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Abstract: This work proposes a new method to classify multi-spectral satellite images 

based on multivariate adaptive regression splines (MARS) and compares this classification 

system with the more common parallelepiped and maximum likelihood (ML) methods. We 

apply the classification methods to the land cover classification of a test zone located in 

southwestern Spain. The basis of the MARS method and its associated procedures are 

explained in detail, and the area under the ROC curve (AUC) is compared for the three 

methods. The results show that the MARS method provides better results than the 

parallelepiped method in all cases, and it provides better results than the maximum 

likelihood method in 13 cases out of 17. These results demonstrate that the MARS method 

can be used in isolation or in combination with other methods to improve the accuracy of 

soil cover classification. The improvement is statistically significant according to the 

Wilcoxon signed rank test. 

Keywords: multi-spectral classification; multivariate adaptive regression splines (MARS); 

area under the ROC curve (AUC); TERRA-ASTER image 
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1. Introduction  

 

Conventional classification methods used in remote sensing have some basic problems due to the fact 

that they are not adapted to the real characteristics of image data. In addition, they lack proper 

configurations, and there is generally minimal user interaction. 

Traditional remote sensing classification methods are divided into two large families. The first family 

is parametric, and includes the ML, bayesian methods, etc.; in this family, initial conditions (such as 

Gaussian distributions of reflectances or homoscedasticity) are not usually met in the remote sensing 

images. This means that the power of these tests is seriously undermined, and thus, classifications can 

be unnecessarily weak. The second family includes non-parametric methods (e.g., neural networks and 

classification trees). This second group addresses the problems posed by the first group by making no 

assumptions regarding reflectance distributions. Some of these methods have problems related to their 

―black box‖ format that seriously undermine any understanding of the relationship between initial 

variables and classification results, thereby greatly limiting the generalizalibility of the results. 

According to [1], ―parametric methods are those in which the decision rules are obtained from 

probability density functions for each class, whose parameters are estimated from samples collected for 

each learning category, without taking into account the others.‖ In this kind of classification, it is 

commonly assumed that the probability distribution functions for each class follow a normal multivariate 

distribution. 

In addition to the assumption of a probability distribution that may be inappropriate for the data 

under analysis, parametric methods have added another substantial problem. Namely, if the data have a 

high dimensionality, many samples are required for the learning stage of these methods. Overall, the 

assumption of a normal spectral distribution is often violated, especially in complex landscapes. In 

addition, insufficient, non-representative, or multimode distributed training samples can further 

introduce uncertainty to the image classification procedure [2]. 

Many studies have shown that non-parametric methods provide better classification results. In 

studies such as [3], it is demonstrated that, even with small training samples, non-parametric 

classification algorithms provide better results than parametric ones. Also, [4] concluded that, under the 

assumption of overlapping training samples, a non-parametric algorithm is preferable as a classification 

method. With non-parametric classifiers, it is not required to assume that the data follow a normal 

distribution. No statistical parameters are needed to separate image classes. The decision function 

coefficients corresponding to separation boundaries between classes in representation space are 

obtained from samples of all classes, and such functions do not follow mathematically defined 

structures [1]. 

MARS is a non-parametric regression method in which no assumption is made regarding the 

functional relationship between dependent and independent variables. Instead, MARS builds this 

relationship from a set of coefficients and basic functions, which in turn are heavily influenced by the 

regression of the data. The operating method involves partitioning the area of entry into regions, each 

with its own regression equation [5].  

This method was proposed by [6], and it is essentially an algorithm based on recursive partitioning 

and multi-stage regression that uses spline functions to align data with an arbitrary regression 
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function [7]. Thus far, the MARS method has been widely used for predictive and simulation efforts, as 

in [8-11], and [12]. Other authors have compared this technique with other existing models. In this 

sense, [13] indicated that "MARS is better suited to model situations that include a high number of 

variables, non-linearity, multicollinearity and/or a high degree of interaction among predictors." In 

addition, works such as [14] and [15] have praised the rigorous statistical basis upon which the MARS 

technique MARS has been built, and they have highlighted the clear advantage of MARS results as 

compared to the "black box" results generated by neural networks. 

As shown in [16], the MARS method can be extended to handle classification problems. This study 

analysed two types of classifications. The first type was comprised of those that included only two 

classes; in this case, the MARS method without any variant is solid and competitive. A second type of 

classification with more than two classes was also considered; in this second case, the use of a hybrid 

method called PolyMARS was recommended. We do not detail the latter technique because in our case, 

classification is carried out by means of a pairwise procedure that corresponds to the first of these two 

types [16]. 

It should be emphasised that [17] and [18] included the MARS method in the neural multilayer 

networks classification group, but it appears that the MARS method has not yet been applied in the 

context of multi-spectral imaging classification efforts. In fact, [18] refers to the MARS and 

autonomous classification engine (ACE) methods by expounding that ―we believe that these methods 

will have a place in classification practice, once some relatively minor technical problems have been 

solved. As yet, however, we cannot recommend them on the basis of our empirical trials.‖ 

Only [19] has applied the MARS technique to remote sensing data, but since the author of that paper 

worked with radar images, the work reported in [20] is not comparable to that in our study. That is, 

radar data are active data, while the data used in this study are multi-spectral passive optical images, 

also known as advanced space-borne thermal emission and reflection radiometer (ASTER) images. 

The ASTER sensor was developed in an attempt to use detailed geological data to understand 

phenomena such as volcanic activities that can significantly impact the global environment [20]. 

However, the current implementation of this technology is substantially different than expected, with the 

images produced by this sensor having been used for several purposes other than geologic ones. For 

example, various studies have used ASTER scenes to characterise urban areas [21], use information 

from five TIR bands for the discrimination of agricultural crops [22], estimate the biomass of boreal 

forests [23], validate ASTER scenes for the geometric reconstruction of cloud masses [25], investigate 

glacier geometries and movements [24,25], predict natural hazards [26,27], and detect soil  

temperatures [28,29]. Finally, it must be highlighted that [30] employed ASTER image to identify 

different types of land uses and also compared two types of classifiers. 

On the other hand, on how to evaluate the accuracy of the classification, a receiver operating 

characteristic (ROC) curve is a 2D graph representing both the specificity and the sensitivity of a binary 

(i, j) classifier. The sensitivity of a classifier is the probability of classifying an item as belonging to class 

i when it actually belongs to class i. The specificity is the probability of classifying an item as not 

belonging to class j when it actually does not belong to class j. 

AUC provides a measure of how well a classification algorithm performs. [13] pointed out that AUC 

summarises performance across all possible thresholds and is independent of balance among classes.  
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ROC curves are generated by varying a threshold across the output range of a scoring model and 

then observing the corresponding classification performances. This graph is necessary to obtain the 

AUC statistic. The AUC statistic has an important property; namely, the AUC of a classifier is 

equivalent to the probability that classifier will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance [31]. A random guess classifier will produce a diagonal line on the 

ROC diagram with an area of 0.5. Hence, the AUC of a realistic classifier lies between 1 and 0.5. The 

high value of 1 corresponds with an ideal classifier, so the closer the AUC statistic is to 1, the better the 

classification is expected to be. 

[32,33] concluded that the AUC statistic is more of a discriminating measure than an accuracy 

statistic. The use of the AUC statistic has been widely extended in predictive modelling techniques. 

However, only a few remote sensing works, such as [34] or [35], have used AUC for evaluating 

classification performance. This study uses the AUC statistic to evaluate three classification methods. 

In brief, the aim of this study is to evaluate the MARS algorithm as a remote sensing classifier. For 

this purpose, the same TERRA-ASTER scene was classified by MARS and by two classical remote 

sensing classifiers (the ML and parallelepiped methods) to compare class probabilities derived from the 

AUC statistic. Section 2 describes the study’s framework and data processing methods. Section 3 

introduces the classification methods, and section 4 analyses and discusses the results. 

 

2. Materials 

 

2.1. TERRA-ASTER scene 

 

The test area was a roughly 60 × 60 km area in the Spanish province of Badajoz, which is located in 

Extremadura in southeastern Spain (Figure 1). Elevation in this area ranges from 77 to 855 m, with an 

average of 360 m. The area was captured by the ASTER sensor on 4 August 2000.  

Figure 1. Location of the Extremadura test area in southeastern Spain. 

 

 

The platform is composed of three different subsystems. First, the visible and near-infrared (VNIR) 

has three bands with a spatial resolution of 15 m and an additional backward telescope for stereoscopic 
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use. Second, the shortwave infrared (SWIR) has six bands with a spatial resolution of 30 m. Finally, the 

thermal infrared (TIR) has five bands with a spatial resolution of 90 m. Each subsystem operates in a 

different spectral region with its own telescope [36]; see Table 1. 

Table 1. Main characteristics of the ASTER sensor systems. 

Sub-system Band nº Spectral range (mm) Spatial resolution (m) Quantization levels 

Visible & 

Near infrared 

(VNIR) 

1 0.52–0.60 

15 8 bits 
2 0.63–0.69 

3N 0.78–0.86 

3B 0.78–0.86 

Shortwave 

infrared 

(SWIR) 

4 1.60–1.70 

30 8 bits 

5 2.145–2.185 

6 2.185–2.225 

7 2.235–2.285 

8 2.295–2.365 

9 2.360–2.430 

Thermal 

infrared 

(TIR) 

10 8.125–8.475 

90 12 bits 

11 8.475–8.825 

12 8.925–9.275 

13 10.25–10.95 

14 10.95–11.65 
 

 

The ASTER data can be downloaded free of cost from the website http://asterweb.jpl.nasa.gov/. 

 

2.2. Vegetation map 

 

The Regions of Interest (ROIs) used in the classification process were obtained from the Spain forest 

map (see Figure 2). This map provides a polygonal distribution of territory based on homogeneous 

vegetation units characterised by information on vegetation type. This study used a version synthesised 

by the Extremadura Regional Government in 2001 [37]. This version includes the main forest categories 

groups existing in the region. Taking only the area under study into account, a total of 18 categories 

must be analysed (see Table 2). 

Table 2. Forest categories of area under study. 

 

 

 

Forest map 

cod. 
Legend 

Total area 

(Km
2
) 

Percentage of the 

area under study 

999 Water 49.6 1.3% 

547 Mixed silicicolous scrubland 47.5 1.2% 

534 Agricultural land 2,422.9 61.4% 

507 Mixed riparian forest 23.5 0.6% 

458 Dense seasonal pasture 135.6 3.4% 



Sensors 2009, 9              

 

 

9016 

Table 2. Cont. 

454 Open formation 8.7 0.2% 

453 Dense formation 8.6 0.2% 

337 Boulders 2.1 0.1% 

329 Rocky desert 42.2 1.1% 

309 Retama sphaerocapa 109.2 2.8% 

303 Cistus ladanifer 22.0 0.6% 

221 Lavandulas stoechas 10.4 0.3% 

62 Eucaliptus camaldulensis 194.7 4.9% 

61 Eucaliptus globulus 10.1 0.3% 

46 Quercus suber 53.5 1.4% 

45 Quercus rotundifolia 786.0 19.9% 

26 Pinus pinaster 1.4 0.0% 

23 Pinus pinea 17.8 0.5% 

Figure 2. Extremadura forest map (EFM). 
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2.3. Software 

 

All operations were performed using a variety of softwares as ENVI (image processing), ArcView 

and ArcGIS (geographic information systems), SPSS (statistical analysis), and MARS  

(predictive modelling).  

 

3. Methods 

 

In this study, the data were pre-processed prior to any classification procedures (see Section 3.1). A 

brief introduction to the MARS algorithm is presented before developing different classifications (see 

Section 3.2.). Two different processes were performed in this study. On the one hand, we generated 

three traditional classification maps using the ML, parallelepiped and MARS algorithms (see  

Section 3.3.). On the other hand, class probability maps were also obtained using these three algorithms; 

their accuracies were calculated using the AUC statistic (see Section 3.4.). 

 

3.1. Image preprocessing 

 

Two different operations were implemented on the original image before starting classification 

processes. First, regardless of whether the data included L1-B images, that is, radiometrically calibrated 

and geometrically registered images, an additional geometric registration was performed using nine 

ground control points. These points were previously measured using GPS techniques.  

Second, we re-sampled the SWIR and TIR bands to obtain the same geometric resolution for the 

entire image. With this action, no alteration was introduced to the original pixel information because the 

re-sampling was performed from a larger pixel resolution up to a smaller pixel resolution (see Figure 3). 

This re-sampling was necessary because the classifier requires homogeneous data to operate, and this 

method is simpler than introducing different band resolutions for different classifier calculations. 

Figure 3. Re-sampling example for TIR bands. 

255 255 255 255 255 255

255 255 255 255 255 255

255 255 255 255 255 255

255 255 255 255 255 255

255 255 255 255 255 255

255 255 255 255 255 255

255

90m
90m  

 

After these two processes, the image data were ready for classification. 

 

3.2. Introduction to the MARS algorithm 

 

The MARS model is a spline regression model that uses a specific class of base functions as 

predictors in place of the original data [38]. 
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A spline is a special function defined piecewise by polynomials, and it is used to refer to a wide class 

of functions that are used in applications requiring data interpolation. [16] defined the cubic spline as a 

function that has first and second continuous derivatives. Cubic splines are also called basic functions.  

On the other hand, basic functions have a key attribute known as a ―knot‖. A knot marks the end of 

one region of data and the beginning of another [38]. The number of knots and their placement are fixed 

for regression splines, and in the MARS procedure, knots are determined by a search that occurs both 

forwards and backwards in a stepwise fashion. First, MARS generates a model with an excessive 

number of knots; then, knots that contribute least to the overall fit are eliminated. 

Basis functions are used to search for knots; these functions serve as a set of functions representing 

the relationship between the predictor variables (X) and the target variable (y): 





M

m

mm Xhxfy
1

0 )()(         (1) 

This function consists of an interceptor parameter 0 and the weighted sum of other basic  

functions hm(X).  

MARS uses what [16] denotes as ―reflected pairs‖. These are linear basic functions of the form  

(x – t)+ and (t – x)+, with t being the knot. 

The MARS procedure is divided into three steps. First, a forward algorithm selects all possible basic 

functions and their corresponding knots. Second, a backward algorithm eliminates all basic functions in 

order to generate the best combinations of existing knots, and finally, a smoothing operation is 

performed to obtain continuous partition borders. 

1. The selection of basic functions from the initial set is achieved by determining a constant function 

h0(X) = 1 so that all functions from set C are candidates. New pairs of functions are considered at 

each stage until the model has the maximum number of terms set by the user at the beginning of 

the process. 

2. The backward removal is performed by suppressing those model terms that contribute to a 

minimal residual error. This stage consists of reducing the complexity of the model complexity by 

increasing its generalisability [7]. This process can be conducted by means of generalised cross-

validation (GCV). 
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With this GCV function, the optimum number of model terms () can be estimated with: 

M(λ) = r + cK        (3) 

The value M() is the effective number or parameters in the model, and it is expressed in terms of 

r (i.e., the number of linearly independent basic functions) and K (i.e., the number of knots 

selected in the forward process). 

The process stops when the number of model terms reaches GCV().  

3. Finally, smoothing is necessary for removing discontinuities within regional borders and ensuring 

the continuity of first and second derivatives. 
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[16] included two possibilities for classification with MARS. The first one relates to pairwise 

classification in which the output can be coded as 0 or 1, thereby treating classification as a regression. 

The second possibility involves more than two classes, with the classification serving as a hybrid of 

MARS called PolyMARS as expounded in [39]. This study adopts the first technique.  

 

3.3. Classification maps 

 

In this process, 17 out of the total 18 categories were considered for classification. The ―agricultural 

cultivations‖ class (cod 534) was excluded due to its heterogeneity. All the crops of dry regions and 

irrigated regions are incorporated into this EFM category so that very different spectral responses are 

included. Considering this class would cause serious errors in classification processes. 

The original format of the EFM categories was the ArcInfo exchange coverage extension ―*.e00‖. 

Thus, an import operation became necessary to convert all classes into ―shp‖ format. This process was 

performed using both ArcInfo and ArcView software. 

The second preliminary operation, as referred to above, was to reduce all ―shp‖ polygons through a 

buffer of –100 m in order to purify the ROIs. Not all polygons were chosen for the classification task. 

As shown in Table 3, the area of the ROIs fluctuate between 78.18% of the total area for class 221  

and 31.89% of the total area for class 454. 

Table 3. Regions of interest (ROI) used in the classifications. 

Forest map 

cod. 
Legend 

Category areas 

at image (km
2
) 

ROI areas 

(km
2
) 

ROI area 

percentages 

999 Water 49.6 33.3 67.19% 

547 Mixed silicicolous scrubland 47.5 28.4 59.73% 

507 Mixed riparian forest 23.5 11.6 49.18% 

458 Dense seasonal pasture 135.6 52.2 38.47% 

454 Open formation 8.7 2.8 31.89% 

453 Dense formation 8.6 5.6 64.68% 

337 Boulders 2.1 0.8 36.22% 

329 Rocky desert 42.2 23.5 55.82% 

309 Retama sphaerocapa 109.2 69.6 63.69% 

303 Cistus ladanifer 22.0 10.6 48.33% 

221 Lavandula stoechas 10.4 8.1 78.18% 

62 Eucaliptus camaldulensis 194.7 140.6 72.25% 

61 Eucaliptus globulus 10.1 5.7 55.93% 

46 Quercus suber 53.5 26.0 48.48% 

45 Quercus rotundifolia 786.0 544.2 69.23% 

26 Pinus pinaster 1.4 0.7 52.24% 

23 Pinus pinea 17.8 12.1 67.92% 
 

 

Thus, we relied on a variety of ROI sizes to confirm whether there was relationship between training 

size and final classification results. As shown in Table 3, the smallest training size was for class 26, and 

the greatest size was for class 45. 
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This study uses the ML, parallelepiped, and MARS methods. A brief summary of the properties of 

each of these classifiers is given in the next section. 

 

3.3.1. ML classification 

 

ML is the most popular parametric classification method used in remote sensing. This method assigns 

observation X to class I if the function gi(X) is larger than any other gj(X) for all ij so that: 

11 1
g ( ) ( ) ( ) ( )

2 2

T

i i i ii
X Ln X X 


       (4) 

 

3.3.2. Parallelepiped classification 

 

The parallelepiped classification method is a non-parametric method. It is one of the simplest 

classification methods based on a radiometric model rather than on the measurement of distances or 

probabilities [40]. The parallelepiped–like subspace is defined using training samples, and its boundaries 

can be determined in several ways, such as maximum or minimum pixel values, a corresponding class, a 

multiple of the standard deviation, and so on. The decision rule simply checks whether the point 

representing a pixel in the feature space lies inside any of the parallelepipeds [41]. The Boolean operator 

of the decision rule is based on the standard deviation. 

 

3.3.3. MARS classification 

 

In order to monitor the whole battery process more effectively, a chart diagram is 

displayed, summarizing the methodology for MARS classifications (Figure 4). 

Figure 4. Work flow for the MARS process classification.  
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For MARS classification, it is necessary to know the digital numbers (DNs) of pixel values at all 14 

bands. Thus, once all shp ROI polygons were superimposed onto the ASTER scene, we performed an 

ASCII exportation using ENVI software. The 17 resulting files contained image and map coordinates of 

all pixels inside the corresponding ROI and their corresponding DN values for all bands. See Figure 5. 

Figure 5. Fragment of the ROI ASCII export file. 

 

 

First, the image must be classified by discriminating each class from the rest. The class with which all 

other classes were compared was called the ―fixed class‖, and the fixed class was compared with the 

―comparing class‖. Next, these classifications were merged into a unique probability image per class, 

and finally, the probabilities per class were joined into a final classification map. Based on this premise, 

the classification process was designed as follows. 

 

a) Training stage 

 

As discussed in [42], training is the classification stage used to estimate the parameters of the 

classifier algorithm; these parameters were the equations that defined partitions in multi-spectral space. 

The present study used the basic functions obtained by MARS for the multi-spectral space partition in 

each pair of classes. 

 

a.1. Pairwise combination of ROI ASCII files 

 

The pairwise combinations of ROI files were developed using SPSS. A new variable was introduced 

to distinguish between the fixed and comparing classes. This variable was assigned the value 1 for the 

fixed class and 0 for the comparing class. Overall, 272 training files were obtained, for a total of 16 ROI 

class combinations. 

 

a.2. Obtaining basic functions 

 

All 272 training files were introduced into the MARS software, and basic functions were obtained by 

defining a partition border between the two classes. Before validating these basic functions, they were 

applied to the input data again to verify that they could discriminate between class training data and that 

they could consistently extrapolate image holes for discriminating classes. This validation process was 

developed using the AUC statistic, and it was assumed to show the degree of adjustment of the MARS 

model relative to the input data. 
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b) Classification stage 

 

Once the basic functions were obtained from the training data, the second stage consisted of applying 

them to the entire image in order to perform the actual classification. 

 

b.1. Application of pairwise basic functions to the entire scene 

 

Basic functions were introduced into an ArcInfo macro language (AML) file. This AML file was 

programmed to apply MARS basic functions to the image, resulting in a probability value for each pixel. 

This value indicated the probability of belonging to the fixed class (i.e., higher probability values) or to 

the comparing class (i.e., lower values). 

 

b.2. Generating binary pair classification images 

 

Until now, we have used 272 probability files for the combinations of all working classes. Now, we 

intend to generate a binary map in which the value 1 represents ―pixel belongs to the fixed class‖ and 

value 0 represents ―pixel belongs to the comparing class‖, or equivalently, ―pixel does not belong to the 

fixed class‖. 

The suitability scores obtained from MARS were not in the standard [0,1] interval. Thus, it was 

necessary to improve the application to calculate what some authors have called a ―cut for best 

classification‖. In our study, this value had to fulfil two conditions: 

 Maximise correct classification probabilities 

 Minimise incorrect classification probabilities 

The application was programmed using SPSS software, and it counted false positive and false 

negative frequencies and subsequently changed the cut-off point in probability space. The process was 

similar to the one used for the ROC curve. 

Once the cut-off value was calculated for all 272 probability files, the binary grids were generated 

using ArcInfo software. 

 

b.3. Generating the class probability image 

 

At this stage of the work, we had 16 binary grids per class. The purpose of the class probability 

image was to join all these binary grids.  

All grids were added in ArcView, so the result was another grid with values ranging from 16 (if the 

pixel was always classified as the fixed class) to 0 (if the pixel had never been classified as belonging to 

the fixed class). 

These values were transformed to the standard [0,1] interval dividing the grid by 16. Thus, the 

maximum probability value of 1 was assigned to those pixels that the MARS classifier always denoted 

with the same classification. 
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b.4. Obtaining the final classification image 

 

The final operation was to join the 17 grids using ArcInfo software. This operation determined the 

class with the maximum probability value among the 17 input grids for each pixel. 

 

3.4. Probabilities maps 

 

At the same time that the classifications were calculated, a probability map was generated for each 

class. This allowed us to conduct an exhaustive evaluation of the method’s accuracy in predicting 

classifiers. 

 

3.4.1. The ML probability maps 

 

While performing classification processes, ENVI software allows for the calculation of rule images. 

Rule images for ML classifiers are grids containing the discriminant function expressed in [42] for 

multivariate normal class models: 





1

2
1

2
1 )()(ln)(ln)(

i i

t

iiii mxmxpxg      (5) 

The rule image obtained for this study contained values in the interval [–300,000, 100] with a 

heterogeneous distribution. This property impeded the use of rule images for the development of 

probability maps. 

An alternative probability map was calculated by following the same pairwise method used for the 

MARS classification. We generated 272 binary ML classifications and combined them as explained in 

the MARS procedure to obtain the final probability map. 

This option was also useful to validate the pairwise classification method because we did not stop at 

the class probabilities map but rather completed the entire process and thus obtained a final ML 

classification map; from now on, this will be called the pairwise ML classification map. If the pairwise 

classification process is valid, then the final pairwise ML classification map should be the same as the 

original ML classification map from Section 3.3.1. 

 

3.4.2. Parallelepiped probability maps 

 

The ENVI rule images for parallelepiped classification provides for each pixel the number of bands 

that fulfils the parallelepiped condition. These pixel values were considered as probabilities with no 

transformations because the AUC statistic can be calculated with values not in the [0, 1] interval. 

 

3.4.3. MARS probability maps 

 

Probability maps were calculated during the classification process, so it was not necessary to 

recalculate them. 
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4. Results and Discussion 

 

4.1. Classification maps 

 

Figure 6 shows the three different classification maps obtained. 

Figure 6. (a) ML classification map, (b) Parallelepiped classification map, (c) MARS 

classification map. 

 

 

These classification maps cannot be used in and of themselves to evaluate accuracy. It is necessary to 

perform a separate accuracy study, and thus as mentioned before, ROC curves and AUC statistics were 

calculated for this purpose. 

 

4.2. Comparison of classification maps 

 

Accuracy assessments of the probability maps were implemented; Table 4 summarises the AUC 

statistic for each method. 

Table 4. Area under the ROC curve (AUC) statistics. 

Forest map cod. Legend ROI areas (km
2
) 

MARS ML Parallelepiped 

AUC AUC AUC 

999 Water 33.3 0.952 0.945 0.793 

547 

Mixed silicicolous 

scrubland 28.4 0.852 0.813 0.754 

507 Mixed riparian forest 11.6 0.936 0.936 0.814 

458 Dense seasonal pasture 52.2 0.844 0.714 0.687 
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Table 4. Cont. 

454 Open formation 2.8 0.978 0.929 0.954 

453 Dense formation 5.6 0.985 0.961 0.971 

337 Boulders 0.8 0.963 0.969 0.791 

329 Rocky desert 23.5 0.890 0.884 0.701 

309 Retama sphaerocapa 69.6 0.724 0.699 0.670 

303 Cistus ladanifer 10.6 0.856 0.826 0.728 

221 Lavandula stoechas 8.1 0.906 0.898 0.657 

62 

Eucaliptus 

camaldulensis 140.6 0.908 0.856 0.834 

61 Eucaliptus globulus 5.7 0.949 0.939 0.870 

46 Quercus suber 26.0 0.864 0.841 0.766 

45 Quercus rotundifolia 544.2 0.688 0.577 0.600 

26 Pinus pinaster 0.7 0.957 0.976 0.903 

23 Pinus pinea 12.1 0.952 0.960 0.924 

 

Based on AUC statistics (Table 4), the MARS method obtains better results in 14 out of 17 classes, 

which confirms the suitability of this method for multi-spectral classification. We can conclude from the 

results shown in Table 4 that MARS is better than MV and PP but these are subjective interpretations. 

We performed three Wilcoxon paired-sample tests to estimate the P values for each comparison. Results 

are: MARS vs MV (P < 0.005), MARS vs PP (P < 0.001), MV vs PP (P < 0.001). We conclude that 

MARS is statistically a better method with a significance level better than 0.005. 

 

5. Conclusions 

 

This paper has presented the novel application of the MARS classification method to a conventional 

multi-spectral image. The results show that this method can be useful to improve some classifications. 

The main advantages of this method are that MARS is a non-parametric method that can be used 

without prior assumptions regarding the statistical distribution of the data. In addition, MARS is not 

severely affected by data collinearity, a common issue in satellite multiband imagery, and its functions 

are clear and transparent, especially when compared to the ―black box‖ functions of other methods. 

We compared the accuracy of various methods using the AUC statistic, an independent and objective 

test that can be applied to very different classification methods and that is independent of the cut-off 

classification threshold. The AUC statistic is a tool for evaluating classification performance that has 

been widely used in other disciplines, but only infrequently employed in remote sensing. 

As the main conclusion of this study, MARS is a robust classification method that can be used in 

remote sensing without any disadvantages or apparent problems: its non-parametric nature, its 

transparency in terms of the relevant variables, and its adaptability to the data give it great potential as a 

multi-spectral classifier. 

Our future work will focus on the application of hyperspectral data to MARS in order to deepen our 

analysis of its performance by using highly correlated bands and very large numbers of data. 
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