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Abstract: To improve fault detection reliability, sensor location should be designed 
according to an optimization criterion with constraints imposed by issues of detectability 
and identifiability. Reliability requires the minimization of undetectability and false alarm 
probability due to random factors on sensor readings, which is not only related with sensor 
readings but also affected by fault propagation. This paper introduces the reliability criteria 
expression based on the missed/false alarm probability of each sensor and system topology 
or connectivity derived from the directed graph. The algorithm for the optimization 
problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using 
the proposed method. 
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1. Introduction 

Fault detection plays a necessary and important role in large-scale industrial systems for safety 
issues. Its basis and data source is the measurements from sensors. Measurement technology and 
sensor quality has progressed significantly in the past several decades, but the problem still exists 
because not all process variables of concern can be measured due to economic and technical 
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limitations, and the reliability of sensors cannot be assured. In large-scale systems, the components are 
interconnected and so the variables are correlated, which constitutes information on system topology 
with causality. After a fault occurs, it not only shows up as local phenomenon but also propagates to 
some other components or variables. Hence we should consider the sensor location problem to find the 
root cause of the fault origin and type from the viewpoint of the whole system.  

In order to measure the fault detection quality related to sensor location, some criteria are defined in 
Kawabata et al. ’s paper [1]. Firstly, all the faults should be detected when they occur. Secondly, 
different faults should be identified from each other so that one can differentiate them based on the 
sensor readings. The criteria of detectability and identifiability are basic requirements for fault 
detection [2]. In this reference all the sensors are assumed to be effective, that is, they show exactly 
whether the process variables are normal or abnormal.  

In engineering practice, sensors may often be faulty, meaning that they may fail to give adequate 
readings. For example, the reading may remain unchanged when the true value should be a deviation, 
which is called a missed alarm; or the sensor may give an alarm for a normal operation state, known as 
a false alarm. We should therefore allow for some redundancy in sensors in case of failures. More 
commonly, the measurements may show these two kinds of sensor faults because of the choice of the 
threshold. Often due to noise there are no real sensor faults but deviations due to measurement noise, 
which is inevitable. If the threshold setting is strict in order to suppress the missed alarm probability, 
the reading will be sensitive to random noise and temporary deviations, resulting in a high probability 
of false alarm. If we relax the threshold and accept larger region to be considered as normal, then the 
number of false alarms will decrease with more missed alarms. Therefore, missed alarms and false 
alarms are two aspects of reliability and we have to make a trade-off between them. This can be clearly 
illustrated via a receiver operating characteristics (ROC) curve [3,4]. Sensors in this present paper also 
include soft sensors that measure some specific variables by soft sensing techniques [5].  

With increasing complexity in process industrial systems, traditional mathematical models are 
difficult to obtain. Hence, graph-based models are proposed in the modeling analysis. Based on the 
signed directed graph (SDG) model, Raghuraj, et al. [2] have discussed the problems of detectability 
and identifiability in sensor location and presented the corresponding algorithm for locating each 
sensor. These methods are based on a certain static SDG and omit the propagation time of faults. Yang 
and Xiao [6] introduced the propagation time in SDGs, based on which the problem has been defined 
and solved, and some applicable rules have been presented to obtain a reasonable sensor location. 
Bhushan and Rengaswamy [7] studied the reliability problem of fault detection and proposed some 
algorithms to choose sensor location to improve reliability. Bhushan et al.  [8] also studied the 
robustness of the network to uncertainties/errors in the underlying model and probability data. 
However, only missed alarm probability has been considered in their work. On the other hand, the 
false alarm probability should also have been taken into account because adding sensors increases the 
number of false alarms that is undesirable. The reliability optimization problem of false alarms is 
discussed in this paper as a complementary criterion to the optimization problem of undetectability.  

This paper is structured as follows: The criteria of fault detection, especially the reliability criterion 
regarding false and missed alarms in sensor readings, are presented in Section 2. Section 3 explains 
how to use graph theory to obtain the reachability measure between faults and process variables 
measured by sensors, which is needed in the optimization criteria. In Section 4, the optimization 
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algorithm for the sensor location is proposed to improve the reliability of fault detection, followed by a 
case study to illustrate the application in Section 5. Finally some concluding remarks are given in the 
last section. 

2. Sensor Location Criteria for Fault Detection 

There are basic criteria that should be met under all fault detection issues, and also optimization 
criteria in consideration of faulty sensors or unreliability of sensor measurements. 

2.1. Detectability and Identifiability 

The nodes in the SDG are classified into two types–variables and fault origin actors, which are 
denoted as ni’s and fj’s respectively. When a fault occurs, it is propagated along consistent paths as 
designed in the SDG convention. 

Definition 1: Starting from the fault node f, the set of nodes affected by f is { }( ) : ( )R f m l f m= ∃ a  
where ( )l f ma  means a path from fault f to node m. If n ∈R(f), then we say that node n is reachable 
from fault f.  

Regarding detectability, each fault should be detected by at least one sensor. The definition of 
detectability appears below: 

Definition 2: If there exists at least one sensor placed in the nodes of R(f) (measuring the 
corresponding variables), then we say that fault f is detectable.  

Because the propagation time is ignored here, only leaf nodes are needed to consider whether or not 
to place sensors [2]. Then we have the following theorem from Yang and Xiao [6]. 

Theorem 1: Based on the SDG, disregarding the cases that some variables cannot be measured, 
sensors need to be placed only on the leaf nodes. 

Proof: According to the weak connection condition (i.e., the corresponding undirected graph is 
connected), each fault origin has at least one path to the leaf nodes, thus placing sensors on the leaf 
nodes can meet the detectability criterion. Assume that a sensor location with n nodes meets the 
detectability criterion, we can then search an arbitrary path from each node to the corresponding leaf 
node and place a sensor on this node, then this new scheme can also meet the criteria, and the number 
of sensors is no more than n (less than n if some nodes correspond to the same leaf node). Q.E.D. 

Different faults have different behaviors. Represented in the SDG, the reachable nodes from the 
faults are different. So we must place sensors on these different nodes to identify the different faults. 
The definition of identifiable faults as noted in [2] appears below: 

Definition 3: If there exist at least one sensor on the nodes of R (f1) (measuring corresponding 
variables), and these sensor nodes are not within the nodes of R (f2), in other words, if there are sensors 
in the nodes of I (f1, f2) = R(f1) ∪ R(f2) − R(f1) ∩ R(f2), then we say that faults f1 and f2 are identifiable.  

Detectability and identifiability are two independent concepts. A fault can be detectable, but it may 
not be identifiable. On the other hand, identifiability does not imply detectability in general, because 
we can place only one sensor to identify them. But usually we assume that only when the faults are 
detectable, can they be considered for identifiability. Thus the identifiability criterion  
is stronger.  
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It should be noted that the signs of the nodes and branches can help identify different faults because 
some sensors are not only able to activate the alarm, but also indicate the direction of the departure 
from the normal values. For this case, we can split a node into two, one may show a higher deviation, 
and the other may show a lower deviation [9]. Then the above definition can be applied. 

2.2. Reliability with Respect to Sensor False Alarms and Missed Alarms 

Detectability and identifiability are necessary conditions for fault detection. However sensor 
readings are not always reliable, which affects the reliability of fault detection. Let Fis (i = 1, 2, …, n) 
and Sjs (j = 1,2,…,m) denote system faults and process variables measured by sensors individually. 
They can be shown as a bipartite graph with all the arcs directed from the fault set to the process 
variable set as shown in Figure 1 [7]. Based on the detectablity criterion, there should be at least one 
arc departing from every fault node, and based on the identifiability criterion, the connected sensor 
nodes of different fault nodes should be different. The fault occurrence probabilities of the fault Fi is fi, 
while the sensor missed alarm probability and false alarm probability of variable Sj is uj and vj. The 
influence relation from fault Fi to sensor Sj is denoted by reachability dij (0 or 1) where 1 means 
reachable and 0 means unreachable. Because of the causal relations between process variables, the 
reachability includes direct and indirect influences.  

Figure 1. Bipartite graph to show the relations between faults and sensors. 

 
 

As shown in Figure 2, the confusion matrix reflects the true/false classification of alarms [3]. The 
entries in the matrix are the number of true alarms (TA), false alarms (FA), missed alarms (MA) and 
true no-alarms (TN) that means no alarm occurs under normal situation.  

 
Figure 2. Confusion matrix to show the terminology of missed alarms and false alarms. 
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These numbers can be obtained by experiments. The missed alarm probability of sensor Sj is uj 
which can be calculated by MA/(TA+MA), and false alarm probability of vj can be calculated by 
FA/(FA+TN). These probabilities are determined by the sensor quality and the threshold selection. 

For each fault Fi, we should minimize its probability of not being detected. Because it is propagated 
to many other variables whose sensors can also detect it, the undetectability of Fi occurs only when all 
the variables miss alarms. In addition, the redundant sensors on the same variables are also helpful for 
the improvement. We define the undetectability probability [7] of Fi as: 

( )
1

ij j
m d x

i i j
j

U f u
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏  (1) 

where xj is the integer number of sensors placed on the variable j. If there is no sensor on variable j, xj 
is zero. Obviously, when xj with the corresponding nonzero dij increases, Ui decreases. So adding 
sensors will increase the reliability.  

On the other hand, we need to be concerned about the false alarm problem. For the variable Sj, 
adding a sensor with false alarm probability vj will be accompanied with the increase of the following 
false alarm probability: 

( )
1

1 ij
n

d
j j i

i

V v f
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏  (2) 

which means that the sensor reading will lead to an alarm even though no faults occur. 
The calculations of missed alarms and false alarms are dual problems, in which adding sensors will 

reduce the undetectability whilst increasing the false alarm probability. Here the false alarm 
probability reflects the influence of a sensor’s false alarm on the whole system. 

3. Reachability Information Derived from Diagraphs 

When a fault occurs, it will be measured not only by the adjacent sensors directly, but also by the 
influenced sensors due to propagation between variables. In order to describe the propagation, the 
SDG has been proposed as a qualitative model which uses nodes and arcs to denote the variables and 
their causal relations [10,11]. Along the consistent paths in the SDG, one can easily find how a fault is 
propagated in the system. Thus the reachability matrix mentioned in above section can be obtained 
from SDG. Here the signs are ignored and only the adjacency is taken into account. 

Signed adjacency matrix is an equivalent expression of the SDG, whose elements ‘0’s, ‘+1’s or 
‘−1’s correspond to the arc signs in SDG. For the (i, j)th element, ‘+1’ means there is a direct positive 
causality from node i to node j. Similarly, ‘−1’ means negative causality, and ‘0’ means no direct 
causality. Note that the matrix is asymmetric because the arcs are directional. In this paper, the sign of 
the element is of no use because we are merely concerned if there is direct relation between the two 
variables. Thus ‘+1’ and ‘−1’ are regarded as the same. Then we obtain the adjacency matrix with 
elements ‘0’ or ‘1’. 

Given the adjacency matrix X, the (i, j)th elements in Xk give the number of k-step paths from node 
i to node j. And the summation of Xk with k from 1 to n (dimension of X) shows the reachability 
between every two nodes. The reachability matrix is then defined as [12]: 
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#

1

n
k

i=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑R X  (3) 

where the operator ‘#’ is the Boolean equivalent for all the elements a(i,j)s, which means there is at 
least a path in the corresponding SDG:  

# 0, if ( , ) 0
( , )

1 , if ( , ) 0
a i j

a i j
a i j

=⎧
= ⎨ ≠⎩

 (4) 

The diagonal elements in R are designated as 1’s because the fault on a sensor itself will show in 
the reading without propagating through other variables.  

The reachablity matrix can also be obtained by graph traversal instead of matrix computations. The 
depth first search method can be used to find the paths. The graph traversal method has many 
advantages compared with the matrix computation method. First, the paths can be obtained in addition 
to the reachability matrix, which is intuitive and may help for the fault propagation and other  
analysis [13]. Secondly, when the structure of SDG changes slightly and only some local nodes or arcs 
are added or removed, we do not need to compute the matrix once again but only need to analyze the 
affected paths. This case can often be met when sensor location is updated based on a sensor  
location algorithm.  

The reachability matrix is also a probabilistic value because the connectivity may be broken for 
some reasons. This random factor, however, is quite small compared with the measurements, so it is 
ignored and so the reachability is regarded as a binary value. 

4. Algorithms 

The two criteria, detectability and identifiability should be met at first when deciding the sensor 
location. Yang and Xiao [6] proposed an algorithm and some useful rules to solve this problem in 
consideration of the propagation time, which is a stricter requirement than that mentioned above. The 
sensor location obtained has the minimum number of sensors required for fault detection. Since the 
increase of sensors will not destroy these criteria, the following optimization algorithm should be 
based on this location and try to find the crucial variables for placing additional sensors.  

In the trade-off between false alarms and missed alarms, missed alarms are often considered to be 
more important because we do not want to lose a real fault. Thus the algorithm handles this criterion 
first. Meanwhile, we hope that the false alarm probabilities will be as small as possible, so we integrate 
the treatment of false alarms into the whole algorithm.  

If we consider all the faults, then we want to minimize the total undetectability probabilities for all 
the faults, each one of which is a probability that no sensors indicate the alarm for the corresponding 
fault. According to the assumption of origin of a single fault [10], the undetectability probability of the 
system is the summation of each fault. This assumption makes sense because probability of the 
simultaneous occurrence of more than one fault is extremely small. Therefore we have the following 
optimization problem: 

1

min
j

n

ix i
U

=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  (5) 
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This optimization problem cannot be solved analytically for the following reasons. First, this 
problem does not have a continuous solution space; instead it is an integer programming problem. 
Thus we should update the solution (xj, j=1,…,m) by changing the integer combination, where xj is the 
number of sensors placed on variable j. Secondly, the problem has inequality constraints. For example, 
placing a sensor on a variable is at a cost, and the total cost should be limited within a range, so  
we have: 

0
1

m

j j
j

c x C
=

≤∑  (6) 

where cj is the cost of placing a sensor on variable j, and C0 is the cost limit. In addition, there may be 
other constraints due to technical or other reasons. Sometimes we have more constraints such as the 
number limit of sensors. Thirdly, the initial value of the problem is obtained according to the criteria of 
detectability and identifiability, and the xj’s should not be negative, which can be regarded as another 
constraint. This algorithm is then used to reduce the undetectability probability by adding sensors at 
critical location. Of course this problem can be solved by classical integer programming algorithms 
such as branch and bound method. However in real applications, what one needs most is to improve 
the result at the least expense. Thus the problem is proposed to be solved by an iterative algorithm, and 
within each step we should only add 1 to one of the xjs and then check the constraints. This is a 
heuristic algorithm. 

On the other hand, the probability of false alarm of the system is a product of probability that no 
faults have occurred and the probability that at least one of the sensors indicates a false alarm. Then 
the problem can be expressed as: 

1 1

min (1 ) 1 (1 ) j

j

n m
x

i jx
i j

f v
= =

⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏  (7) 

We introduce a similar assumption that at most one sensor will indicate a false alarm. This 
assumption is reasonable when the false alarm probability is small. Thus the false alarm problem can 
also be formalized as an integer optimization problem: 

1
min

j

m

j jx j
x V

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  (8) 

This expression is an approximation in order to simplify the computation. When adding a sensor, we 
can just add a Vj, otherwise we have to compute it by using Equation 7. This problem is accompanied 
with the undetectability optimization problem and is less important for most cases. Thus we do not 
take it as an individual problem but as a complement to the above problem expressed by the f 
ollowing formulation: 

1 1

min
j

n m

i j jx i i
U x Vα

= =

⎡ ⎤+⎢ ⎥⎣ ⎦
∑ ∑  (9) 

where α is a constant coefficient. 
When trying to reduce the undetectability by adding a sensor, one is concerned not with the total 

number of missed alarms but the number for each fault or some specific faults. Thus the summation in 
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Equation 5 can be replaced by a weighted summation, where the weights correspond to the importance. 
The weights are difficult to obtain, so we can use the maximization to deal with the bottleneck which 
is the fault with maximal undetectability. Hence we have the following optimization problem as a 
combination of a minimaxization and a linear minimization: 

( )
1

min max
j

m

i j jx i j
U x Vα

=

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∑  (10) 

subject to: 

{ }0
1

, 0
m

j j j
j

c x C x Z +

=

≤ ∈ ∪∑  (11) 

If we pay less attention to the false alarm probability, then we can treat it as a constraint and just set 
a limit V0. Then we obtain the simplified algorithm: 

(1) Initialization: 
(a) Get fi, uj and vj by a priori knowledge and measurements. 
(b) Get dij from SDG or reachability matrix. 
(c) Get the minimal xjs according to detectability and identifiability criteria at the starting point. 
(d) Calculate Vj by Equation 2. 
(e) Calculate V by summation of all the Vj’s with xj is not 0. 
(f) Let the index set of is to be A. 

(2) Calculate Ui. 
(3) Select the maximal value from A, UI. If A is empty, then stop. 
(4) Let the set of js with dIj is 1 as AI = {j| dIj=1}. 
(5) Select the minimal uJ whose index set is AI, i.e., uJ = min

Ij A∈ uj. If AI is empty, then delete I from 

A and go to step (3). If there is more than one minimum element, select the one with smallest Vj. 
(6) Place a sensor on variable J, xJ ← xJ + 1. 
(7) Update the false alarm probability V←V+ Vj, and see if it is tolerable. If so, then go on; if not, 

then delete J from AI and go to step (5).  
(8) Check the cost and other constraints. If they are met, then go on; if not, then delete J from AI 

and go to step (5). 
(9) Go to step (2) and update the undetectability. 
The algorithm is illustrated as a flow chart in Figure 3. 

5. Case Study 

We choose a 65 tonnes per hour steam boiler system as an example that is widely used in the 
power and petrochemical industry, and realize its operation in both normal and abnormal conditions by 
a simulation software–Personal Simulator [14] whose interface of the main flow chart is shown as 
Figure 4. The simplified SDG of the system is shown as Figure 5(a) which only describes the 
relationships between the key variables including inlet flow rate of the boiler FR-01, outlet flow rate of 
the superheated steam FR-02, flow rate of the cooling water FI-03, flow rate of the softened water  
FR-04, flow rate of the effluent (smoke) FI-06, flow rate of the fuel oil FR-07, flow rate of the 
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deoxidizing water to be catalyzed FI-08, pressure of the hearth PI-03, pressure of the effluent (smoke) 
at the exit PI-05, oxygen percentage of the smoke AI-01, pressure of the main steam PIC-01, pressure 
of the high pressure gas PIC-02, pressure of the liquid hydrocarbon PIC-03, pressure of the deaerator 
PIC-04, water level of the top steam drum LIC-01, water level of the deaerator LIC-02, temperature of 
the overheated steam TIC-01, temperature of the hearth TI-07, flow rate of the inlet gas FA, and the 
flow rate of the high, medium and low pressure gas denoted by FH, FM and FL respectively. 

Figure 3. Flow chart of the optimization algorithm. 

 
 

Five typical faults are considered here, all of which are complicated faults that have influences on 
multiple variables. The faults with their probabilities are listed in Table 1. The missed alarm 
probability and false alarm probability for all the variables are listed in Table 2 for illustration. In 
practice, these values are based on the statistics of measurements.  
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Figure 4. Boiler system flow sheet. 

 
 

Table 1. Typical faults and their occurrence probabilities in the system. 

Faults Description Consequences Probabilities 
F2 Steam drum full of water  Inlet reduced heavily 0.1 
F3 Lack of water in steam drum Water level decreases gradually 0.05 
F4 Fire extinguishment All the gas muzzles are extinguished;  

pressure and temperature of the stream decrease 
0.01 

F5 Power off A series of complex phenomenon 0.001 
F6 Failure in the cooler Temperature of overheated steam reduces;  

cooling water reduces abnormally, etc. 
0.001 

 

Table 2. Sensor missed alarm probabilities and false alarm probabilities. 

Missed alarm probability False alarm probability Sensors 
0.25 0.002 TIC-01, TI-07, AI-01 
0.2 0.003 PI-03, PI-05 
0.15 0.004 FR-01, FR-02, FI-03, FR-04, FI-06, FR-07, FI-

08 
0.08 0.005 FH, FM, FL, FA 
0.02 0.008 PIC-01, PIC-02, PIC-03, PIC-04 
0.01 0.009 LIC-01, LIC-02 
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The system’s SDG is shown as Figure 5(a) [15] in which the solid lines and dotted lines mean that 
the arc signs are positive and negative. In the application of this paper, however, the arc signs can be 
ignored and only the adjacency relations are considered. When the faults occur, some variables 
become abnormal immediately and then propagate the fault states to other variables. Hence from the 
SDG, we can easily get the reachability from each fault to each variable. This provides all the 
possibilities, but because of self-regulatory and control actions, some reachabilities are broken and the 
corresponding elements remain zeros; we have simulated to validate them. Table 3 shows these 
reachabilities that are expressed as the transpose of reachability matrix. For example, Fault F3 stands 
for lack of water in the steam drum, which results in abnormal states on FI-03 and FR-02 directly. 
With propagation along consistent paths in SDG, several variables such as FR-01, LIC-01 and TI-07 
become abnormal as shown in Figure 5(b).  

Figure 5. (a) SDG of Boiler system. (b) Fault propagation of fault F3. 

 

Table 3. Reachability from faults to variables. 

Variable F2 F3 F4 F5 F6 Vj 
TIC-01 0 0 0 1 1 0.0020 
TI-07 0 1 1 1 1 0.0019 
AI-01 0 0 1 1 0 0.0020 
PI-03 0 0 0 1 0 0.0030 
PI-05 0 0 0 1 0 0.0030 
FR-01 1 1 1 1 0 0.0034 
FR-02 0 1 1 1 0 0.0038 
FI-03 0 1 1 1 1 0.0038 
FR-04 0 0 1 1 0 0.0040 
FI-06 0 0 0 0 0 0.0040 
FR-07 0 0 0 1 0 0.0040 
FI-08 0 0 0 1 0 0.0040 
FH 0 0 0 0 0 0.0050 
FM 0 0 0 0 0 0.0050 
FL 0 0 0 0 0 0.0050 

F3

(a) (b) 
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Table 3. Cont. 

FA 0 0 0 1 0 0.0050 
PIC-01 0 0 1 1 0 0.0109 
PIC-02 0 0 0 0 0 0.0080 
PIC-03 0 0 0 0 0 0.0080 
PIC-04 0 0 0 0 0 0.0080 
LIC-01 1 1 1 1 0 0.0076 
LIC-02 0 0 0 1 0 0.0090 

 
Initially all the variables have sensors except TI-07, FA, FH, FM, FL, which meets the criteria of 

detectability and identifiability for these five faults. Now we want to reduce the undetectability, so the 
algorithm we presented is applied. The execution procedure is recorded in Table 4. 

Table 4. Iterative procedure of the algorithm. 

Iteration No. U2 of F2 U3 of F3 U4 of F4 U5 of F5 U6 of F6 New sensor 
Total false alarm 

probability 
0 1.5e-4 1.7e-6 1.3e-8 5.7e-17 3.8e-5  0.0885 
1 1.5e-6 1.7e-8 1.3e-10 5.7e-19 3.8e-5 LIC-01 0.0961 
2 1.5e-6 2.5e-9 1.9e-11 8.5e-20 5.6e-6 FI-03 0.0999 

 
By adding two sensors on LIC-01 and FI-03, the maximal undetectability among all the faults 

reduces 100-fold from 1.5e-4 to 1.5e-6, while the total false alarm probability of all the sensors 
increases by only 12.9%. In fact, in real systems there are indeed levels of redundancy on the 
corresponding level sensors and flow meters. 

In order to test that the approximation from Equation 7 to 8, the total false alarm probability is 
computed according to Equation 7. The result is 0.0990, 0.1057 and 0.1087 that are close to the last 
column of Table 4. Thus the approximation is acceptable. 

In this case, the variables that are not affected by any of the five faults can also be ignored in the 
procedure because placing sensors on them have no influence on the reliability. We can also use other 
optimization methods to obtain the optimal solution at once if we follow the objective and constraints. 
We tried this on this example and the results are the same. 

6. Conclusions 

In industrial systems, alarm monitoring design is a very important issue, for which the trade-off 
between missed alarms and false alarms should be treated appropriately. We should pay attention to 
two levels of design problems: (1) at the local level, the threshold selection, data filtering and alarm 
triggering are the key problems to be solved; (2) at the system level, topology expression and sensor 
location for alarm rationalization is important. In this paper, we have described and solved the sensor 
location problem aiming at the trade-off with the help of topology expressed by SDG. The 
optimization objective is expressed as the minimization of all the fault undetectabilities in the system. 
The false alarm probability is used as constraint as well as the cost limit.  
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The problem described in this paper is based on some simplifications. For example, the sensors on 
the same variable are assumed to have the fixed missed alarm probability and false alarm probability. 
However in reality the sensors can be different and the thresholds are not necessarily the same. So the 
problem formulation can be generalized as a more accurate form. And the multiple sensors usually do 
not just add to the redundancy but also provide more information by fusion. Again, future work could 
be the combination of system level problem and the local level problem. 
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Nomenclature 

a(i, j) element of a matrix 
A  set 
ci cost to be paid when placing a sensor on variable j 
C0 cost limit 
dij reachability from fault i to sensor j 
Fi fault i 
F fault node 
fi occurrence probability of fault i 
i, I serial number of fault 
I identifiability set 
j, J serial number of sensor 
m measureable node, number of measureable nodes 
n variable node, number of faults 
R reachability set 
R reachability matrix 
Sj sensor j 
uj missed alarm probability of sensor j 
Ui undetectability probability of Fi 
vi false alarm probability of sensor j 
Vi false alarm probability of sensor j 
xj number of sensors placed on variable j 
X adjacency matrix 
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