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Abstract: Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a 
crucial role in the climate system, providing both positive and negative feedbacks to 
climate change. In this review we summarize published research results to gain an 
increased understanding of the dynamics between vegetation and atmosphere processes. A 
variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, 
etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the 
terrestrial carbon and water budgeting, are evaluated and compared. We highlight two 
major research areas where additional research could be focused: (i) Conceptually, the 
hydrological and biogeochemical processes are closely linked, however, the coupling 
processes between terrestrial C, N and hydrological processes are far from well understood; 
and (ii) there are significant uncertainties in estimates of the components of the C balance, 
especially at landscape and regional scales. To address these two questions, a synthetic 
research framework is needed which includes both bottom-up and top-down approaches 
integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of 
observations which include multispectral remote sensing, inventories, existing regional 
clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers. 

Keywords: terrestrial carbon and water dynamics; ecohydrological modeling; remote 
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1. Introduction  

The terrestrial biosphere plays a crucial role in the climate system providing both positive and 
negative feedbacks to climate change [1]. The terrestrial carbon (C) cycle is closely linked to 
hydrological and nutrient controls on vegetation [2-3]. Understanding the coupled terrestrial C, 
nitrogen (N) and water cycle is required to gain a comprehensive understanding of the role that 
terrestrial ecosystems play in the global climate change. Much progress has been made in gaining 
insight of the coupling processes between C, N and water cycles across a range of time and spatial 
scales [4-9]. Since the early 1990s, there has been an increased interest in monitoring of the CO2, 
water vapor and energy exchange between the atmosphere and terrestrial ecosystems by a variety of 
methods, such as the eddy-covariance techniques (EC), satellite and other airborne remote sensing, 
CO2 concentration and isotope measurements. Meanwhile, there are various kinds of models have been 
developed to better understanding of these processes and for large-scale C and water budgeting.  

The large number of papers published since the 1980s on the terrestrial and C and water cycles have 
resulted in the publication of several major reviews from different perspectives. For example,  
Running et al. [10] described a blueprint for more comprehensive coordination of the various flux 
measurement and modeling activities into a global terrestrial monitoring network by reviewing the 
literature published before the middle of 1990s. Baldocchi [9] recently provided a comprehensive 
review of research results associated with a global network of C flux measurement systems. The topics 
discussed by this review include history of the network, errors and issues related with the EC method, 
and a synopsis of how these data are being used by ecosystem and climate modellers and the  
remote-sensing community [9]. Kalma et al. [11] reviewed satellite-based algorithms for estimating 
evepotranspiration (ET) and land surface temperatures at local, regional and continental scales, with 
particular emphasis on studies published since the early 1990s; while Verstraeten et al. [12] provided a 
comprehensive review of remote sensing methods for assessing ET and soil moisture content across 
different scales based on the literature published after 1990s. Marquis and Tans [13] reviewed  
satellite-based instruments on CO2 concentration measurements. 

In this review article, we distil and synthesise the rapidly growing literature on C and water cycles 
across local to global spatial scales and over a range of time scales. To give the reader a perspective of 
the growth of this literature, a search of Web of Science produced over 2000 papers with the key 
words ‘ecosystem carbon, water and nitrogen cycles’ published since 1990 which is indicative of the 
large amount of research recently being undertaken on these topics. In order to filter through this large 
body of literature, we concentrated on papers discussing on the coupling processes between C, water 
and N cycles and we extracted information from a database of published results that we have collated 
during the past decade (available on request). In terms of content, the report covers the state of 
knowledge, monitoring and modeling of the coupled terrestrial C and water cycles. Our aim is to 
highlight the recent advances in this field, and propose areas of future research based on perceived 
current gaps in the literature.  

The review is divided into several inter-connected sections. First, we review the scientific 
background of the linkage between terrestrial ecosystems and climate, and revise the state of 
knowledge on terrestrial C cycling, coupling of the C and water cycles, and coupling of the C and N 
cycles. Second, we discuss the ground-based and satellite-based monitoring methods and observation 
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networks associated with measuring C and water fluxes, CO2 concentration and C isotopes. Third, we 
report on the recent advances in modeling approaches associated with the terrestrial biochemical and 
hydrological studies. Fourth, we discuss research gaps in C sinks/sources estimates and finally, we 
discuss the current research trends and the near-future directions in this field and propose an upscaling 
framework for landscape and regional C and water fluxes estimates.  

2. Scientific Background and State of Knowledge 

2.1. Overview of Terrestrial Ecosystems and Climate 

The climate system is controlled by a number of complex coupled physical, chemical and biological 
processes (Figure 1). The terrestrial biosphere plays a crucial role in the climate system, providing 
both positive and negative feedbacks to climate change through biogeophysical and biogeochemical 
processes [1]. Couplings between the climate system and biogeochemistry are mainly through tightly 
linked dynamics of C and water cycles. The importance of coupled C and water dynamics for the 
climate system has been increasingly recognized [2-8]; however the mechanisms behind these coupled 
cycles are still far from well understood. 

Figure 1. Schematic view of the components of the climate system, their processes and 
interactions [1]. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

2.2. Terrestrial C Cycling 

One of the crucial issues in the prognosis of future climate change is the global budget of 
atmospheric CO2. The growth rate of atmospheric CO2 is increasing rapidly. Three processes 
contribute to this rapid increase: fossil fuel emission, land use change (deforestation), and ocean and 
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terrestrial uptake. As shown in Figure 2, terrestrial C budgets have large uncertainties and  
interannual variability.  

Figure 2. Global CO2 budget from 1959 to 2006. Upper panel: CO2 emissions to the 
atmosphere (sources) as the sum of fossil fuel combustion, land-use change, and other 
emissions. Lower panel: The fate of the emitted CO2, including the increase in atmospheric 
CO2 plus the sinks of CO2 on land and in the ocean [14]. 

 
 

Terrestrial ecosystems mediate a large part of CO2 flux between the Earth’s surface and the 
atmosphere, with ~120 Pg C yr-1 taken up by photosynthesis and roughly the same amount released back 
to the atmosphere by respiration annually [1,15]. Imbalances between gross ecosystem photosynthesis or 
gross primary productivity (GPP) and ecosystem respiration (Re) lead to land surfaces being either CO2 
sinks or sources. C sequestration by global terrestrial ecosystems is estimated to be about  
1-2 Gt C yr-1 [1,15]. A detailed understanding of the interactive relationships in atmosphere-biosphere 
exchange is relevant to ecosystem-scale analysis and is needed to improve our knowledge of the global C 
cycle [16]. The metabolism of terrestrial ecosystems is complex and highly dynamic because ecosystems 
consist of coupled, non-linear processes that possess many positive and negative feedbacks [17,18]. 
Complex features of ecosystem metabolism are relatively unknown and how C budget of major 
ecosystems will respond to changes in climate is not quantitatively well understood [19-23].  

2.3. Coupling of the C and Water Cycles 

Thermodynamically, a terrestrial ecosystem is an open system. Therefore, hydrological and C 
cycles are closely coupled at various temporal and spatial scales [7,24-30]. C uptake for example, is 
closely coupled to water loss by ecosystems mainly through leaf stomatal pathway governed 
principally through leaf conductance [31-33]. Soil organic C decomposition is very sensitive to soil 
moisture content via microbial activity and other processes [8,25,30,34,35]. The flux of terrestrial 
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organic C by river runoff to the ocean and wetland discharge is an important component of the global 
organic C cycle [36,37]. It is estimated that 0.25 × 1015 g dissolved organic carbon (DOC) is 
discharged to the ocean by the world rivers each year [38]. The land surface hydrological processes (in 
particular the terrestrial river systems) play an important role in transport of dissolved and particulate 
organic C from terrestrial to marine ecosystems [37]. However, the interactions between C and water 
cycles and the mechanisms how these interactions will shape future climatic and biosphere conditions 
are far from well understood. 

2.4. Coupling of the C and N Cycles 

N is an essential element that can limit the growth of living organisms across a wide range of 
ecosystems [39,40]. However, global inputs to the terrestrial N cycle have doubled in the past century 
due to anthropogenic activities, particularly fertilizer use and fossil fuel burning [41,42]. High 
atmospheric N and N depositions have changed the dynamics of N and C in many ecosystems of 
developed countries (e.g., in Europe and North America) [43], with the impact in other Asian 
developing countries projected to increase over the next few decades [44]. N addition to forest and 
other ecosystems will affect the health and vitality of ecosystems and the terrestrial C cycle [45,46]. 
There is a continuing discussion on whether N deposition has positive (e.g., increases in forest growth 
and C sequestration) or negative (e.g., increases in nitrate leaching, reduction in forest growth and C 
sequestration) effects on an ecosystem depends on the N status of the system and the rate and duration 
of N deposition [45,46]. Bauer et al. [47] summarized that (1) if the remaining available N does not 
exceed the capacity for N uptake by vegetation net primary productivity (NPP), C sequestration may 
be enhanced; (2) if deposition rates exceed the capacity for N uptake, nutrient imbalances can lead to 
forest decline due to N saturation [48,49]. Aber et al. [45,46] hypothesized that forest ecosystems 
positively respond to N addition in the short-term, while negatively respond to N addition over the 
long-term. N fertilization in northern temperate zones has been estimated to enhance C storage by  
0.3–0.5 Pg C per year [50] with Pregitzer et al. [51] reporting that simulated chronic N deposition has 
increased C storage in northern temperate forests. Olsson et al. [52] found that fertilization of a boreal 
Norway spruce stand led to a three-fold increase in aboveground productivity, possibly due to 
decreased C allocation to roots in response to higher nutrient availability. Leggett and Kelting [53] 
found that N fertilization of Loblolly pine plantations not only increased aboveground and 
belowground biomass but also increased soil C pools. However, other estimates suggest that N loading 
on ecosystems only makes a minor contribution to C sequestration [54] or does not likely account for 
significant C storage [55,56] or in some cases may actually reduce ecosystem productivity and C 
storage [46,57].  

N fertilisation may affect the pool of soil organic carbon (SOC) through the changes of litterfall. Both 
negative [58] and positive [59] effects of N fertilisation on root biomass have been observed. In a detailed 
review Nadelhoffer [60] found it is likely that N deposition will decrease fine-root biomass, however, 
stimulate fine-root turnover and production. N addition/fertilization to soils has also shown variable effects 
on SOC storage by enhanced, reduced or unchanged heterotrophic and/or autotrophic respiration as a 
response to litter C/N ratio [61-68]. With increasing rates of anthropogenic N deposition [41,42], there is a 
strong need to understand links between ecosystem N inputs and C sequestration. 
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3. Monitoring of C and Water Cycling in Terrestrial Ecosystems 

3.1. Global Flux Tower Network (FLUXNET) 

The EC technique is commonly used to directly measure the CO2, water vapor and energy exchange 
between the atmosphere and terrestrial ecosystems [9]. A global network of collaborating regional 
networks, FLUXNET, began in 1997 [9] and today, there exist more than 400 EC-flux towers across 
the globe. EC measurements are a rich source of information on temporal variability and 
environmental controls of CO2 exchange between the atmosphere and terrestrial ecosystems [69]. 
These global EC datasets allow us to (1) explore emergent-scale properties by quantifying how the 
metabolism of complex ecosystems respond to perturbations in climate variables on diurnal, seasonal, 
interannual and decadal time scales and elucidate physical and biological controlling factors [9,69]; (2) 
examine carry-over effects that may be introduced by either favorable or deleterious conditions during 
antecedent years [70]; (3) observe a disturbance and the recovery from it or to span a natural sequence 
of ecological development coupled with fluctuations in climate [71,72]; and (4) test and validate 
ecosystem process models [73,74], since most of these models span timescales from hours to decades. 
Although the available EC data have been rapidly accumulating, there are some issues associated with 
its use due to difficulties/uncertainties in (i) assessing/interpreting the associated measuring biases of 
EC data, and (ii) upscaling of the EC fluxes at the ecosystem (typically less than 1–3 km2 for each site) 
to larger scales, e.g., landscape and regional scales. 

3.2. CO2 Concentration Measurements, Data Assimilation and CarbonTracker 

Observations of CO2 over the continent within the atmospheric boundary layer reflect exchange 
processes occurring at the surface at a regional scale (102–105 km2). The flux information contained in 
CO2 concentration data represents footprints of up to 105 km2 [75-77], which is several orders of 
magnitude larger than the direct EC-flux footprint. These measurements form a record of integrated 
net CO2 exchange from multiple processes, geographic areas, and times [78]. CO2 concentration 
measurements are made from tall towers [79-81] or balloons that reach the top of the planetary 
boundary layer (PBL) of the Earth. These measurements therefore provide significant information to 
upscale from site to region. Moreover, the number of CO2 concentration measurements above the land 
surface, made by either tower or aircraft, is steadily increasing. Data are collected by numerous 
agencies around the world, for instance, the National Oceanic and Atmospheric Administration’s 
(NOAA’s) Earth System Research Laboratory (ESRL) monitors CO2 in the atmosphere as a 
contribution to the North American Carbon Program (NACP) [82]. In addition, Peters et al. [78] 
suggest that direct satellite observations of CO2 are available already for the upper troposphere, 
whereas near-surface CO2 from space will become available within several years to augment the 
current efforts. 

Previous efforts to interpret the signal of regional CO2 exchange making use of tower concentration 
data have focused on simple one-dimensional PBL budgets that rely on gradients in CO2 
concentrations between the PBL and the free troposphere [77,79,83-85]. These methods are limited to 
monthly resolution because of the need to smooth and average over several synoptic events [86]. 
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The atmosphere integrates surface fluxes over many temporal and spatial scales and links scalar 
sources and sinks with concentrations and fluxes. This principle has been successfully used to develop 
inverse models to estimate annual carbon budgets [87-90]. However, due to model limitations and 
paucity of continental CO2 observations these studies have yielded carbon fluxes only at coarse 
resolution, over large spatial regions (i.e., at continental scale, [91]). Recently, Stephens [89] and  
Yang [90] showed that a large set of atmospheric inverse model results were inconsistent with free 
troposphere CO2 concentration. Transport biases are one of the largest unknown sources of error in 
flux inversions [88].  

A powerful way to use all these CO2 data is in a data assimilation system, which combines diverse 
data and models into a unified description of a physical/biogeochemical system consistent with 
observations [13]. Such a new data assimilation system called CarbonTracker, has been built in the 
NOAA ESRL, using a state-of-the-art atmospheric transport model coupled to an ensemble Kalman 
filter [78]. The first release of CarbonTracker marks a significant step in our ability to monitor month-
by-month surface sources and sinks of CO2 [78]¸with all results, data and code of CarbonTracker 
freely available from NOAA ERSL’s CarbonTracker web site, http://carbontracker.noaa.gov. 

3.3. Stable C Isotope Measurements 

The information on the biological and physical processes that exchange CO2 between terrestrial 
ecosystems and the atmosphere is recorded by the signals of 13C /12C ratio in the atmosphere CO2. The 
stable isotope ratio of CO2 (δ13C) in the atmosphere contains unique information to study the overall 
balance of surface CO2 fluxes [92,93]. As reviewed by Suits et al. [94], C isotopes can be helpful in 
investigations of the following four aspects at ecosystem and local scales: (i) plant water-use 
efficiency and the response of plants to changes in precipitation and relative humidity [95-100],  
(ii) variation in light distribution and stand structure [101-104], (iii) recycling of respired  
CO2 [105-109], and (iv) determining the relative contributions of photosynthesis and respiration to the 
total net ecosystem exchange [110-114].  

Multiple efforts to measure stable C isotopes at both flux towers and flask stations around the world 
have been achieved. Several new techniques (e.g., automated measurement systems, tunable diode 
laser (TDL) spectrometer and pulsed quantum cascade laser spectrometer) have also been applied to 
this investigation [115-117], isotope measurements, however, are still lacking considering the land 
surface diversity/heterogeneity. This shortage of long-term measurements and of sampling frequency 
still limits isotopic studies and applications to various spatial/temporal scales. 

Efforts to expand CarbonTracker to assimilate observations of C isotopes (13CO2, 14CO2) and other 
observation types (eddy-flux measurements, satellite radiances) are underway. Such observations 
could facilitate attribution of carbon fluxes to specific processes such as fossil fuel burning, biomass 
burning, or agricultural food and biofuel production [78]. 

3.4. Satellite Monitoring  

Satellite-borne remote sensing offers unique opportunities to parameterize land surface 
characteristics over large spatial extents at variable spatial and temporal resolutions. For example, the 
Moderate Resolution Imaging Spectroradiometer (MODIS) provides a global dataset every 1–2 days 
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with 36 bands. The spatial resolution of MODIS (pixel size at nadir) is 250 m for channels 1 and 2  
(0.6–0.9 µm), 500 m for channels 3 to 7 (0.4–2.1 µm) and 1,000 m for channels 8 to 36  
(0.4–14.4 µm), respectively. Data from the satellite-borne MODIS are currently used in the calculation 
of global weekly GPP at 1 km spatial resolution [10]. Other sensors, the Landsat Thematic Mapper 
sensors carried onboard the Landsat series of satellites, acquire images at a 30 m spatial resolution 
with a 16 day interval. 

In general, water evapotranspired from ecosystems into the atmosphere will reduce the land surface 
temperature (Ta). Reduction in soil moisture will decrease plant transpiration and evaporation from soil 
and plant surfaces. Reduction in ET will increase Ta. Ta can be derived from remotely-sensed thermal-
infrared (TIR) band (8-14 microns) from various operational satellites. Based on the relationship 
between Ta and ET, remotely sensed Ta has been used to estimate regional ET [118-121]. The existing 
thermal imaging sensors provide adequate coverage of thermal dynamics that are useful for operational 
monitoring applications of ET. For example, thermal images at 15 minutes intervals and at a spatial 
resolution of 5 kilometers can be obtained from the NOAA Geostationary Operational Environmental 
Satellites (GOES), and TIR data at a fine spatial resolution (60 m or 120 m) with a much longer time 
interval (16 days) have been provided by the Thematic Mapper (TM) and ETM+ instruments on 
Landsat 5 and Landsat 7.  

ET, the largest component of water loss from ecosystems, plays an important role in affecting soil 
moisture, vegetation productivity, C cycle, and water budgets in terrestrial ecosystems [122-124]. 
Verstraeten et al. [12] provided a comprehensive review of remote sensing methods for assessing ET 
and soil moisture content across different scales and Kalma et al. [11] reviewed satellite-based 
algorithms for estimating ET and land surface temperatures at local, regional and continental scales, 
with particular emphasis on studies published since the early 1990s. 

In addition, as Marquis and Tans [13] reviewed, satellite-based instruments can also provide 
information about CO2 concentration in the atmosphere, but no current satellite-borne instrument 
comes close to providing the accuracy, precision, and continuity required to determine regional CO2 
concentrations and local fluxes. Future satellites, including the Greenhouse Gases Observing Satellite 
(GOSAT) [125], are expected to provide more accurate CO2 measurements than do today’s  
satellites [13,126]. 

3.5. Other Airborne Measurements  

Besides satellite monitoring, other airborne observation techniques (e.g., aircraft, airplane and land 
surface remote sensing) have been developed rapidly since the latest decade. For instance, a new 
approach is LiDAR (Light Detection and Ranging), which is a remote sensing technology that 
determines distances to an object or surface using laser pulses. LiDAR data have proved to be highly 
effective for the determination of three dimensional forest attributes. The suitability of airborne 
LiDAR for the determination of forest stand attributes including leaf area index (LAI) and the 
probability of canopy gaps within different layers of canopy has been widely acknowledged by various  
studies [127,128]. The interpreted LiDAR data have been further used for landscape C modeling and 
scaling [129,130].  

 



Sensors 2009, 9              
 

 

8632

4. Modeling of C and Water Dynamics in Terrestrial Ecosystems 

The land surface of the Earth represents significant sources, sinks, and reservoirs of C, heat and 
moisture to the atmosphere. C and energy fluxes and water cycles at soil-atmosphere and  
plant-atmosphere interfaces are therefore important land surface processes. Due to the complexity and 
non-linearity of C, N and water dynamics in terrestrial ecosystems, various modeling tools are needed 
for better understanding of these biogeochemical and hydrological processes and their feedback 
mechanisms with the land surface climate system [131]. It is well known that realistic simulations of C, 
N and water dynamics in terrestrial ecosystems is of critical importance, not only for the surface 
microclimate, but also for the large-scale physics of the atmosphere [132-134]. Such models can be 
flagged by land surface, ecosystem and hydrological models based on their objectives and emphases. 
The former focus on ecosystem processes and the interactions between ecosystems and the atmosphere; 
while the latter place emphasis on the land surface hydrology processes, including lateral flow 
resulting from catchment topography. 

4.1. Land Surface and Ecosystem Modeling 

Global climate and the global carbon cycle are controlled by exchanges of water, carbon, and 
energy between the terrestrial biosphere and atmosphere. Thus land surface models (LSMs) are 
essential for the purpose of developing predictive capability for the Earth's climate on all time  
scales [135]. Most current LSMs can be associated with three broad types [136]: soil-vegetation-
atmosphere transfer schemes (SVATS), potential vegetation models (PVMs), and terrestrial 
biogeochemistry models (TBMs).  

The first generation of SVATS evolved from simple bucket schemes focusing on soil water 
availability [137], through the schemes of Deardorff [138]. Marked improvements of the second 
generation (e.g., BATS [136], SiB [139,140], and CLASS [141,142]) from the first generation are the 
separation of vegetation from soil and the inclusion of multiple soil layers for dynamic heat and 
moisture-flow simulations [143]. The second generation SVATS firstly modeled plant physiology in 
an explicit manner in GCMs (General Circulation Model or Global Climate Model) [144]. For most 
second-generation SVATS, land cover was fixed, with seasonally-varying prescriptions of parameters 
such as reflectance, leaf area index or rooting depth [145-148]. Some SVATS incorporated satellite 
data to characterize more realistically the seasonal dynamics in vegetation function [146,149]. The 
latest (third generation) SVATS used more recent theories relating photosynthesis and plant water 

relations to provide a consistent description of energy exchange, ET, and C exchange by  
plants [143,150]. In our effort in understanding the impact of climate change on terrestrial ecosystems, 
energy, water, and C cycles need to be modelled simultaneously [150,151]. Recently, most of SVATS 
have thus been enhanced to include the CO2 flux between the land surface and the atmosphere, such as 
SiB2 [150], IBIS [152], NCAR-LSM [153], BATS [134], CLASS-C [154] and EASS [143].  

The earlier generation of PVMs comprised a suite of schemes that focus on modeling distributions 
of vegetation as a function of climate [155,156] without influences of anthropogenic or natural 
disturbance. The second generation of PVMs included more sophisticated modules to account for 
factors controlling vegetation distributions, such as competition, varying combinations of plant 
functional types, and physiological and ecological constraints [157].  
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TBMs developed from scaling up local ecological models, are process-based models that simulate 
dynamics of energy, water, and C and N exchange among biospheric pools and the atmosphere [136]. 
Few of the existing TBMs incorporate PVMs. These models are not applicable to transient climate 
change experiments without coupling with PVMs.  

In recent decades, the interactions among soil, vegetation and climate have been studied intensively 
and modeled successfully on the basis of water and energy transfer in the soil-vegetation-atmosphere 
system [136,140,142,158]. Also the construction and refinement of LSMs have received increasing 
attention [150,159,160]. Combination of these three different LSMs and utilization of remotely sensed 
land surface parameters are critical in the future LSM development, because of (1) the tight coupling 
of exchanges of water, energy and C between the land surface and the atmosphere; (2) the 
sophisticated impact/feedback mechanisms between climate change and terrestrial ecosystems; and  
(3) increasingly strong anthropogenic alterations to land cover. On-line coupling of a LSM with a 
GCM is needed for studying interannual to multi-decadal climate variations. 

Several model intercomparisons have focused on evaluating SVATS and TBMs with particular 
objectives. For instance, the Project for Intercomparison of Land-surface Parameterization Schemes 
(PILPS) was initiated to evaluate an array of LSMs existing in GCMs [144]; while the AMMA 
(African Monsoon Multidisciplinary Analysis) Land Surface Model Intercomparison Project (ALMIP) 
is being conducted to get a better understanding of the role of soil moisture in land surface processes in 
West Africa [161]. Coordinated land surface modeling activities have improved our understanding of 
land surface processes [161]. 

4.2. Spatially-distributed Hydrological Processes Modeling  

Hydrology and ecosystem have, for the most part, been studied independently. Most LSMs and 
ecosystem models make an assumption of “flat Earth” with the absence of lateral redistribution of soil 
moisture. On the other hand, hydrological models have mostly been concerned with runoff production. 
Spatially-distributed models are needed, especially for hydrological simulation objective, because of 
heterogeneity of land surface and non-linearity of hydrological processes. Spatially-distributed 
hydrological models are not only able to account for spatial variability of hydrological processes, but 
enable computation of internal fluxes and state variables. Such kinds of models are increasingly 
applied to simulate spatial variability of forcing variables (e.g., precipitation), physiographic 
characteristics, detailed processes and internal fluxes within a catchment [162-167].  

4.3. Modeling Dynamics of Stable C Isotopic Exchange between Ecosystem and the Atmosphere  

It is recognized that the atmospheric measurements are still too sparse, relative to its spatial 
variability, to be used for inferring the surface flux at high spatial resolution [168]. The use of the 
isotope ratio as an additional constraint to identify various C sources and sinks can contribute to a 
significant reduction in the uncertainty. Though available isotopic datasets are being accumulated 
quickly [117,169-171], isotope measurements are still lacking considering land surface diversity and 
heterogeneity. This shortage of long-term measurements and of sampling frequency still limits C 
isotopic studies. 
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Mechanistic ecosystem models that couple micrometeorological and eco-physiological theories have 
the potential to shed light on how to extend efforts and applications of stable isotopes of CO2 to global C 
budgeting, because biophysical models have the capacities of simulating isotope discrimination in 
response to environmental perturbations and can produce information on its diurnal, seasonal and 
interannual dynamics. Few biophysical models, however, have been developed to assess stable C 
discrimination between a plant canopy and the atmosphere [94,87,135,]. Most existing biophysical 
models are based on individual leaf level discrimination equations given by Farquhar et al. [173,174] and 
only focus on the land surface layer (ignoring vertical and horizontal advection effects beyond  
50~100 m above the ground [172]. However, in nature, the convective boundary layer (CBL) 
integrates the effects of photosynthesis, respiration, and turbulent transport of CO2 over the  
landscape [107,175]. The influence of the CBL cannot be ignored when using isotope composition of 
CO2 to investigate biological processes [176], because the effect of atmospheric stability on turbulent 
mixing/diffusion has an important impact on scalar fluxes and concentration fields within and above 
canopies [177,178]. Few such models considering the CBL effects on isotope fractionation have been 
developed to date [107,178-182]. 

4.4. Modeling Coupled C, N and Water Dynamics—An Ecohydrological Approach  

C and N dynamics and hydrological processes are closely linked. The stomatal conductance (gs) is 
the key linkage between C assimilation (photosynthesis) and transpiration. An empirical equation is 
used in the second-generation LSMs to calculate gs, which is hypothesized to be controlled by the 
environmental conditions [31]. While field and laboratory studies have documented that leaf 
photosynthesis also affects gs. Therefore, Ball et al. [24] proposed a semi-empirical stomatal 
conductance formulation (Ball-Woodrow-Berry model), in which gs is controlled by both 
photosynthesis and the environmental conditions. Most of third-generation LSMs (Ecological models, 
e.g., SiB2 [139,150]; CN-CLASS [28]; Ecosys [183-184; and EASS [143]) fully couple photosynthesis 
and transpiration processes by employing the Ball-Woodrow-Berry stamatal conductance formulation.  

In addition to the coupling of hydrological condition and C assimilation through the linkage of gs, C 
assimilation is also coupling with N dynamics through another biochemical parameter,  

25
maxcV —maximum carboxylation rate at 25 °C. In the photosynthesis model proposed by Farquhar et 

al.[174], the net photosynthetic rate Anet at leaf level is a function of two tightly-correlated parameters 
25
maxcV and 25

maxcJ (the maximum electron transport rate at 25 °C), and is calculated as:  

djcnet RAAA −= ),min(  (1) 

where Ac and Aj are Rubiso-limited and light-limited gross photosynthesis rates, respectively, and Rd is 
the daytime leaf dark respiration and computed as Rd = 0.015 Vc max. Ac and Aj are expressed as: 
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where Cc and Oc are the intercellular CO2 and O2 mole fractions (mol mol−1), respectively; *Γ is the 

CO2 compensation point without dark respiration (mol mol−1); Kc and Ko are Michaelis-Menten 
constants for CO2 and O2 (mol mol−1), respectively. In the nutrient-limited stands, Anet is generally 
limited by Ac, while Ac is dominantly controlled by a parameter maxcV  (see Eqn. 2a). Many research 
results showed 25

maxcV is very sensitive to leaf N status (more specifically leaf  
Rubisco-N) [134,185-187]. As a result in some ecosystem models (i.e., C&N-CLASS [23]), 25

maxcV  is 

calculated as a nonlinear function of Rubisco-N following observations made by Warren and 
Adams [134]: 

[ ]0
25
max 8.1exp(1)( rc NNV −−= α  (3) 

where α is the maximum value of 25
maxcV  and Nr0 is the leaf Rubisco-N (g N m−2 leaf area) in the  

top canopy. 
The coupled C, N and water processes have been carefully considered in most of the third-

generation LSMs (e.g., SiB2 [139,140,150]); CN-CLASS [28] and Ecosys [183,184]), the models’ 
grids, however, are isolated from their neighboring grids mainly due to the availability of input data. 
Vertical soil hydrological processes are hard to be realistically simulated if the lateral flows are 
ignored by assuming that the Earth is “flat”. However, simulations of the topographically-driven 
lateral water flows are important components in most of spatially-distributed models, while the 
detailed ecophsiological processes are weakly represented [188]. Much effort to bridge these two 
different models has been increasingly made [33,35,188-194]. However, a model coupling approach—
a full combination of ecosystem model and hydrological model, i.e., ecohydrological modeling, is  
still lacking.  

4.5. Applications of Remotely-sensed Data in Ecohydrological Modeling 

Remote sensing techniques, which inherently have the ability to provide spatially comprehensive 
and temporally repeatable information of the land surface, may be the only feasible way to obtaining 
data needed for land surface and ecological modeling [140,194-197]. The most common rationale for 
interfacing remote sensing and land surface-ecosystem models is using remotely sensed data as model 
inputs [198]. These input data, corresponding to forcing functions or state variables in ecological 
modeling, include LC, LAI, normalized difference vegetation index (NDVI), and the fraction of 
photosynthetically active radiation (fPAR) [140,199-201]. Another effort is the direct estimation of GPP 
and NPP [202,203] of biomass [203-204] and of plant growth [205,206], by making use of fPAR and 
NDVI. It has been shown that the direct estimation has lower accuracy than the integration of remotely 
sensed data with process based models [202].  

Remote sensing data have also been used to parameterize hydrological models [194,195,207]. For 
instance, a hydrological model (TerrainLab) was further developed using remote sensing as  
inputs [194]. TerrainLab is a spatially distributed, process-oriented hydrological model using the 
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explicit routing scheme of Wigmosta et al. [208]. This model has been applied to flat areas (such as 
boreal and wet land region, [188,195,209]), but it has not yet been applied to mountainous areas. 

Different from traditional hydrological models, which have coarse spatial resolutions, the  
grid-based-distributed ecohydrological models have a high demand for spatial data [195,210]. Some 
researchers highlight that the main obstacles in current distributed ecohydrological modeling is the 
lack of sufficient spatially distributed data for input and model validation [211]. Remote sensing can 
potentially fill in some of the gaps in data availability and produce means of spatial calibration and 
validation of distributed hydrological models. As a result the application of remote sensing techniques 
in hydrological studies and water resources management has progressed in the past decades (see 
review by [195]).  

In general, the applications of remotely sensed data in ecohydrological modeling can be in the two 
ways [194,195,207,210-218]: (i) multispectral remote sensing data are used to quantify surface 
parameters, such as vegetation types and density. Although the usefulness of remote sensing data is 
widely recognized, there remain few cases where remote sensing data have been actually used in 
ecohydrological simulations. Difficulties still exist in choosing the most suitable spectral data for 
studying hydrological processes as well as in interpreting such data to extract useful  
information [194,195,219]; and (ii) processed remote sensing data are used to provide fields of 
hydrological parameters for calibration and validation of ecohydrological models, such as  
precipitation [195,220], and soil moisture [221-224]. Koster et al. [224] pointed out that remote 
sensing data take the form of emitted and reflected radiances and thus are not the type of data 
traditionally used to run and calibrate models. Hence, it is important to understand and develop 
relationships between the electromagnetic signals and hydrological parameters of interest [194]. Kite 
and Pietroniro [195] stated that the use of remote sensing in hydrological modeling was limited. Even 
though a number of new sensors have been launched since then and research has documented that 
remote sensing data have promising perspectives, operational uses of satellite data in hydrological 
modeling still appear to be in its infancy [211].  

5. Research gaps in C and Water Flux Estimates and Scaling Approaches 

A variety of methods are being used in the C and water cycles studies. As shown in Figure 3, 
different approaches have different temporal and spatial scales. The most direct measurements of the 
terrestrial C flux are made either at the plot scale (10−2–101 m2), e.g., using biometric methods and 
various forms of chamber, or at the ecosystem (patch) scale (104–106 m2), using the EC technique. 
Ecohydrological / ecosystem modeling and remote sensing estimations are generally available across 
variable spatiotemporal scales. These estimates are normally available within a nested framework that 
permits a progressive comparison of measurements made by surface instrumentation (scale: 1 to 10 m), 
surface flux equipment (10 m to 1 km), airborne remote sensing equipment (100 m to several km), 
satellite remote sensing (30 m to global scale) and EC tower (1–3 km). 
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Figure 3. Temporal and spatial scales of different approaches. 

 

The atmosphere integrates surface fluxes over many temporal and spatial scales and links scalar 
sources and sinks with concentrations and fluxes. This principle has been successfully used to develop 
inverse models to estimate annual C budgets [225-230]. However, due to model limitations and 
paucity of continental CO2 observations these studies have yielded C fluxes only at coarse resolution, 
over large spatial regions [231-233]. 

Progress in C balance studies has been achieved at both ends of the spatial scale spectrum, either 
large continents (larger than 106 km2, e.g., global inverse modeling) or small vegetation stands (less 
than 1–3 km2, e.g., EC-measurements). Methods to estimate CO2 sources and sinks at the intermediate 
scale (i.e., landscape to regional scales) between continental and local scales are less well advanced. 
Moreover, the C cycle in different regions can vary markedly in response to changing climate [5]. 
Reliable estimates of terrestrial C sources and sinks at landscape to regional spatial scales (finer than 
those used in global inversions and larger than local EC flux measurements and roughly defined as the 
range between 102 and 106 km2) are required to quantitatively account for the large spatial variability 
in sources and sinks in the near-field of a measurement location [234], as well as fundamental to 
improving our understanding of the C cycle [235]. 

It is generally considered unreliable to upscale stand-level fluxes (i.e., EC measurements) to a 
region by simple spatial extrapolation and interpolation because of the heterogeneity of the land 
surface and the nonlinearity inherent in ecophysiological processes [236]. It is also challenging to 
apply atmospheric inversion technique to regional scales for quantifying annual C budgets because at 
such intermediate scales the atmosphere is often poorly constrained [86,237]. Moreover, aggregation 
errors and errors in atmospheric transport, both within the PBL and between the PBL and free 
troposphere, can also be obstacles to using these approaches to obtain quantitative estimates of 
regional C fluxes [76]. Hence, there is a strong motivation to develop methods to quantify and validate 
estimates of the C balance at these intermediate scales [76-77,79,86]. Observations of CO2 over the 
continent within the PBL reflect exchange processes occurring at the surface at a regional scale  
(102–105 km2). The flux information contained in CO2 concentration data represents footprints of up to 
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105 km2 [75,76], which are several orders of magnitude larger than the direct EC-flux footprint. This 
information is therefore needed in our effort to upscale from site to region. Moreover, the number of 
CO2 mixing ratio measurements above the land surface, made by either tower or aircraft, is steadily 
increasing. Previous efforts to interpret the signal of regional CO2 exchange making use of tower 
concentration data have focused on simple one-dimensional PBL budgets that rely on gradients in CO2 
concentrations between the PBL and the free troposphere [79,84]. These methods are limited to 
monthly resolution because of the need to smooth and average over several synoptic events [86].  

6. Future Research Directions 

A synthetic research framework is needed to strength the less well researched areas as reviewed in 
Section 5: bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models 
and a spatially nested hierarchy of observations which include multispectral remote sensing, 
inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers  
and chambers. 

The current research trends and the future directions in this field include: (i) A synthesis 
aggregation method—integrating ecohydrological and isotopic models, remote sensing and component 
flux data, is becoming a pragmatic approach towards a better understanding of the coupled C, N and 
water dynamics at landscape/watershed scales; and (ii) The landscape- and regional-scale C fluxes are 
being estimated using an integrated approach involving direct land surface measurements, remote 
sensing measurements, and ecosystem-, footprint- and inversion- modeling.  

6.1. Development of a Spatially Explicit Ecohydrological Modeling Framework 

Coupled modeling will help refine the experimental and instrumental design and generate cross-
disciplinary hypotheses that can be tested in the experiment. Ecohydrological models are powerful 
tools for quantitative and predictive understanding the coupled C, N and water mechanisms. Spatially-
explicit ecohydrological modeling can be used to infer aspects of the land surface system that are 
difficult to measure by mass and energy balance, and will be critical to improving the accuracy of 
forecasts of landscape change and C dynamics in the real world. While developing a process-based, 
coupled-system model is a significant task, the coupling to existing models may provide a relatively 
easy way forward. For example, a spatially explicit, process-based ecohydrological model, EASS-
TerrainLab, is developed to improve the representation of the coupled C, N and hydrological processes 
by integrating of two existing models (an ecosystem LSM model—EASS and a distributed 
hydrological model—TerrainLab). 

6.1.1. Reviewing of the Existing EASS Model [112] 

EASS is based on a single layer vegetation canopy overlying a seven-layer soil, and includes 
physically-based treatment of energy and moisture fluxes from the vegetation canopy and through it. It 
also incorporates explicit thermal separation of the vegetation from the underlying ground [134]. 
Moreover, EASS includes a scheme with stratification of sunlit and shaded leaves to avoid 
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shortcomings of the “big leaf” assumption [197,238]. It has been referred as a “two-leaf” canopy  
model [81,239]. The structure of EASS is shown in Figure 4. 

With spatially explicit input data on vegetation, meteorology and soil, EASS can be run pixel by 
pixel over a defined domain, such as Canada’s landmass, or any of its parts, or the globe. EASS has 
flexible spatial and temporal resolutions, as long as the input data of each pixel are defined. 

In short, EASS has the following characteristics: (i) satellite data are used to describe the spatial 
and temporal information on vegetation [143]; (ii) energy and water exchanges and carbon 
assimilation in the soil-vegetation-atmosphere system are fully coupled and are simulated 
simultaneously. The Ball-Woodrow-Berry stamatal conductance formulation [24] was employed (see 
Section 4.4); (iii) the energy and C assimilation fluxes are calculated with stratification of sunlit and 
shaded leaves to avoid shortcomings of the “big-leaf” assumption; and (iv) the lateral movement of 
water is ignored. 

6.1.2. Reviewing of the TerrainLab Model [157]  

TerrainLab [194] was adopted concepts from Wigmosta et al. [208] and it has been tested in the 
Southern Study Area (SSA) of the BOREAS region to study the spatio-temporal variation of ET and 
soil moisture [143]. The horizontal boundary of the simulated area is a watershed delineated from a 
digital elevation model (DEM) where divides between neighboring watersheds are identified. 
Vertically, the simulation extends from the saturated zone in the soil to the top of vegetation canopy. 
Within a watershed, the forest ecosystem is divided into basic spatial units, or pixels in remote sensing. 
Each pixel is treated as a unique vegetation-soil system, except for the ground and runoff water 
exchanges. Basic model simulations of the physical and biological processes are made at the pixel 
scale. According to the need of simulating hydrological processes, a pixel is vertically divided into five 
strata, i.e., overstory, understory, litter or moss layer, soil unsaturated zone, and soil saturated zone. 
Precipitation, solar radiation, topographic parameters, land cover, LAI, and soil properties are the 
major inputs to the model.  

The soil water balance component of TerrainLab allows for the spatially explicit simulation of 
topographically driven lateral subsurface flow and its influence on water table depth and soil water 
content dynamics based on a raster grid DEM [194]. TerrainLab uses the explicit routing scheme of 
Wigmosta et al. [208]. In this approach the soil profile is subdivided into an unsaturated and a 
saturated zone. Saturated hydraulic conductivity is assumed to be depth-dependent, while other 
hydraulic parameters are considered to be vertically homogenous. However, the assumption of vertical 
homogeneity of permanent wilting point, field capacity, and porosity represents a major simplification 
in peat lands. The lateral movement of water between each raster grid cell (pixel) of the modeling 
domain and its maximum eight neighboring pixels based on a multi-predilection-flow algorithm occurs 
in the saturated zone, i.e., as groundwater flow. Groundwater follows the local hydraulic gradient  
(3 × 3 pixels) that is assumed to be approximated by local ground surface slopes [194,208]. 
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Figure 4. Structure of the EASS model. Three components (soil, vegetation and the 
atmosphere) are considered in EASS, which are integrated with two interfaces. The right 
panel illustrated energy fluxes between these three components. LE, H, Rs , Rl , and G are 
the latent heat flux, sensible heat flux, shortwave radiation, longwave radiation, and soil 
conductive heat flux, respectively; the subscripts g and c present the energy fluxes at soil-
canopy and canopy-atmosphere interfaces, respectively. The left panel describes soil water 
fluxes. The symbol F represents conductive water flux between soil layers, and F0 
represents the incoming water flux from the surface to the top soil layer (i.e., the actual 
infiltration rate I), and Fb is the water exchange (drainage or capillary rise) between the 
bottom soil layer and the underground water [143].  

 

6.1.3. Development of an Ecohydrological Model by Coupling of EASS with TerrainLab 

The coupled model (EASS-TerrainLab) explicitly describes ecohydrological processes (coupled C, 
N and water dynamics). Each process will be explicitly calculated separately for overstory and 
understory with sunlit and shaded leaf groups. Vertical hydrological processing will be adequately 
described using detailed water balance equations, the topographically driven lateral water flows will be 
considered for both saturated and unsaturated soil layers, and their influence on soil water content and 
water table depth are calculated based on a raster grid DEM [194] using the explicit routing scheme of 
Wigmosta et al. [208]. 

6.1.4. Model Calibration and Validation for EASS-TerrainLab 

Model calibration and validation will conducted in three ways: (i) Modeled surface runoff will be 
compared with the watershed discharge measurements; (ii) Simulated soil water storage and its 
changes will be verified with several soil water measurement profiles; and (iii) Simulated ET will be 
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validated with EC-flux tower measured ET based on footprint averaging and the remotely sensed 
spatially-distributed ET. 

6.1.5. Model Sensitivity Analysis and Runs under Different Scenarios 

A set of sensitivity analysis will conducted to test the coupled capacity. The model will be run 
under several different scenarios to explore: (i) the effects of surface and sub-surface base flow on 
GPP and ET; (ii) the influence of mesoscale topography on hydrological processes (runoff and soil 
storage) and C exchange (water use efficiency and light use efficiency); (iii) the influence of 
photosynthesis on ET by comparing simulation results using different stomatal conductance schemes; 
and (iv) the effects of representations of spatial variability on simulations of photosynthesis and ET. 

6.2. Landscape and Regional C and Water Fluxes Estimation: An Upscaling Framework  

Figure 5. An upscaling framework synthetically integrating ecohydrologcal and footprint 
modeling, remote sensing and land surface measurements. 

 
 

Figure 5 schematically shows a synthetic upscaling framework for estimating landscape and 
regional C and water budgets with a reasonable accuracy. Using a data-model fusion with footprint 
weighting method to optimize the ecohydrological model’s parameters is strongly suggested because 
the land surface is normally heterogeneous. This is a key component in the upscaling framework. 
Model parameters are optimized by minimizing the ‘cost’ function [240]:  
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where x is the vector of unknown parameters and xb is a vector of a priori values of x; O is the vector 
of observations and Y is the nonlinear model results, Co is the covariance matrix of observations and 
Pb is the covariance matrix of a priori parameters. Different from general data-fusion method, Y is 
weighting averaged by footprint fj for each pixel (j) within the footprint domain as Y = ∑Yjfj. 

We also note that the dynamics of the PBL is tightly coupled with the land surface processes (e.g., 
energy / water / C fluxes). But for simplification, we proposed off-line modeling instead of the on-line 
coupling with regional climate model or the GCMs. The meteorological driving inputs for the 
ecohydrological model, therefore, are required for model runs. These inputs can either acquire from 
spatially extrapolation from climate station (including EC flux towers) measurements, or from the re-
analysis data (e.g., the data provided by National Centers for Environmental Prediction (NCEP)), or 
from the regional climate modeling outputs. 

7. Summary 

After comprehensive reviewing of a variety of approaches being used in research on the C/water 
cycles, the concluding remarks are summed the following: 

Research gaps in this field are (i) The coupled terrestrial C, N and hydrological dynamics are far 
from well understood, especially at landscape (watershed) and regional scales; (2) Much progresses 
have been achieved at the extreme ends of the spatial-scale spectrum, either large regions/continents or 
small vegetation stands. Because of the heterogeneity of the land surface and the nonlinearity inherent 
in ecophysiological and ecohydrological processes in response to their driving forces, it is difficult to 
upscale stand level results to regions and the globe by extrapolation. Budgets of carbon and water at 
landscape intermediate regional scales (102–105 km2) have large uncertainties.  

A coupled spatially-explicit ecohydrological model is a powerful tool for quantitative and 
predictive understanding of the coupled C, N and water mechanism. This modeling framework can be 
used to infer aspects of the land surface system that are difficult to measure, and will be critical to 
improving the accuracy of forecasts of landscape change and C dynamics in the real world.  

Combining and mutually constraining the bottom-up and top-down methods to reduce their 
uncertainties using data assimilation techniques is a practical and effective means to derive regional C 
and water fluxes with reasonably high accuracy. In the proposed upscaling framework by this paper, 
spatially nested hierarchy of observations, including multispectral remote sensing, inventories, existing 
regional clusters of EC flux towers and CO2 mixing ratio towers and chambers, are able to integrated 
using scalable (footprint and ecosystem and ecohydrological) models and data-model fusion 
techniques.  
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