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Abstract: In this paper, we examine the effect of changing the temperature points on 

MEMS-based inertial sensor random error. We collect static data under different 

temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. 

Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) 

models are developed to describe the random error behaviour. The proposed AR-based GM 

model is initially applied to short stationary inertial data to develop the stochastic model 

parameters (correlation times). It is shown that the stochastic model parameters of  

a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, 

field kinematic test data collected at about 17 °C are used to test the performance of the 

stochastic models at different temperature points in the filtering stage using Unscented 

Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a 

more accurate inertial navigation solution than the ones obtained from the stochastic models 

developed at −40 °C, −20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the 

stochastic model is significant and should be considered at all times to obtain optimal 

navigation solution for MEMS-based INS/GPS integration. 
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1. Introduction  

The performance of an integrated Global Positioning System (GPS)/Inertial Navigation System 

(INS) is mainly characterised by the ability of the INS to bridge GPS outages. In recent years, a 

promising technology namely, Micro-Electro-Mechanical Systems (MEMS)-based inertial sensors, has 

been developed, which can provide a low-cost navigation solution when integrated with GPS. MEMS 

systems are commonly fabricated using silicon, which possesses significant electrical and mechanical 

advantages over other materials [1]. However, due to the small size and weight of the MEMS-based 

inertial units, their performance characteristics are highly dependent on the temperature variations. 

Since these errors accumulate over time, the navigation solution degrades if the temperature effects on 

both, accelerometer and gyroscope (biases and scale factors) are not modelled and compensated [2]. 

Hence, there is a need for the development of accurate, reliable rigorous thermal models to reduce the 

effect of these temperature variations on the inertial sensor errors.  

The inertial sensor errors can be divided into two types: deterministic (systematic) errors and 

random errors [3]. If not treated, such errors cause a rapid degradation in the INS navigation solution 

during the GPS outage period. In order to integrate MEMS inertial sensors with GPS, and to provide a 

continuous and reliable integrated navigation solution, the characteristics of different error sources and 

the understanding of the stochastic characteristics of these errors are of significant importance [4].  

The deterministic error sources include bias and scale factor errors, which can be removed by 

specific calibration procedures in a laboratory environment. Park and Gao [4] discussed the laboratory 

calibration procedure for MEMS units, whereas Shin and El-Sheimy [5] developed field calibration 

procedures. Abdel-Hamid [6] implemented the deterministic error (bias and scale factor) to MEMS 

IMU at different temperature points and demonstrated that the deterministic error is temperature-dependent. 

Aggarwal et al., [7] investigated the use of a simple polynomial temperature model to compensate for 

the inertial bias and scale factor deterministic errors and concluded that the inertial navigation solution 

was significantly improved.  

On the other hand, the inertial sensor random errors primarily include the sensor noise, which 

consists of two parts, a high and a low frequency component. The high frequency component has white 

noise characteristics, while the low-frequency component is characterised by correlated noise [8]. A 

de-noising methodology is required to filter out the high frequency noise of the inertial sensor 

measurements prior to processing, using a low pass filter or a wavelet de-noising technique [3-6-8-9]. 

However, the low frequency noise component (correlated noise) can be modelled with sufficient 

accuracy using random processes [3] such as, random constant (random bias), random walk,  

Gauss-Markov or periodic random processes. Details of these stochastic models can be found in 

Nassar [3] and Gelb [10]. The most commonly used process is the first order Gauss-Markov process, 

whereas more recently, the use of Auto-Regressive (AR) modelling methods on low cost sensors were 

tested (e.g., Nassar, [3]; Park and Gao, [4]). Moreover, Hou and El-Sheimy [11] used Allan variance to 

study the random error of MEMS-based IMU, and demonstrated that the most dominant error has 

random walk characteristics. 

A specific shortcoming in most of the above investigations is the disregard of the stochastic 

variation of these errors, which is of significant importance, and has not yet been investigated at 

different temperature points. The GPS/INS integrated system accuracy is significantly affected by the 
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stochastic characteristics of the inertial navigation system [12]. Traditionally, the inertial navigation 

error model consists of three position errors, three velocity errors, and three attitude errors in addition 

to the, three gyro and three accelerometer bias errors. The process of understanding the stochastic 

variation of the errors at different temperature points is one of the most important steps for developing 

a reliable low-cost integrated navigation system. The reason is that a low-cost IMU accumulates 

relatively large navigation errors in a small time interval. Unless an accurate temperature-dependent 

stochastic model is developed, the mechanisation parameters will possess larger errors that could 

significantly degrade the system performance. Therefore, there is a need for the development of 

accurate, reliable and rigorous stochastic models, which can be used in the INS/GPS filter to provide 

an accurate navigation solution [3-12]. 

This paper examines the effect of changing the temperature points on the MEMS inertial sensor 

noise models using for the first time a rigorous Autoregressive-based Gauss-Markov process  

(AR-based GM). In this work we collect static data sets under different temperature points using a 

MEMS-based IMU, namely the ADIS16364 [13] and we use them to develop AR-based GM stochastic 

models at different temperature points. In addition, field kinematic test data collected at about 17 °C 

are used to test the performance of the stochastic models at different temperature points in the filtering 

stage when using Unscented Kalman Filter (UKF) with GPS position and heading updates. It should be 

noted that the focus of this paper is to investigate the effect of the IMU temperature variations on the 

navigation solution and therefore either UKF or Extended-KF (EKF) can be used. It has been 

demonstrated in the scientific literature (see Wendel et. al. [14] for example) that the UKF and EKF 

show very similar performance and thus, testing UKF and EKF algorithms is not of concern in this paper. 

2. Rigorous Autoregressive-Based Gauss-Markov Model 

In this section we briefly describe the Gauss-Markov (GM), and Autoregressive (AR) models and 

then we derive the AR-based GM model. For more details on stochastic modelling of inertial sensor 

errors see El-Diasty and Pagiatakis [15]. 

2.1. Gauss-Markov Model 

Gauss-Markov (GM) random processes are stationary processes that have exponential 

autocorrelation functions. GM processes are important because they represent a large number of 

physical processes with reasonable accuracy, while they exhibit a relatively simple mathematical 

formulation [10]. A stationary Gaussian process that has an exponentially decaying autocorrelation is 

called first-order GM process. For a random process x with zero mean, mean square error 
2
w , and 

correlation time Tc, the model is described by the following continuous equation of time [10-15]: 

wx
T

x
c


1

  (1) 

The autocorrelation function (see Figure 1) of the GM model is given by [10-15]: 

       CTetxtxER 



 2  (2) 
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where  is the time shift, Tc is the correlation time, and 2
 is the variance at zero time shift (τ = 0). The 

most important characteristic of the GM process is that it can represent bounded uncertainty, which 

means that any correlation coefficient at any time shift is less or equal to the correlation coefficient at 

zero time shift R() ≤ R(0) for all  [10-15]. Two parameters namely, cT  (correlation time) and
2
w  

(driven noise variance), are required to describe a first-order GM process, as shown in Figure 1.  

Figure 1. Autocorrelation function of the first-order Gauss-Markov process.  

 

The discrete time model of GM process can be written as [15-16]:  

kk
Tt

k wxex c  


1  (3) 

and the associated variance can be estimated by using the following formula [15-16]: 

 Ck

kk

Tt
xw e 


222 1  (4) 

Thus, the discrete-time first-order GM model can take the form of Equation (3) and the variance of 

the driven noise wk is given by Equation (4). The first-order GM process has been widely used in 

inertial navigation filters because of its bounded uncertainty characteristic that makes it the best model 

for slowly varying sensor errors, such as residual bias and scale errors [15-17]. The first-order  

Gauss-Markov model parameters can be estimated using least squares fitting of the estimated 

autocorrelation values for gyro and accelerometer measurements. However, inaccurate GM modelling 

of the inertial sensor random errors is most likely expected due to inaccurate autocorrelation function 

determination [3-12]. 

2.2. Autoregressive Model 

To avoid the problem of inaccurate modelling of inertial sensor random errors due to inaccurate 

autocorrelation function determination, we can apply another method for estimating inertial sensor 

errors, as introduced by Nassar [3]. Compared to a first-order GM random process, Autoregressive 

(AR) processes have more modelling flexibility since they are not always restricted to only one 

parameter, and higher orders can be used [3]. In many time series applications, AR processes are used 

to model (estimate) their stochastic part [10]. The inertial sensor data are considered to form a time 

series that contain both, systematic and stochastic error components, and hence, AR models are used to 

21


e

cTcT
-  

)(R 
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describe the inertial stochastic errors. The GM process given by Equation (3) is equivalent to an AR 

process of first-order [3-12]. An AR process is a time series produced by a linear combination of past 

values and its structure is shown in Figure 2 [15].  

Figure 2. Autoregressive (AR) structure. 

 

An AR process of order p can be described by the following linear equation [15-18]: 

1

ˆ ,
p

k i k i k
i

x c x w


    (5) 

where ˆkx  is the process output, xk-i are previous system states, and ci are the AR model parameters. 

The AR model parameters can be estimated using least-squares fitting [12] or can alternatively be 

estimated using Yule-Walker, covariance and Burg’s methods [3]. The variance of the noise 

component wk (is also equivalent to the mean square error MSE in this case because the expected mean 

of the residual is equal zero) can be estimated numerically from the following equation [15-18]: 

where n is the size of the sample of the stationary dataset, d
kx  is the known value of the process 

(desired output), and kx̂  is the corresponding estimated output. 

If we have a first-order AR model, then the discrete form will be [15-18]: 

,kkk wxcx  11   (7) 

for which the associated variance of the noise component wk can numerically be estimated from 

stationary data using Equation (6). The AR model was introduced by Nassar [3] as an alternative to 

GM process for the modelling of the gyro residuals and accelerometer biases. Also, El-Diasty et al. [19] 

showed that the first-order AR model is a statistically significant process for modelling MEMS-based 

inertial sensor errors. However, the only disadvantage of AR model is that it does not include the 

sampling interval, which is not constant in inertial navigation systems due to the inadequacy of the 

data acquisition system to capture the high sampling rates of the IMU sensor output. 

2.3. Rigorous Autoregressive-Based Gauss-Markov Model 

To take the advantage of both, the AR and GM models, we choose the first-order GM model 

[Equation (3)] in which the sampling rate is considered, whereas we estimate the correlation time Tc 

2
2

1

1
ˆ( )

k

n
d

w k k
k

x x
n 

    (6) 
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from the AR parameter c1 and not from the autocorrelation function approximation. This is possible by 

combining Equation (3) and Equation (7), (equating their right-hand sides). This gives:  

1
1 ce ck Tt


  (8) 

If we take the natural logarithm of both sides, then: 

).ln( 1
1 c

T
t

c

k 
    (9) 

Therefore, the correlation time can be estimated from first-order AR model parameter 1c  as follows: 

.
)ln( 1

1

c
tT k

c


   (10) 

In this paper, we call this process AR-based GM model. Figure 3 shows the steps for building the 

AR-based GM model. The AR-based GM model is proposed in this paper for two reasons: a) in an 

AR-based GM model, a short stationery data set can be used to estimate the model correlation time, 

whereas the traditional GM-only model needs a very long data set, which should equal 200 times the 

expected correlation time with 10% uncertainty according to Nassar [3], and b) in an AR-based GM 

model, the sampling interval can be accounted for whereas in an AR-only model the sampling interval 

is not considered at all and unequally spaced data that are so common in real IMUs experiments can 

definitely introduce errors in the solution and hence can be considered as sub-optimal navigation 

solution. In this paper, we reckon that the AR-based GM model is the only correct model to use when 

unequally spaced data are available in addition to being simple and feasible when using short data sets. 

Figure 3. AR-based GM stochastic modelling steps. 

 

3. Test Description 

Figure 4 shows pictures of the static test setup. The data were collected at the Space Instrumentation 

Laboratory (SIL) of York University, which, among others, is equipped with a thermal/vacuum 

chamber. Static data sets were collected under different temperature points using the ADIS16364 
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inertial measurement unit (IMU) from Analog Devices Inc. [13] (see Table 1 for the specifications of the 

ADIS16364 IMU). The ADIS16364 IMU static data were collected with a sampling rate of 200 Hz at 

different temperature points in the range −40 °C to +60 °C with 20 °C step. Thus, the performed test 

covers the operational temperature of the ADIS16364 IMU.  

Figure 4. The thermal/vacuum chamber and the position of the IMU during testing. 

 

 

 

 

 

 

 

 

ADIS16364 IMU [13] 

Thermal/Vacuum 

Chamber 
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Table 1. ADIS16364 IMU specifications [13]. 
3 Gyros 

Initial bias error ±3        °/s 

In-run bias stability   0.007 °/s 

Bias temperature coefficient ±0.01   °/s/ °C 

Angular Random Walk    2        °/√h 

3 Accelerometers 

Initial bias error ±8          mg 

In-run bias stability   0.1        mg 

Bias temperature coefficient ±0.0.05   mg/ °C 

Velocity Random Walk   0.12       m/s/√h 
 

 

To examine the performance of the six stochastic models to be developed from the above static tests 

at different temperature points, dual frequency GPS data from a Trimble BD950 receiver and inertial 

data from the ADIS16364 IMU were collected on July 15, 2008 in Hamilton Harbour, Ontario, 

onboard the hydrographic surveying vessel “Merlin”, owned by the Canadian Hydrographic Service of 

the Department of Fisheries and Oceans. The kinematic test temperature was about 17 °C during the 

entire test time span. Figure 5 shows the vessel configuration. The test trajectory (blue line) with eight (8) 

artificial outages (each of 100 s length—red lines) is shown in Figure 6. It should be noted that two 

GPS antennas are used to estimate the GPS heading in addition to the GPS position solution to update 

the MEMS IMU navigation solution to provide accurate INS/GPS navigation solution. 

Figure 5. Field system used to collect kinematic data. 

5.1 Vessel “Merlin” owned by CHS 

 

5.2. ADIS16364 IMU inside the 

vessel body 

 

5.3. GPS (Trimble BD950) 
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Figure 6. GPS test trajectory (blue) used to develop the model and GPS artificial outages 

(red) to test the model. 

 

4. Data Analysis and Results 

Figure 7 shows the three steps followed in this paper to develop one AR-based GM model per 

temperature point. In Step 1, static data sets are collected at different temperature points (from −40 °C 

to +60 °C, at 20 °C intervals) using the ADIS16364 MEMS-based IMU. In step 2, the test data 

collected in the kinematic mode at the specific temperature point of 17 °C are used to test the 

performance  

of the six stochastic models developed in Step 1. The integrated navigation solution from the  

INS/GPS is obtained using the UKF estimator. The GPS position solution from the rover GPS antenna 

and GPS heading solution from the two GPS antennas (vessel equipped by two GPS antennas onboard 

separated by 2.37 m) are employed to update the UKF filter every 1 s. UKF [also called Sigma-point 

KF (SPKF) in the literature such as, Wendel et al. [14] is used in this paper simply because the 

linearisation of dynamic and observation equations is not needed and the two navigation solutions of 

UKF and EKF are not significantly different [14]. In UKF, we use 21 inertial states (three components 

of each: position, velocity, attitude, gyro bias, accelerometer bias, gyro scale, and accelerometer scale 

errors) to develop the INS system state-space equations. Along with the state-space equations, we use 

the GPS positions and heading solution, and estimated INS positions and heading to develop the 

INS/GPS system observation equations. Then, we apply eight artificial 100 s GPS outages to test the 

INS-only navigation solution. In Step 3, we estimate the overall root-mean-square (RMS) error of the 

INS-only 3D positions and 3D orientations using the eight artificial 100 s GPS outages. Then, out of 

the six possible stochastic models (one for each temperature point), we select the best model, i.e., the 

model that exhibits the lowest RMS error, that should be applied in the UKF estimator to provide the 

most accurate navigation solution. It should be noted that due to the existence of high level white noise in 



Sensors 2009, 9            

 

 

8482 

the collected MEMS-based static and kinematic data in Steps 1 and 2, respectively, the Kaiser FIR low 

pass filter [8], with appropriate cut-off frequency is used to suppress this white noise. The following 

sub-sections show the results of the three steps shown in Figure 7 and described above. 

Figure 7. The three steps used to develop, test, and validate the AR-based GM model at 

different temperature points.  

 

4.1. Step1: AR-based GM Modelling at Different Temperature Points 

The six static data sets were collected at a sampling rate of about 200 Hz at six different 

temperature points ranging from −40 °C to 60 °C for a period of 3 hours, which were then used to 

develop the six AR-based GM stochastic models (i.e., AR-based GM at −40 °C, −20 °C, 0 °C, +20 °C, 

+40 °C, and +60 °C) described in Section 3, for three gyro and three accelerometer bias errors. The 

correlation times for the AR-based GM model were estimated using Equation (10).  

Figures 8 and 9 show the estimated correlation times for the three gyro and the three accelerometer 

channels, respectively at all different temperature points. It is clear that the correlation time is 

temperature dependent and therefore, it is concluded that the stochastic models for MEMS-based 

ADIS16364 inertial sensor errors are temperature-dependent. 

Figure 8. Correlation times for the three different gyros (X gyro, Y gyro, and Z gyro) at 

different temperature points. 
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Figure 8. Cont. 

 

 

Figure 9. Correlation times for the three accelerometers (X acc, Y acc, and Z acc) at 

different temperature points. 
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Figure 9. Cont. 

 

 

4.2. Step2: Testing the Performance of the Developed Stochastic Models 

The UKF estimator is used to filter the kinematic data of ADIS16364 IMU mounted aboard vessel 

collected at +17 °C with three GPS receivers (one stationery base GPS receiver on land and two GPS 

receivers aboard vessel) to estimate three INS/GPS positions, three INS/GPS velocities, and three 

INS/GPS attitudes. The six AR-based GM stochastic model parameters (correlation times) developed 

in Sub-section 4.3 at different temperature points are implemented in the UKF estimator to find the 

stochastic model that provides the best navigation solution. To test the performance of the models, we 

estimate the INS-only solutions for northing, easting and heading during eight, 100 s GPS artificial 

outages using the UKF estimator in the prediction mode. The “true” northing and easting are estimated 

from two GPS receivers in differential mode (one base station GPS receiver and one rover GPS 

receiver aboard the vessel) whereas, the “true” heading is estimated from the two GPS antennas aboard 

vessel, separated by 2.37 m, as mentioned before. Figure 6 shows the locations of the eight outages 

(red segments). Figures 10 and 11 show an example of the performance of the INS-only solution in 

northing and easting, respectively during GPS outage#5. Figure 12 shows an example of the 

performance of the INS-only solution in heading (azimuth) during GPS outage#5. As expected, the 

performance in position and orientation solutions using the stochastic model developed at +20 °C 

(magenta) is better than the ones obtained from the stochastic models developed at the other 

temperature points. Similar performance is observed during the other outages and it is not shown here. 
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The temperature dependence of the stochastic model is significant and should be considered at all 

times to obtain optimal navigation solution for MEMS-based INS/GPS integration. 

Figure 10. INS-only northing from kinematic test data collected at +17 °C during GPS 

outage#5 with AR-based GM model developed at different temperature points. 

 

Figure 11. INS-only easting from kinematic test data collected at +17 °C during GPS 

outage#5 with AR-based GM model developed at different temperature points. 
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Figure 12. INS-only heading solution from kinematic test data collected at +17 °C during 

GPS outage#5 with AR-based GM model developed at different temperature points. 

 

4.3. Step3: Comparison Based on Overall Root-Mean-Square Error 

Now, we estimate the overall root-mean-square (RMS) error for northing and easting for all  

eight, 100 s GPS outages. Figures 13 and 14 show the overall (average of eight GPS outages) RMS 

error of northing and easting respectively at different temperature points, when compared with “true” 

GPS-based positions.  

Figure 13. Overall RMS errors in northing using kinematic test data collected at +17 °C 

and the AR-based GM model developed at different temperature points. 
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Figure 14. Overall RMS errors in easting using kinematic test data collected at +17 °C and 

the AR-based GM model developed at different temperature points. 

 

 
 

In Figures 13 and 14, the overall RMS error at +20 °C is found to be ±346.40 m and ±182.80 m for 

northing and easting, respectively, which is lower than the overall RMS error at all other temperature 

points. Figure 15 shows the overall (average of eight GPS outages) RMS error of heading at different 

temperature points, when compared with “true” GPS-based heading. In Figure 15 it can be seen that 

the overall RMS error is found to be 2.95 °C at +20 °C, which is lower than the overall RMS error of 

the eight GPS outages estimated with the AR-based GM model at all other temperature points.  

Figure 15. Overall RMS errors of the heading solution using kinematic test data collected 

at +17 °C and the AR-based GM model developed at different temperature points. 

 

 

To this end, we conclude that in order to have an optimal navigation solution, we should include in 

the processing stage of MEMS-based INS/GPS integration different stochastic model parameters at 

different temperature points with +20 °C interval and we should use the temperature-dependent 

stochastic model nearest to the real sensor temperature during the test.  
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5. Conclusions and Recommendations  

This paper investigated the effect of changing the temperature points on the MEMS inertial sensor 

noise models using an AR-based GM model. The AR-based GM model estimation was achieved by 

using static data sets collected under different temperature points using ADIS16364 MEMS-based 

IMU, and showed that the estimated correlation times of an AR-based GM model for gyro and 

accelerometer biases are temperature-dependent. In addition, the AR-based GM models developed 

from stationary data sets collected at different temperature points were implemented in the UKF 

estimator to process and integrate inertial and GPS data collected in kinematic mode with the same 

inertial unit at +17 °C. The overall RMS error results from the UKF filter estimation of northing, 

easting and heading of eight GPS outages when compared with the “true” GPS-based position, and 

heading showed that the stochastic model should be developed from stationary data collected at or near 

the same temperature point at which the field test data were collected (i.e., stochastic model developed 

at +20 °C in this paper is the best model with real world kinematic data collected at 17 °C in this 

paper). 
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