind Image Restoration Algorithm

To assess the robustness of the proposed method in the presence of noise, a zero mean correlated and

uncorrelated Gaussian noise is added manually to the captured images. We consider the restoration of

the original image for the following four different cases: (i) no added noise (ii) additive external noise

(iii) additive internal and external noise (iv) additive external correlated noise. Information about test

input data and output images can be found in Table 1.

Table 1. Test input data

Figure µ × µ used M × N SNR ℓ ↑ L LM × LN α # of Iterations

Fig. 8, No added noise 6 × 6 60 × 60 - 3 4 240 × 240 0.01 30

Fig. 9, External noise 6 × 6 60 × 60 7 dB 3 4 240 × 240 0.01 30

Fig. 10, Internal and external noise 6 × 6 60 × 60 40 dB (In) and 7 dB (Ex) 3 4 240 × 240 0.01 30

Fig. 11, External correlated noise 6 × 6 60 × 60 2.8 dB 3 4 240 × 240 0.01 30

The external noise is directly added to the captured images,while the internal noise is increased by al-

tering the black,B(x, y), and whiteW (x, y) images (Eqns. (1) and (2) ).

In Fig. 8 (no added noise), our blind restoration method is seen to perform slightly better than the pixel

rearrangement method.

In Fig. 9, under external noisy conditions, one can see that our method performs better than the pixel

rearrangement method.

In Fig. 10, under internal and external noisy conditions, one can see that the de-shading pre-processing

step further degrades the captured images. As a result, the pixel rearrangement method was unable to
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restore the original image, while our proposed method is able to. We have considered the effect of the

internal noise because the conditions under which the blackand white calibration images have been cap-

tured can change. In other words, when a new image is captured, the system will encounter noise levels

and nonlinearities that are different from the ones encountered when calibrating the system using the

black and white images.

In Fig. 11, under an external correlated noise, it is clear that the pixel rearrangement method is unable to

restore the original image accurately, while our method canrestore the original image. The reason behind

the lower performance of the rearrangement method is that correlated noise creates false peaks (spares)

that significantly affect the alignment performance of the rearrangement method (Fig. 2). In contrast, in

our method, spectral information is not affected by misalignments (shiftsδx andδy in Fig. 2).

In summary, the results of Figs. 8-11 show that our spectral-based blind image restoration method

can reconstruct the original image in noisy conditions. This is achieved whether the source of noise is

internal or external, uncorrelated or correlated, and at low signal-to-noise Energy ratio (SNER) as seen

in Table 1.

Note also, the impact of the de-shading pre-processing stepin Figs. 8-11, with the values of pixels in-

creasing especially at the periphery of each unit image.

To compare the performance of our approach with the pixel rearrangement method, when the blur is

significant and the down-sampling is high, a ”Lena” image [23], f(x, y) of (M =256×N =256) pixels

is used to represent the original image. To accurately modelreal-world conditions, the original image

is first convolved with(µ × µ) different PSFs representing the blur. A rotationally symmetric truncated

Gaussian PSF (blur) combined with a motion-like PSF,h
ℓ×ℓ
o , with standard deviationσ is used as a ref-

erence. From the reference PSF, all PSFs are generated such that,hi,j(x, y) = ho(x, y)+ri,j(x, y) where

ri,j(x, y) is a random variable uniformly distributed between[−δ, δ]. To model a captured TOMBO unit

imagegi,j(x, y), the resultant blurred image plus the noise is then down-sampled (↓ D) in a way that

mimics the function of the imager. Mathematically we have,

gi,j(x, y) = 1
D2

(x+1)D−1∑

x́=Dx

(y+1)D−1∑

ý=Dy

zi,j(x́, ý),

zi,j(x́, ý) = hi,j(x́, ý) ∗ ∗fi,j(x́, ý) + vi,j(x́, ý)

(20)

Simulation parameters are given in Table 2.

Table 2. Simulation input data

Figure ℓ, σ ↓ D SNER µ × µ unit images M × N ↑ L LM × LN α # of Iterations

Fig. 12 7, 4 4 - 4 × 4 64 × 64 4 256 × 256 0.01 30

From Fig. 12, it is clear that with realistic PSFs, our restoration method outperforms the pixel rearrange-

ment method. This is because the pixel rearrangement methodis unable to align the captured unit images



Sensors 2008, 8 6120

for the simulation parameters in Table 2. To illustrate this, the cross-correlation function between a ref-

erence image and a unit image is represented by the contour lines in Fig 12. Note that there is a single

peak at(x = 0, y = 0). However, there should be at least 7 peaks due to the motion-like PSFs since each

has(7 × 7) coefficients. Instead, only a single peak is recognized by the pixel rearrangement method,

leading to the observed blurred output image, which requires inverse filtering.

6. Conclusions

A spectral-based blind image restoration method for thin TOMBO imagers is described and analyzed.

The proposed method does neither require conventional de-shading or pixel rearrangement as these op-

erations are performed automatically through the blind restoration process. As a result, errors associated

with misalignment, nonlinearities, singularities and high pixel values are overcome. Experimental results

demonstrate that the proposed method can reconstruct the original image wether the source of additive

noise is internal or external, uncorrelated or correlated.In contrast to conventional pixel rearrangement

method, it is able to restore the original at SNER lower than 3dB. The proposed method can also be

extended to color images.

Acknowledgment

This work is supported by the Australian Research Council’s Discovery Project DP0664909. The

authors would like to thank Professor Tanida for kindly providing the authors with images of their ex-

perimental TOMBO imager.

Captured TOMBO images

100 200 300 400

50

100

150

200

250

300

350

400

450

 One of the unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image

50 100 150 200

50

100

150

200

De−shading using [10]

100 200 300 400

50

100

150

200

250

300

350

400

450

One of the de−shaded unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image using [10]

50 100 150 200

50

100

150

200

Figure 8. Experimental , no added noise ,6 × 6 lenses



Sensors 2008, 8 6121

Captured TOMBO images

100 200 300 400

50

100

150

200

250

300

350

400

450

 One of the unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image

50 100 150 200

50

100

150

200

De−shading using [10]

100 200 300 400

50

100

150

200

250

300

350

400

450

One of the de−shaded unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image using [10]

50 100 150 200

50

100

150

200

Figure 9. Experimental , External noise ,6 × 6 unit images

Captured TOMBO images

100 200 300 400

50

100

150

200

250

300

350

400

450

 One of the unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image

50 100 150 200

50

100

150

200

De−shading using [10]

100 200 300 400

50

100

150

200

250

300

350

400

450

One of the de−shaded unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image using [10]

50 100 150 200

50

100

150

200

Figure 10. Experimental , Internal and external noise ,6 × 6 unit images



Sensors 2008, 8 6122

Captured TOMBO images

100 200 300 400

50

100

150

200

250

300

350

400

450

 One of the unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image

50 100 150 200

50

100

150

200

De−shading using [10]

100 200 300 400

50

100

150

200

250

300

350

400

450

One of the de−shaded unit images

10 20 30 40 50 60

10

20

30

40

50

60

Restored image using [10]

50 100 150 200

50

100

150

200

Figure 11. Experimental , External correlated noise ,6 × 6 unit images

Original Image

50 100 150 200 250

50

100

150

200

250

Simulated TOMBO images

50 100 150 200 250

50

100

150

200

250

 One of the LR, blured unit images

10 20 30 40 50 60

10

20

30

40

50

60

Correlation lag in ’x’ direction

C
or

re
la

tio
n 

in
 ’y

’ d
ire

ct
io

n

Contour lines showing peaks of the cross−correlation

−6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Reconstructed image obtained by [10]

50 100 150 200 250

50

100

150

200

250

Reconstructed image using proposed method

50 100 150 200 250

50

100

150

200

2500.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Figure 12. Simulation, no added noise,4 × 4 unit images



Sensors 2008, 8 6123

References

1. El Gamal, A.; Eltoukhy, H. CMOS Image Sensors.IEEE Circ. Dev. Mag. 2005, 21, 6-20.

2. Ng, D.C.; Tokuda, T.; Shiosaka, S.; Tano, Y.; Ohta, J. Implantable Microimagers.Sensors 2008, 8,

3183-3204.

3. Tanida, J.; Kumagai, T.; Yamada, K.; Miyatake, S.; Ishida, K.; Morimoto, T.; Kondou, N.; Miyazaki,

D.; Ichioka, Y. Thin Observation Module by Bound Optics (TOMBO): Concept and experimental

verification.Appl. Opt. 2001, 40, 1806-1813.

4. Völkel, R; Eisner, M.; Weible, K. J. Miniaturized imaging systems. Microelectron Eng. 2003,

67-68, 461-472.

5. Land, M.; Nilsson, D.-E.Animal Eyes; Oxford University Press: New York, NY, USA, 2002.

6. Hamanaka, K.; Koshi, H. An artificial compound eye using a microlens array and its application to

scale invariant processing.Optics 1996, 3, 264-268.

7. Yamada, K.; Tanida, J.; Yu, W.; Miyatake, S.; Ishida, K.; Miyazaki, D. Fabrication of diffractive

microlens array for opto-electronic hybrid information system. InProc. of Diffrac. Opt., 1999; Vol.

22, pp. 5253.

8. Tanida, J.; Kumagai, T.; Yamada, K.; Miyatake, S.; Ishida, K.; Morimoto, T.; Kondou, N.; Miyazaki,

D.; Ichioka, Y. Thin observation module by bound optics-TOMBO: an optoelectronic image cap-

turing system. InProc. SPIE Optics in Computing, 2000; pp. 10301036.

9. Tanida, J.; Yamada, K. TOMBO: thin observation module by bound optics. InProc. the 15th

Annual Meeting of the IEEE in Lasers and Electro-Optics, 2002; Vol. 1, pp. 233-234.

10. Kitamura, Y.; Shogenji, R.; Yamada, K.; Miyatake, S.; Miyamoto, M.; Morimoto, T.; Masaki, Y.;

Kondou, N.; Miyazaki, D.; Tanida, J.; Ichioka Y. Reconstruction of a high-resolution image on a

compound-eye image-capturing system.App. Optics 2004, 43, 1719-1727.

11. Nitta, K.; Shogenji, R.; Miyatake, S.; Tanida, J. Image reconstruction for thin observation module

by bound optics by using the iterative backprojection method. App. Optics 2006, 45, 2893-2900.

12. Yamada, K.; Ishida, K.; Shougenji, R.; Tanida, J. Development of three dimensional endoscope by

Thin Observation by Bound Optics(TOMBO). InProc. World Automation Congress, 2006; pp. 1-4.

13. Kay, S. M.Modern Spectral Estimation: Theory and Application; Englewood Cliffs, Prentice Hall:

N.J., USA, 1988.

14. Brillinger, D. R.Time Series: Data Analysis and Theory; Holden-Day, Inc.: San Francisco, CA,

USA, 1981.

15. Banham, M. R.; Katsaggelos, A. K. Digital image restoration. IEEE Signal Process. Mag. 1997,

14, 24-41.

16. Tekalp, A. M.; Pavlovic, G. Image restoration with multiplicative noise: incorporating the sensor

nonlinearity.IEEE Trans. Signal Process. 1991, 39, 2132-2136.

17. Kundur, D.; Hatzinakos, D. Blind Image Deconvolution.IEEE Signal Process. Mag. 1996, 13

43-64.

18. Richardson, W. H. Bayesian-based Iterative Method of Image Restoration.J. Opt. Soc. Am. 1972,

62, 55-59.

19. Lucy, L. B. An iterative technique for the rectification ofobserved distribution.Astronom. J. 1974,



Sensors 2008, 8 6124

79, 745-759.

20. Ayers, G. R.; Dainty, J. C. Iterative Blind Deconvolution Method and Its Applications.Optics Lett.

1988, 13, 547-549.

21. McCallum, B. C. Blind Deconvolution by Simulated Annealing.J. Optics Commun. 1990, 75,

101-105.

22. Chen , L.; Yap, K.; He, Y. Efficient Recursive Multichannel Blind Image Restoration.EURASIP J.

Adv. Signal Proces. 2007, 1-10.

23. Munson, D. C. A Note On Lena.IEEE Trans. Image Proces. 1996, 5, 1-2.

c© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

This article is an open-access article distributed under the terms and conditions of the Creative Commons

Attribution license (http://creativecommons.org/licenses/by/3.0/).


	1. Introduction
	2. System Model
	3. Spectral-Based Image Restoration Approach
	4. Blind Image Restoration Algorithm
	5. Experimental Results and Discussion
	6. Conclusions

