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Abstract: Using three dimensional point clouds from both simulated and real datasets 

from close and terrestrial laser scanners, the rotational and translational convergence 

regions of Geometric Primitive Iterative Closest Points (GP-ICP) are empirically 

evaluated. The results demonstrate the GP-ICP has a larger rotational convergence region 

than the existing methods, e.g., the Iterative Closest Point (ICP). 
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1. Introduction 

 

Laser scanners provide a three-dimensional (3D) sampled representation of the surfaces of objects 

with high spatial resolution and have been gained popularity in terrestrial and airborne applications 

such as 3D-reconstruction of terrain [17], tree height estimation [36] and building segmentation [27]. 

Those datasets are generally called 3D point clouds. Since laser scanners have a limited field of view, 

it is necessary to collect data from several locations in order to obtain a completed representation of an 

object. These data must be transformed into a common coordinate system for further analysis. This 

procedure is called the registration of point clouds. A method for the automated registration of two 

point clouds is summarised as follows: 

- Finding correct correspondence from either selected point-to-point or point-to-surface pairs. 

- Adjustment algorithms for estimating the relative transformation parameters between point 

clouds using point- or plane-based methods, e.g. Umeyama [38], Horn [24], Haralick et al. [20] 

and so on. 

OPEN ACCESS
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A considerable amount of work on the automated registration of 3D point clouds has been 

conducted over the last few decades by researchers from different fields such as photogrammetry, 

computer vision and artificial intelligence. One can find reviews on existing registration methods from 

e.g. Haralick et al. [20], Rusinkiewicz and Levoy [32], Campbell and Flynn [9], Rodrigues et al. [31] 

and Gruen and Akca [19]. Existing automated registration methods, e.g. the Iterative Closest Point 

(ICP) method and its variants [7, 10], work well if good a priori alignment is provided. Chen and 

Medioni’s [10] method is popular since its results are much precise than that of the ICP [32]. In order 

to minimise the search space for correspondence between two point clouds and to increase the 

accuracy in the selection of the corresponding points, several researchers have used geometric features, 

e.g. Higuchi et al. [21], Chua and Jarvis [11], Johnson and Hebert [25], Rabbani et al. [30], Brenner et 

al. [8] and Barnea and Filin [6]. Higuchi et al. [21] proposes a spherical map of curvature with mesh, 

the Spherical Attribute Images (SAI), which is similar to the Extended Gaussian Images [14, 23]. Two 

SAIs from two point clouds are registered to estimate the rotation angles between range imageries. 

Johnson and Hebert [25] use a 2D histogram of local distance and angles to neighbourhood points to 

recover the correspondence. Sharp et al. [34] proposes to use either spherical harmonics or the second 

order momentum to minimise the error to find the correspondence of 3D range camera datasets. 

Convergence region of a registration method is defined as the size of a basin within which the 

registration method can find a solution close to the truth [16, 31-32]. Since the relative transformation 

parameters are estimated by a registration method, the convergence basin is expressed in the 

transformation parameter space, i.e. three rotational and three translational parameters. It is difficult to 

determine the convergence of a registration algorithm since it depends on both initial rotation and 

translation parameters. To obtain ±50 rotational convergence region around an axis in one situation 

does not guarantee that the same or a larger rotational convergence region will be achieved in other 

situations. The convergence region of Chen and Medioni’s [10] method is known to be much smaller 

than that of the ICP. From the author’s experience with their method for terrestrial laser scanner 

datasets, Chen and Medioni’s [10] method needs about a millimeter translational error and 

approximately a degree of rotational error to successfully find a solution. Bae [1] and Bae and Lichti 

[3] proposed a pair-wise and feature-based registration method for three-dimensional point clouds 

named Geometric Primitive Iterative Closest Points (GP-ICP). It utilises the estimated local surface 

normal vectors and curvatures for geometric attributes to select the possible corresponding points. In 

terms of the sampling strategy of the GP-ICP, high curvature points are only used in the early iteration 

and gradually more points are included in the selection pool for correspondence.  

Although these feature-based ICP methods [11, 14, 21, 25, 34] increase the accuracy in selecting 

corresponding points and the efficiency of the algorithm, a registration method with large convergence 

region is still to be developed [29, 31]. In this paper, an automated registration method, the GP-ICP, is 

introduced. Secondly, the rotation and translational convergence region of the GP-ICP are empirically 

investigated with simulated and real 3D point clouds from both close-range and terrestrial  

laser scanners. 

The remaining sections of this paper are orgarnised as follows: In Section 2, the GP-ICP will be 

introduced and briefly discussed. In Section 3, experiments with both simulated data and close and 

terrestrial laser scanner datasets will be discussed. 
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2. Automated registration method for 3D point clouds 

 

Geometric primitives, such as surface normal vector, curvature, and the change of curvature and so 

on, may provide additional and useful information to recover the correspondence of two point clouds. 

A method to find the correspondence of two point clouds using geometric primitives and a local search 

algorithm, named Geometric Primitive ICP (GP-ICP), is proposed. Since this paper aims to present the 

evaluation results of the convergence region of the GP-ICP, the precision and accuracy of the relative 

transformation between point clouds are treated in the paper. One can find an advanced version of GP-

ICP in Bae [7], in which an outlier method using a positional uncertainty model of laser scanners [1, 4] 

was implemented in order to the precise estimation of the relative transformation parameters between 

the point clouds. 

 

2.1. Metrics for finding correspondence between two point clouds 

 

Although the simplest method of estimating the surface normal vector is the first order three-

dimensional plane fitting [33], the covariance matrix will be utilised in this paper since the first order 

plane fitting is equivalent to the eigenvalue problem of the covariance matrix. In addition, the 

covariance analysis provides additional geometric information such as curvature and its higher order 

derivatives. Let pi be the coordinates of ith point in a point cloud and note that a bold letter represents 

a matrix or a vector. The covariance of a point and its k neighbour points is expressed as: 
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where rm = pi – pcentorid, pcentroid, pcentroid is the centroid of the k neighbourhood and el is the eigenvector 

of the (l+1)th smallest eigenvalue. Since COV(pi) is a real, positive and semi-definite matrix, its 

eigenvalue are always greater than or equal to zero [18]. The eigenvector of the minimum eigenvalue 

is the estimated normal vector of the surface formed by pi and its neighbourhood. The other 

eigenvectors are the tangential vectors of the surface and if the minimum eigenvalues are close to zero, 

and then the surface consisting of a point and its neighbourhood is geometrically flat. If all eigenvalues 

are similar, then the surface is a round-shape and locally well distributed. One can find details of other 

methods based on the covariance analysis for 3D point clouds in [37]. 

There are many ways to define geometric curvature, e.g. through Gaussian and mean curvatures or 

using the eigenvalues of the covariance matrix [15]. It is preferable to estimate curvature directly by 

using points without any pre-process such as triangulation and surface fitting since it is faster to use 

the neighbourhood of a point than to utilise the connectivity information provided by triangulation. 

Hoppe et al. [22] proposed a covariance analysis method for the estimation of the normal vector with 

consistent orientation. The covariance analysis method has been also utilised for the estimation of local 

curvature estimation using the ratio between the minimum eigenvalue and the sum of the eigenvalues. 

Definition of local curvature proposed by Hoppe et al. [22] is used in this paper and this method 

estimates the first order differential of local surface rather than local curvature itself. 
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Each eigenvalue of the covariance matrix represents the spatial variation along the direction of the 

corresponding eigenvector. The curvature approximation quantifies the percentage of variance 

attributed by surface deviation from the tangential plane formed by e1 and e2. The ratio of the 

minimum eigenvalue and the sum of the eigenvalues approximates the curvature, Mcurv(pi), as follows: 
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where λ1 is the eigenvalue of e1. Although this method has been demonstrated to provide a good 

approximation to the change of curvature [2, 28, 5], the quality of estimation depends on how well the 

neighbourhood points are distributed. The angle between normal vectors and the difference between 

the changes of curvature of a point and its corresponding points are our criteria for selection of 

corresponding point pair. Using the information from the previous sections, first the angle between 

approximate normal vectors of 1
ip  and 2

ip  can be expressed as: 

)(cos 2121
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where 1
ip

n  and 2
jp

n  are the respective approximate normal vectors of the points. Then the difference 

in changes of curvature between two points can be written: 
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where )( 1
icc pM and )( 2

jcc pM are the approximate changes of curvature of 1
ip  and 2

ip . The normal 

vector of a point is estimated by covariance analysis of the point and its neighbourhood points and the 

change of curvature is estimated as the ratio of eigenvalues of the covariance matrix. 

 

2.2. Description of the proposed algorithm: GP-ICP 

 

The amount of data to process in order to find correspondence is very large, which limits the 

robustness of registration algorithms. The higher curvature points may have more valuable information 

than the lower curvature points since they could be edges or corners. Therefore, in the early stages of 

iteration, we only take into account higher curvature points and then, as iteration proceeds, lower 

curvature points also are included to improve the registration.  

Our method for the registration of three-dimensional, partially overlapping and unorganised point 

clouds without good a priori alignment can be briefly described as follows. Note that the list of 

threshold values used in the proposed method is shown in Table 1 and it is assumed that there is no 

scale different between two point clouds. 

1. Find the k neighbourhood points of every point in two point clouds named C1 and C2. Estimate 

the geometric primitives of the points. 

2. Take initial sample points, 
1

}...1{ 1iternp , whose change of curvature is greater than 
iiter

normalT 
 where  

iitern   is the number of sample in the ith iteration where 
iiter

normalT 
 is the threshold of the angle 



Sensors 2009, 9                            

 

 

359

between the normal vector in the ith iteration. Note that 
iiter

normalT 
 is the threshold values for the 

difference in the estimated surface normal vectors in the ith iteration. 

3. Find corresponding points of
1

}...1{ 1iternp . 
2
jp  is the corresponding point of 

1
ip  if  

iiter
normalpp

T
ji


);( 21  
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where 
iiter

ccT 
 is the threshold for the difference in the changes of geometric curvature between 

the corresponding points. 

4. Calculate the approximate transformation, iiterTr , and transform C1. Rotate the normal vectors 

of all points of C1 as well. 

5. Update the threshold values in order to apply a stricter criterion for determination of possible 

corresponding points as follow. 

normal
iiter
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iiter

normal TTT   1  
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iiter

cc TTT   1  
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iiter
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iiter

sample TTT   1  

6. Calculate the registration error, εiter=i, which is defined as the rms distance of points and their 

corresponding surfaces in our method. If εiter=i is greater than threshold, then go to step 

Otherwise stop the registration. In addition, if εiter=i is smaller than 
CM

T , for example, the 

average distance of a point from its neighbourhood, then Chen and Medioni's method is used 

since it converges quickly than Horn's algorithm does if the point clouds are close. Otherwise 

Horn's method is used. 

If the initial alignment is close to the correct one, only a small number of points need to be 

searched. Otherwise a large number of points must be searched in order to find correct correspondence 

of sample points. The optimal number of points being searched could be evaluated from the statistical 

properties of the distribution of registration error metric [39]. However, the distance distribution of the 

corresponding points is usually not a unimodal Gaussian but bimodal or multimodal distributions. 

Furthermore, good initial alignment is not assumed in the proposed method, it is difficult to remove 

outliers in the early stages of iteration. Therefore, a large number of points need to be searched in 

order to determine the correspondence of two point clouds. 

Among the threshold values utilised in the GP-ICP, 
0iter

ccT and },,{ sampleccnormalT are the most 

important and critical thresholds. The other threshold values are not critical to the success rate of the 

proposed method, although they affect the robustness of the registration. It is difficult to state 

explicitly which values are the optimal values since they depend on dataset. Currently we are working 

on finding the optimal and generalized expressions for these thresholds. Our suggestions of 
0iter

ccT and 

},,{ sampleccnormalT from the experiences with the proposed method are: 
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2221
},,{ rmsccrmsccsampleccnormal MMT   (6) 

where i
ccM  and 

rms

i
ccM are the mean and rms of the change of curvature of a point cloud. 

 

Table 1. Threshold values are used in the GP-ICP. 

Threshold Description 

k Number of neighbourhood 
0iter

sampleT  Initial sampling threshold for the change of curvature 

0iter
sampleT  Initial threshold for the difference in charge of curvature 

0iter
sampleT  Initial threshold for the angle between normal vectors 

},,{ normalccsampleT  Increment for },,{ normalccsampleT  

CM
T  Threshold for starting Chen and Medioni’s method 

T  Threshold for stopping the algorithm 

 

3. Experimental 

 

3.1. Simulated data study 

 

In this section, the precision of the relative transformation parameters by the GP-ICP will be 

evaluated with a set of simulated point clouds. As mentioned earlier, the accuracy of the estimated 

parameters can be properly evaluated only with simulated data since the true relative transformation 

parameters are not available in the other real cases. It must be noted that simulated datasets are 

unitless. However, in order to help understanding the magnitude of registration or translational errors 

in a registration algorithm, the pixel of a point cloud is defined as the average distance from a point to 

its neighbours in the point cloud as follows: 





n

i
i
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n 1
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1
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where n is the number of points, k is the number of neighbours, )( i
pp pD  is the distance between ip  

and its jth neighbour, and )( i
pp pD  is the average distance between a point and its neighbourhood. 

Note that the dimension of the pixel of a point cloud is equivalent to that of distance. In addition, the 

pixel of a three-dimensional point cloud is a relative unit since the size of a pixel is dependent on the 

spatial characteristics of a point cloud such as point density. However, two partially overlapping point 

clouds simulated from computer-aided design (CAD) models have almost the same size of a pixel 

since they have similar spatial point densities. Two simulated point clouds are presented for the GP-

ICP convergence region tests: two datasets have been generated from the CAD models, `cactus' and 

`golf club'. These datasets were used in Hoppe et al. [22] and are available on 

ftp://ftp.research.microsoft.com/users/hhoppe/data/thesis/phase2_meshes/. The file names of the cactus 
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and the golf club are cactus.crep1e-5.m.gz and club71.crep1e-5.m.gz, respectively. The points from the 

CAD models are taken from the three corners of the triangles constituting the CAD models and the 

cube consists of a set of random points on the surface of a cube. 

Two point clouds which share a certain amount of overlapping regions with each other were 

manually cut from the complete point clouds, e.g. the cactus, the golf club, and the cube. The total 

number of point clouds and the number of points in the overlapping regions for each point cloud can 

be found in Table 2. 

 

Table 2. Sizes of the overlapping regions are represented as percentages of the whole point 

cloud, i.e. the denominator is the total number of points in the point cloud and the 

numerator is the number of points in the overlapping region. 

 Point cloud 1 Point cloud 2 

Cactus 179/519 = 34% 179/545 = 33% 

Gold club 622/1371 = 45% 622/1861 = 33% 

 

The convergence region of the GP-ICP will be evaluated in different situations and will be 

compared with that of the original ICP with random sampling proposed by Besl and McKay [7] and 

Masuda and Yokoya [26]. The scope of the test for the convergence region of the GP-ICP in this paper 

with the simulated data must be stated as follows: 

- These tests for the convergence region were conducted with the GP-ICP since the convergence 

region does not heavily depend on whether or not the proposed RANSAC procedure is used, 

from the fact that the same method for finding correspondence is used in both methods.  

- The cactus and the golf club were used for the tests. In all the tests, these simulated point clouds 

were rotated by a fixed amount, -50° < Rinitial < 50°, where Rinitial is a rotational angle around an 

axis. For translations, three kinds of the tests were performed coinciding with the Rinitial : no 

translation, a translation of (H/4, L/4, W/2) named translation 1, and a translation of (-H/4, L/4, 

W/2) named translation 2, where H, L, and W are the height, length, and the width of either the 

cactus or the golf club, respectively. 

- 
0iter

normalT  was set to be Rinitial + 10° and it was changed from a maximum value of a test point 

cloud to zero with increment of 10 pixel. For example, in the test either by the GP-ICP or the 

original ICP with random sampling, a new 
0

tan
iter

cedisT  is tried unless the solution of a registration 

algorithm converges, until 
0

tan
iter

cedisT  reaches to zero. Therefore, if the final 
0

tan
iter

cedisT  is zero, it 

means that the registration algorithm did fail to find a solution within a maximum
0

tan
iter

cedisT . 

The results of the convergence tests of both the GP-ICP and the original ICP with random sampling 

are presented in Figures 1 – 6. In all the tests, the GP-ICP provides ±50° rotational convergence 

region, which is the maximum possible rotational convergence angle in these tests. On the other hand, 

the original ICP with random sampling's rotational convergence region in these tests is at best ±50°. 

For example, in the case of Figures 5 and 6, the original ICP with random sampling does not converge 

into a solution in any test region, i.e. the rotational convergence region is zero. Although the GP-ICP 
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requires a different 
0

tan
iter

cedisT  in a different situation, the convergence region of the GP-ICP is 

reasonably large for practical applications. 

 

Figure 1. Convergence region test of the point clouds from the cactus without translation. 

 
 

Figure 2. Convergence region test of the point clouds from the cactus with a translation, 

the translation 1, i.e. (H/4, L/4, W/2). 
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Figure 3. Convergence region test of the point clouds from the cactus with a translation, 

the translation 2, i.e. (-H/4, L/4, W/2). 

 
 

Figure 4. Convergence region test of the point clouds from the gold club without translation. 

 
Figure 5. Convergence region test of the point clouds from the golf club with a translation, 

the translation 2, i.e. (H/4, L/4, W/2). 
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Figure 6. Convergence region test of the point clouds from the golf club with a translation, 

the translation 1, i.e. (-H/4, L/4, W/2). 

 
 

The success rate of the original ICP with random samples is poor since it does not escape from local 

minima in the ways that it finds a corresponding point, i.e. using the nearest neighbour point as the 

corresponding point. The GP-ICP provides a way of avoiding these kinds of local minima, although it 

still has limitations. In the case of the direct georeferencing method, the translation parameters usually 

converge more easily. In other words, finding possible corresponding points is a part of the problem 

for the GP-ICP, the ICP, or its variants. In these cases, finding the translational parameters is more 

difficult than the rotational parameters since the estimated translational parameters are simply the 

translational differences in the centroids of the selected corresponding points, unless a weighted least 

square method is employed. In the case of direct georeferencing methods, to find the translational 

parameters is easier, only because a good set of corresponding points is already given. 

Figure 7 shows the initial threshold for distance, 
0

tan
iter

cedisT , in the convergence tests performed in the 

previous section. As explained earlier, 
0

tan
iter

cedisT  was decreased from a maximum value to zero in these 

tests. If a solution close to the truth is found, then the iteration was stopped and the current 
0

tan
iter

cedisT  

was recorded. For example, in the case of the cactus without translation, i.e. Figure 7(a), the maximum 
0

tan
iter

cedisT  is set to 100 pixels. Basically, we would like to have a constant 
0

tan
iter

cedisT over the entire 

convergence region of a registration method. However, in the cases of the simulated data, the required 
0

tan
iter

cedisT with which a good estimation of the true relative transformation of the point clouds is 

obtained, changes in an unpredictable manner mainly because its point density is much lower than that 

of either close-range or terrestrial laser scanner data. The probability of finding a good set of 

corresponding points is decreased with a larger
0

tan
iter

cedisT . Fortunately, it will be shown in later sections 

that a similar level of the rotational convergence region with the simulated datasets is maintained with 

the tests with point clouds on both close-range and terrestrial laser scanners with a smaller deviation 

in
0

tan
iter

cedisT . 
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Figure 7. 
0

tan
iter

cedisT  for the convergence region tests in Section 3.1. 

 
 

3.2. Real case study with close-range laser scanner 

 

For tests of the precision of the GP-ICP, two datasets from the Stanford 3D scanning repository will 

be used: the “Stanford bunny” and the “happy Buddha” as these are referred to by computer graphics 

researchers. These datasets were obtained from the Stanford 3D scanning repository [35] which were 

scanned with a Cyberware 3030MS [13]. These datasets have approximately ten point clouds and two 

sets of them from both the Stanford bunny and the happy Buddha will be used in this section. One 

point cloud of the Stanford bunny was named ‘bunny000’ following its original file name, bun000.ply. 

The other was named ‘bunny090’, again following its original file name, bun090.ply. One point cloud 

of the happy Buddha was named `’happybuddha_StandRight_0’ after its original file name, 

happyStandRight_0.ply. The other was named ‘happybuddha_StandRight_48’ again after its original 

file name, happyStandRight_48.ply. It must be noted that the pre-processed data from one of the 

Stanford graphics research group's smoothing procedures, e.g. Curless and Levoy [12], were not used 

in this thesis. Instead, a set of raw point clouds from the close-range scanner was utilised to evaluate 

the performance of GP-ICP.  In addition, the pixel sizes of the Stanford bunny and the happy Buddha 

are about 2.30mm and 1.14mm, respectively. The convergence region of the GP-ICP will be evaluated 

using close-range laser scanner datasets, i.e. the Stanford bunny and the happy Buddha. The scope of 

the tests can be stated as follows:  

- Unlike the convergence region tests with the simulated data, the Stanford bunny and the happy 

Buddha were, from the registered state, rotated around an axis in both clockwise and counter-

clockwise until the GP-ICP fails to obtain a solution. Therefore, a point cloud's rotational 

convergence region can be asymmetric, e.g. -40° < Rinitial < 20°, where Rinitial is the rotational 

convergence region of a point cloud.  

- Since the true transformation was known and this test was designed to evaluate the convergence 

region of the GP-ICP, the algorithm was stopped if the difference between the true and the 
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estimated transformation parameters was sufficiently small, regardless of the magnitude of the 

registration error in the last iteration. In other words, in this test, the GP-ICP did not try to find 

the smallest possible registration error. Therefore, in the plot of 
ps
stdD in Figure 8, a little 

fluctuation is observed in the registration errors. In addition, a similar fluctuation is observed in 

the errors of the estimated transformation parameters as shown in Figure 9. 

- 
0iter

normalT  was again set to be Rinitial + 10°. A threshold for distance,
0

tan
iter

cedisT , was changed from a 

maximum value to zero with increment of 5cm. As stated in Section 3.1, if the final 
0

tan
iter

cedisT  is 

zero, it means that a registration algorithm failed to find a good solution. 

The results of the convergence test of the GP-ICP with the two Stanford datasets are presented in 

Figure 8. In the case of no translation, the rotational convergence region of two datasets from the 

happy Buddha is about -50° < Rinitial < 60° and that of two datasets from the Stanford bunny is about -

40° < Rinitial < 80°. As the happy Buddha was translated by (H/4, L/4, W/2) which was named 

‘translation 1’ of the object in Section 3.1, we have almost the same rotational convergence region as 

the cases without translation of the happy Buddha. However, in the case of the Stanford bunny 

translated by its translation 1, there is a region of discontinuity in the rotational convergence region, 

about ±5° from its translation 1 as shown in Figures 8(a) and 9(c).  

 

Figure 8. Convergence region tests of datasets from the Stanford 3D repository for the GP-

ICP. The zero rotations of the curves represent different relative transformations of the 

data. (a) and (b) are the
ps
stdD  of the registered point clouds: the Stanford bunny and the 

happy Buddha, respectively. 

 
(a) 

ps
stdD of the Stanford bunny                             (b) 

ps
stdD of the happy Buddha 

 

This is a kind of slide effect mentioned by Rusinkiewicz and Levoy [32]. In their cases, the slide 

effect refers to the case in which it is difficult to find a set of corresponding points when there are only 

a small number of geometrically distinguishable features, e.g. a point cloud of an engraved plate. This 

can also be explained in terms of the method of collecting samples for finding a set of possible 

corresponding points. In GP-ICP, we first select a set of the nearest neighbours in the point cloud of a 
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query point from the other point cloud. Then the best possible corresponding point for the query point 

is selected as explained in Section 2. 

 

Figure 9. Registration errors of data from the Stanford 3D repository using the GP-ICP. (a) 

and (b) are the errors in the estimated transformation parameters by the GP-ICP for the 

Stanford bunny and the happy Buddha, respectively, without a relative translation. (c) and 

(d) are the same values when a point cloud is translated to translation 1 of the datasets. 

   
(a) No translation, Stanford bunny                          (b) No translation, happy Buddha 

 

     
(c) Translation 1, Stanford bunny                             (d) Translation 1, happy Buddha 

 

For example, the nearest red neighbours of a green query point in the region A of Figure 10 are not 

the corresponding points of the green query point. Its true corresponding point is far from region A. In 

many cases, this problem is avoided using GP-ICP for finding corresponding points as observed in the 

convergence test of the happy Buddha in the cases of either with or without translation. This problem 

exists in the Stanford bunny but not in the happy Buddha since the happy Buddha has more 

geometrically distinct features, i.e. higher curvature points, than the Stanford bunny. 
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Figure 10. Bunny000 and bunny090 translated to translation 1 with zero relative rotation. 

There is no relative rotation and the relative translation is (H/4, L/4, W/2) where H, L, and 

W are the height, length, and width of the object, i.e. the Stanford bunny. 

 
 

The asymmetry in the rotational convergence region is mainly caused by the ratio of overlapping 

regions and the geometric shape of an object. It is also observed that the asymmetry in the Stanford 

bunny is relatively smaller than that of the happy Buddha. Figure 11 is utilised to explain this 

asymmetry in the rotational convergence region. The Stanford bunny is chosen for the explanation of 

asymmetry in the rotational convergence region since it is much more visually clearer and easier to 

explain than it is for the happy Buddha. The positive rotation is indicated by the direction of rotation in 

Figure 11.  

It can be clearly seen that there are almost no corresponding points in region A between bunny000 

and bunny090. Furthermore, region B has a larger set of corresponding points between the point 

clouds than region C. In addition, in region B we find many more distinctive regions than in region C, 

in terms of the geometric shape of the regions. Although the parts of the Stanford bunny's ears are in 

region C, the change of curvature around region C is much lower than that of region B. The presence 

of a higher curvature region around the ears is not much help for finding a set of corresponding points. 

Simply speaking, with either the GP-ICP or a modified ICP algorithm based on geometric roughness, 

the algorithm has a much larger probability of finding a set of possible corresponding points in region 

B than in region C.  That is why there is approximately 60° rotational convergence region in the 

positive direction of rotation. In the negative direction of rotation, there is a 50° rotational convergence 

region. In general, for this test of the convergence region of the GP-ICP, we have at least ±40° rotation 

convergence region with two point clouds from either the Stanford bunny or the happy Buddha. This 

rotational convergence region is large enough for practical applications using either terrestrial or close-

range laser scanners. 
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Figure 11. Schematic outline of the convergence tests with the Stanford bunny. The axis 

and the direction of the initial rotations for the convergence tests are presented. The red 

point cloud, the bunny090, is rotated around the axis either to or against the direction of 

rotation in the picture. 

 

Figure 12. Initial thresholds for distance, i.e. 
0iter

normalT , for the registration tests of the 

Stanford bunny and the happy Buddha using the GP-ICP without translation. 

  
(a) Stanford bunny                                              (b) Happy Buddha 

 

As shown in the results of Section 3.1, the required 
0

tan
iter

cedisT  with which a good estimation of the 

true relative transformation of the point clouds is obtained, changed in an unpredictable manner in the 

convergence region test with the simulated datasets. In the case of close-range laser scanner data, the 
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GP-ICP provides a precise estimation of the relative transformation of the point clouds with a steadier 

and smaller deviation in 
0

tan
iter

cedisT  as presented in Figure 12. 

 

3.3. Real case study with terrestrial laser scanner 

 

The convergence region of the GP-ICP with terrestrial laser scanner data will be evaluated in this 

section. This dataset and surveying information (Agia Sanmarina church in Greece) is currently 

available through ISPRS WG V/3 Terrestrial Laser Scanning 

(http://www.commission5.isprs.org/wg3), which was acquired from nine different locations around the 

church. The point clouds were named after the locations of the laser scanner, e.g. east or southeast. 

The number of points for Figures 15(a) and 15(b) is about 50,000. The radial distance between the 

church and the scanner is approximately 20 m. The dimension of the church is approximately (L, W, 

H) = (25.0 m, 15.0 m, 10.0 m) where L, W, and H are the length, width, and height of the object, 

respectively. 

A rotational convergence region of a set of point clouds with a registration algorithm is dependent 

on both its relative translation and 0
tan
iter

cedisT . The convergence region of terrestrial laser scanner data is 

especially dependent on 0
tan
iter

cedisT  since a terrestrial laser scanner measures physically larger objects than 

a close-range laser scanner. In other words, the point clouds from terrestrial laser scanners usually 

require a much larger 0
tan
iter

cedisT  for the same relative rotation angle than close-range scanner datasets. 

Therefore, it is more difficult to properly find the convergence region of a registration method. Note 

that 0
tan
iter

cedisT  is again changed from a maximum value of a test point cloud to zero with an increment of 

5 cm. If a required 0
tan
iter

cedisT  is changed greater than the current test 0
tan
iter

cedisT , then the required 0
tan
iter

cedisT  

can never be found unless manually changed, i.e. to set a new and larger maximum value. Therefore, 

the results in this section must be regarded as the rotational convergence region for terrestrial laser 

scanners with a fixed maximum 0
tan
iter

cedisT . In fact, this has been true for all the convergence region tests 

in this paper. 

The results of the convergence test are presented in Figures 13 and 14. Note that the positive 

direction of the rotation around the y axis is counter-clockwise around the axis of the test rotation as 

shown in Figure 15. For the case of the registration of the east and the northeast clouds, the rotation 

convergence region is about -50° < Rinitial < 20°  with no relative translation.In addition, in presence of 

the relative translation, it is observed that the rotational convergence region is reduced and shifted to 

the positive direction of the rotation by an amount in the order of 5°. In the case of the registration of 

the east and the southeast clouds, about -10° < Rinitial < 45° to be the rotational convergence region is 

observed, with no relative translation. In the presence of relative translations, the shift of the rotational 

convergence region is also observed, although the absolute size of the rotational convergence region is 

about the same as in the case of no relative translation. 

Figure 14 shows that a very rough estimation of the required 
0

tan
iter

cedisT  is only required for the proper 

registration of a set of point clouds. For example, as shown in Figure 14(a), 8m and 7m were used for 
0

tan
iter

cedisT  over the entire convergence region in cases both with and without relative translation for the 

registration of the east and the northeast point clouds. Even if the absolute size of the rotation 
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convergence region of the registration of terrestrial laser scanner data is large enough for practical 

applications, an asymmetry in the rotational convergence region is still observed as seen the cases for 

close-range laser scanner data. 

 

Figure 13. Registration errors,
ps
stdD , for the convergence region test of the GP-ICP with 

the Agia Sanmarina church data. Large and small translations are [dx, dy, dz] = [0.5 m, 0.5 

m, 1.0 m] and [0.1 m, 0.1 m, 0.1 m], respectively. The northeast of the Agia Sanmarina 

church was rotated around the y axis which is about the surface normal of the ground. 

 
(a) East and northeast                                        (b) East and southeast 

 

Figure 14. Initial threshold for distance,
0

tan
iter

cedisT , for the convergence region test of the 

GP-ICP with the Agia Sanmarina church data. A large and small translations are [dx, dy, 

dz] = [0.5 m, 0.5 m, 1.0 m] and [0.1 m, 0.1 m, 0.1 m], respectively. The northeast of the 

Agia Sanmarina church was rotated around the y axis which is approximately the surface 

normal of the ground. 

  
(a) Initial threshold of distance                            (b) Initial threshold for distance 
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Figure 15. Top and side views of the Agia Sanmarina church data for the convergence 

region test in the case of the large translation, i.e. [dx, dy, dz] = [0.5 m, 0.5 m, 1.0 m]. 

Green is the east of the church. The red point clouds in (a) and (b) are the northeast and the 

southeast of the church, respectively. 

       
(a) East and northeast, top view                          (b) East and southeast, top view 

       
(c) East and northeast, side view                        (d) East and southeast, side view 

 

In order to explain the cause of this asymmetry in the rotational convergence region, the top and 

side views of the parts of the Agia Sanmarina church data are presented in Figure 15. Note that region 

A1 in the green is the corresponding region of A2 in the red. In Figures 15(a) and 15(c), the northeast 

of the church is rotated by -50° around the y axis, i.e. the axis of the test rotation, and also translated 

[dx, dy, dz] = [0.5 m, 0.5 m, 1.0 m], i.e. the large translation in Figure 13. This transformation is one of 

the limits of the convergence region as shown in Figure 13(a). It is observed that region B1 of the 

church is the closer region to region A2 than its true corresponding region, i.e. A1. In addition, the 

geometric shape of region B1 is very similar with region A1 and furthermore to reach region A1, we 

need to go through region C1, which has a similar shape but a different scale. In the case of the east 

and the southeast clouds presented in Figures 15(b) and 15(d), the latter is rotated around y axis by -

15° and again translated by [0.5 m, 0.5 m, 1.0 m]. Note that this transformation is also a limit of the 

convergence region between the east and the southeast of the church as shown in Figure 13(b). In this 

case, a smaller rotation convergence limit is achieved with the same translation because region A2 is 

much closer to region C1 than A1. Therefore, the GP-ICP is likely to find a possible corresponding set 

of region A2 in region C1 rather than A1. 
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4. Conclusions 

 

These tests on the convergence region of the GP-ICP effectively demonstrate that the proposed 

method has about 1m translational and on the order of 10° rotational convergence with terrestrial laser 

scanner datasets. Although there is room for improvement to achieve a fully automated registration of 

three-dimensional point clouds, the current level of rotational and translational convergence region of 

the GP-ICP was demonstrated to be effect for on-site registration of point clouds from a terrestrial 

laser scanner. 
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