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Abstract: Electrical charge tomography (EChT) is a non-invasive imaging technique that 
is aimed to reconstruct the image of materials being conveyed based on data measured by 
an electrodynamics sensor installed around the pipe. Image reconstruction in electrical 
charge tomography is vital and has not been widely studied before. Three methods have 
been introduced before, namely the linear back projection method, the filtered back 
projection method and the least square method. These methods normally face ill-posed 
problems and their solutions are unstable and inaccurate. In order to ensure the stability 
and accuracy, a special solution should be applied to obtain a meaningful image 
reconstruction result. In this paper, a new image reconstruction method – Least squares 
with regularization (LSR) will be introduced to reconstruct the image of material in a 
gravity mode conveyor pipeline for electrical charge tomography. Numerical analysis 
results based on simulation data indicated that this algorithm efficiently overcomes the 
numerical instability. The results show that the accuracy of the reconstruction images 
obtained using the proposed algorithm was enhanced and similar to the image captured by 
a CCD Camera. As a result, an efficient method for electrical charge tomography image 
reconstruction has been introduced. 
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1. Introduction 
 

Process tomography allows boundaries between heterogeneous compounds and homogeneous 
objects in a process to be imaged using a non-intrusive sensor. The basic idea of process tomography 
is to install a number of sensors around the pipe or vessel to be imaged. The sensor output signal 
depends on the position of the component boundaries within their sensing zones. The output signals 
are conditioned and sent as input to a computer, which is used to reconstruct a tomography image of 
the cross section being observed by the sensor. These tomography images have the potential of 
providing information on concentration distributions in the pipeline, information on flow regimes, 
velocity profiles, component volume flow rates and particle size measurements. Process tomography 
has a very good application foreground in industries [1]. 

An image reconstruction in Electrical Charge Tomography (EChT) is typically an ill-posed 
problem. The small changes in the data cause arbitrarily large change in the solution, and this is 
reflected in ill conditioning of matrix sensitivity of the discrete model. The Tikhonov regularization 
method is an effective method to solve ill-posed inverse problems [2]. The Thikonov method has been 
applied to electrical capacitance tomography for image reconstruction by Peng et al. and  
Lionheart [3–5]. This regularization of the problem is required to filter out the influence of the noise. 
A common feature of this regularization method is that it depends on some regularization parameters 
that control how much filtering is introduced by regularization without losing too much information in 
the computed solution. The purpose of regularization optimization is to provide an efficient and 
numerically stable method that will provide a good approximation to the desired unknown solution. 

The theory of ill-posed problems is well developed in many papers [6–8]. The Singular Value 
Decomposition (SVD) method can easily reveal this problem with a Picard chart and the condition 
number of matrix sensitivity [9]. Regardless of the image reconstruction process, validation of the 
images is very important. In this system, a digital imaging technique is used to interrogate the flow in a 
pipeline around the sensing area. When particles are flowing through a pipeline, it is possible to 
acquire images using a CCD camera with a suitable illumination light source [10]. It is a simple matter 
to focus a CCD camera on this system and to acquire digital images.  

This paper will highlight a discussion on electrodynamics sensor modeling and the functional of the 
conditional circuit used in this system. On top of that, a new image reconstruction method called Least 
Squares with Regularization (LSR) will be explained. Previous methods like Linear Back Projection 
(LBP) and Filter Back Projection (FBP) will also be summarized. The results show the comparison in 
simulation images and condition number for stability between the new and previous methods 
introduced for image reconstruction. In the last section, the validation of the image reconstructed by 
the LBP, FBP and LSR methods with images captured by a CCD camera will be presented. The method 
that produces images which are similar to the images captured by CCD camera will be identified as the 
best method for image reconstruction in EChT.  
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2. Electrodynamics Sensor 
 
This electrical charge tomography system uses an electrodynamics sensor to detect the nature of 

electrostatic charge on the moving particles. This is because an electrodynamics sensor is capable of 
achieving a higher sensitivity as required in the mass flow rate measurement of dilute-phase solid flow and 
is less affected by stationary solids accreted on the pipe wall. In order to understand the sensor, a suitable 
mathematical model is inevitable. The corresponding models have been discussed in detail [11-13]. 
Basically, the induction model for single-charged particle q can be derived from equation (1):  

2E = 
4 o

q
rπ ε

         (1) 

where E is the electric field, εo is the permittivity of free space, q is the charge of the particle and r is 
the distance between the charged particle and a particular point.  

Assume that a particle p, carrying a charge q, traveling in uniform velocity v, along a path which is 
perpendicular to vertical axis of the electrode. This is illustrated in Figure 1. 

Figure 1. Mathematical model of electrostatic signal on moving particle. 

  

From equation (1) and is derivation it shows that the total charge induced into the sensor, Q is given 
by equation (2) [14]:  

/2
V

2 2 3/2
/2

qxW dQ = -
4π [(y-a) +x ]

l

l
∫       (2) 

where v = velocity of particles, l = length of electrode, W = width of electrode, x = distance from 
electrode to particle in x-axis, y = points of particle travel along y-axis, t = time taken at any point with 
velocity v, a = length from the center of electrode to the point taken. With y = vt, then the current, I is 
given by equation (3): 

I = dQ/dt (3) 

Based on the equations (2) and (3), the corresponding waveform of an induced charge on the sensor 
(Q) and the sensor output (I) has been plotted utilizing the MathCAD software. The graphical results 
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as shown in Figure 2 are obtained by substituting the values of q = 1 Coulomb, x = 10 mm,  
W = 10 mm, l = 10 mm and v = 5000 mms-1 into the equations. 

Figure 2. Waveform for (a) Induced charge and (b) Current signal. 

 
(a) 

 
(b) 

 
The electrodynamics sensor plays an important role in the electrical charge tomography system. 

Figure 3 shows the block diagram of the electrodynamics sensor conditioning circuits. They consist of 
several parts such as an electrode/electrodynamics sensor, an amplifier, a rectifier and a low-pass filter. 
The purpose of the electrodynamics sensor is to capture the electrical charge from the conveyed 
material such as plastic beads that pass through the transducer. The electrical charge detected by the 
sensor will be converted into a voltage and sent to the image reconstruction system (computer) through 
the data acquisition card.  

Output 1 is an AC signal used for velocity measurement, while output 2 is used for spatial filtering 
test. Output 3 is a DC averaged voltage and is used for concentration measurement and flow regimes 
identification. Output 3 is the signal of interest for the proposed system.  
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Figure 3. A block diagram of an electrodynamics sensor conditioning circuits. 

 
 

Figure 4 shows an electrodynamics sensor fabricated on a printed circuit board. The electrode is a 
silver steel conductor rod located at the left in Figure 4. The other steel connector rods on the right in 
Figure 4 are outputs 1, 2 and 3, respectively. The sensor electrode is used to detect the charge on the 
moving particle, which passes through the pipe. 

Figure 4. Electrodynamics sensor fabricated in printed circuit board. 

.  
 

3. Electrical Charge Tomography System (EChT) 
 
3.1. Electrical Charge Tomography Measurement System 
 

Figure 5 shows the experimental apparatus for the data and video capturing process by an 
electrodynamics sensor and CCD camera. The CCD camera is placed above of the test flow rig so that 
it can capture the image of the solid particle distribution the pipe. The video capturing process will be 
conducted through a hole in the pipe where the material is being dropped with assistance from the light 
of a bulb installed at the corner and at the end of the pipe. The electrodynamics sensor is located  
10 mm below the ‘L’ curve of the pipe. The material used in this system is plastic beads with the 
nominal size of 3 mm. The electrostatic charge carried by these particles is induced to the 
electrodynamics sensor whenever they passed through it. This charge will be converted into a voltage 
and sent to computer storage via a Keithely STA-1800HC data acquisition card.  
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Figure 5. Experiment apparatus for data capturing process. 

 
 

The CCD camera will be used to capture the video of material flow in the pipeline. Data from 
electrodynamics sensors are captured using the data acquisition card and stored in the computer. The 
image reconstruction process is done off-line using the MATLAB programming language. Data from 
the CCD camera were processed using digital image processing to produce a single image 
concentration profile for the material being dropped in the pipeline. 
 
3.2. Forward Model 
 

The forward model plays an important role in tomography before image reconstruction process 
(inverse problem). In general, a forward model deals with the theoretical aspects of the problem and is 
solved using mathematical modeling of the related problem. Forward modeling in electrical charge 
tomography imaging uses a description of the system in the sensing area. It is related to the sensitivity 
of sensors when a uniform three-dimensional charge, in coulomb per cubic meter (C/m3). Since the 
electrical charge tomography system gives one measurement from each of the sensors, the amount of 
information available is equal to the number of the sensors [15]. In this system, the cross-section of the 
pipe is mapped onto 16 × 16 rectangular arrays. It is equal to the number of sensors (16) and consists 
of 256 pixels or elements [16]. The size of the pipeline used in this system is 100 mm. Sixteen sensors 
are installed at equal distances around the pipe, as shown in Figure 6. This will limit the number of 
sensors used in the system and limit the resolution of the image. In future, it may need to increase the 
size of pipe to produce the better image resolution such as 32 × 32 pixels or 64 × 64 pixels.  

CCD Camera 
Bulb (light 
source) 

‘L’ curve

16 
electrodynamics 
Sensors 
installed around 



Sensors 2009, 9              
 

 

10297

Figure 6. Pipe cross-section and 16 sensor locations with coordinates (x, y). 

 
 

The sensitivity map will be generated by calculating the charge which is induce on every sensor in 
the system. For instance the sensitivity map of the sensor 1 with coordinates (0,50.5,0), as shown in 
Figure 6, will be calculated using equation (4) below: 

I1 = 
2 1/2

2 1/2

100 (50.5 ) 50

2 22100 (50.5 ) 50

1
(50.5 )

x

x
dz dy dx

yx z
−

− − − − + − +∫ ∫ ∫                                         (4) 

where I1 is the total induced charge on sensor 1. The (x, y, z) are the coordinates of the pixel 
contributing to the sensor output. The limit or border used for integration in this equation refers to the 
maximum and minimum values of the x, y and z axis in the measurement system. The result of the 
sensitivity map for sensor 1 in two and three-dimensions is shown in Figure 7.  

Figure 7. Sensitivity map for sensor 1 (a) Two dimensional (b) Three dimensional. 
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The sensitivity map for the rest of the sensors is calculated using the same equation, but with some 

changes on the coordinates depending on the sensor coordinates, as shown in Figure 6. The summation 
of the complete sensitivity map, S, for sixteen sensors in two and three-dimensions is shown in  
Figure 8.  
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Figure 8. Summation sensitivity map S (a) Two-dimensional (b) three-dimensional. 
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3.3. Inverse Problem and Image Reconstruction Algorithm in EChT  
 

The solution of the inverse problem aims to provide an image of the charge concentration 
distribution within the conveyor, which would be the result of the measured sensor outputs. Image 
reconstruction has played an important role in electrical charge tomography systems. The data 
captured by the sixteen sensors is used to generate an image concentration. Three methods have been 
introduced before, namely the linear back-projection (LBP), filter back-projection (FBP) [16,17] and 
least squares [18] methods. 

 
3.3.1. Linear Back Projection (LBP) 

 
Linear back projection is a straightforward solution which refers to the relationship between the 

distribution of charge, q and the detection of voltage by the detector as in equation (5): 

V = Sq          (5) 

where S is the sensitivity map or sensitivity matrix with a dimension of 16 × 16 pixels (as discussed in 
Section 3.2). V is the measured voltage vector, and q is the unknown charge distribution vector that has 
to be solved.  

To reconstruct the images in this system, the inverse problem has to be solved using equation (5). 
However, there are usually difficulties in calculating the inverse of matrix S because S is usually ill 
conditioned and its condition number is large, so even small errors in measurement may induce large 
errors in calculation. Thus, the concept of the general inverse matrix has to be introduced [19]. Then, 
equation (5) becomes q = S-1V, known as back projection. In practice, the concept of pseudo-inversion 
is used by assuming that S-1 = ST [20]. In reality, S is a symmetric matrix so this would been 
formulated as equation (6):  

qLBP = SV             (6) 

Image concentration using LBP is obtained from the sum for each of the sixteen sensors of the 
product of the sensor sensitivity by its measured voltage output.  
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The advantages of LBP are that it is numerically simple and computationally fast because it only 
involves a single matrix-vector multiplication; however, the quality of reconstructed images is 
relatively low for complicated reconstruction objects and in some aspects it can only be considered as 
a qualitative algorithm [2].  
 
3.3.2. Filter Back Projection (FBP). 
 

The major limitation of the linear back projection method arises from the non-linear sensing 
mechanism of the electrostatic charge transducer. However, a filter can be determined by combining it 
with the back projection method to provide a filtered back projection. This filter provides weighting to 
individual pixels, which in turn provides a uniform concentration profile when the sensor has equal 
outputs [12]. 

The filter matrix F is obtained by taking the maximum value of pixel (Smax) in sensitivity matrix of 
S, divided by each value of pixel (Si), as shown in equation (7): 

Filter = {Smax/Si}      (7) 

Filtered back projection is a result of linear back projection multiplied by filter matrix of S, written 
as equation (8):  

qFBP = qLBP Filter      (8) 

 
3.3.3. Least Squares Method (LS) 
 

The least squares (LS) method provides an approximation of the solution to the inverse problem of 
equation when measurement error is considered. It is meant to minimize the equation (5) as shown in 
equation (9): 

Min || Sq-V ||2      (9) 

where, q = (STS)-1 STV      (10) 

The solution of equation (10) is not unique due to the fact that the matrix (STS)-1 is not invertible. 
Therefore, the equation (10) is not a stable solution [21]. This is due to the ill-posed sensitivity map S 
used in this system; the difference between the first and last positive value of a singular value of 
matrix S is very large. Then this will contribute to the high value of the condition number of matrix S 
and an unstable solution [22]. 
 
3.3.4. Least Square with Regularization (LSR)  
 

Due to the problem with the singular values in the sensitivity map S, the method to dump small 
singular values in S has to be solved by imposing on equation (10) additional information about the 
solution, known as penalty term, which can optimize the problem as in equation (11): 

E(q) = argmin || Sq − V || 2 + ß2 || R(q − qo) || 2     (11) 
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This is called the simple regularization process or Tikhonov regularization [23]. The aim of this 
regularization is to dampen the contribution of small singular values in the solution. The matrix R is a 
regularization matrix, which penalizes extreme changes in the parameter q removing the instability in 
the reconstruction [24]. The parameter ß is called the regularization parameter. The solution of 
equation (11) would be written as a simple form of the standard Tikhonov (ST) where R = I (identity 
matrix) and assuming q0 = 0. Thus, equation (12) is introduced:  

qST = (STS + ß2I)-1STV       (12) 

For the described algorithm, the choice of regularization is important. In general, a small value of ß 
gives a good approximation of the original problem but the influence of errors may make the solution 
physically unacceptable. Conversely, a large value of ß suppresses the data but increases the 
approximation error. At present and in most cases, ß is chosen empirically [25]. The value of the 
regularization parameter is obtained using a generalized cross validation (GCV) method [25,26]. 

The advantage of equation (12) is that it can detect two charges at separate points in the sensing 
area but it has a ghosting image at the adjacent points. However, FBP may be accurate in detecting the 
area of the charges but cannot distinguish between two separate charges in the sensing area. Therefore, 
the best way to solve these problems as well as the image reconstruction process, is by using the FBP 
image as a threshold value to erase the ghosting image in the standard Tikhonov method. The high 
value in standard Tikhonov method will decrease as the filter of the image reconstruction process as in  
equation (13). The filter matrix FST obtained by taking each value (qSTi) of pixel in qST, divided by the 
maximum value of pixel (FSTmax) in qST. As a result, equation (14) is used to produce the image 
concentration in the sensing area cin the so-called Least Squares with Regularization method (LSR): 

FST = {qSTi/qSTmax}       (13) 

Image LSR = qFBP FST      (14) 

As mentioned earlier, the ill-posed problem is related to the condition number of matrix sensitivity 
S used in EChT. The singular value decomposition (SVD) will reveal all the difficulties associated 
with the ill conditioning of the matrix [25]. The condition number of matrix S is classified as ill-
conditioned if the singular value of S decays gradually to zero and the ratio between the largest and the 
smaller nonzero singular values as high as 1 × 1020.  
 
4. Results and Discussion 
 

This section focuses on the functional output of the electrodynamics sensor circuit that has been 
designed. For the purpose of comparison, the image reconstructed by LBP, FBP and LSR methods and 
simulation images are presented. In additional, stability analysis using SVD was also conducted.  

The data measured by the electrodynamics sensor will be used to reconstruct the image using the 
LBP, FBP and LSR methods. To validate the images reconstructed by these methods, a CCD camera 
will be used in the electrical charge tomography measurement system. The image produced by the 
CCD camera will be compared to the images produced by the LBP, FBP and LSR methods. The 
images with most similarity to the image captured by CCD camera will be identified as the best image, 
as well as the best method to be used to produce the image in the electrical charge tomography system.  
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4.1. Data Output from the Electrodynamics Sensor 
 

The signal outputs from one of the electrodynamics sensors are shown in Figure 9. The 
measurements are performed with a sample signal at a frequency of 1 kHz. The result shows that the 
voltage outputs 1, 2 and 3 from the sensor are as expected. The image reconstruction process will use 
the output 3 of the each electrodynamics sensor, which is a DC average voltage, to construct the image 
concentration profile as a charge distribution in the sensing area.  

Figure 9. Sensor voltage outputs 1, 2 and 3. 
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4.2. Simulation Images 

 
From the sensitivity matrix generated by the forward problem and predictive data obtained in the 

EChT measurement system, the value of the regularization parameter, ß is calculated using the 
generalized cross validation (GCV) method. The GCV is a way to estimate appropriate values of the 
regularization parameters ß which minimizes the GCV function as in equation (15) [25]: 

( )( )2
2

2

I
m

ST

SSItrace

VSq
G

−

−
=       (15) 

where SI is a matrix which produces the regularized solution qST when multiplied with V, i.e.,  
SI = (STS + (ß2)I)ST. GCV method indeed seeks to balance the perturbation and regularization errors 
and thus, in turn, is related to the corner of L-curve [4]. Figure 10 shows the GCV curve with 
optimization value for regularization parameter obtained using Matlab tools programming [25]. From 
the graph, the minimum point is 0.025908 as labeled in Figure 10. 

This value is used to generate the image concentration for the LSR method. Figure 11 shows the 
image reconstructed for different types of flow pattern such as full flow, three quarter flow, half flow 
and quarter flow. These patterns are reconstructed using predicted values of electrodynamic sensor 
output by the LBP, FBP and LSR methods respectively. In general, Figure 11 shows that image 
reconstructed by the LBP method with high concentration areas is focused on the sensors itself (refer 
to Figure 6). The FBP method shows that the high-concentration area is focused around particular 
sensors with the huge point of charges and the concentration value is reduced towards the centre of the 
pipe. The LSR method produces the high concentration area as detected by the LBP and FBP methods. 



Sensors 2009, 9              
 

 

10302

Its concentration is homogenously scattered around the pipe with different concentration values and 
many charges are present in the sensing area. However, the LBP method is not suitable for use in this 
system because of the nonlinearity of the sensor mechanism. On the other hand, the FBP method may 
be accurate in detecting the high concentration area but it cannot differentiate between two or many 
charges present in the sensing area. In conclusion, the image reconstructed by the LSR method is 
accurate in detecting high concentration areas and has the capability to differentiate charges in the 
sensing area. Table 1 shows the condition number of different types of flow pattern. This condition 
number is obtained from numerical analysis using the SVD method. It shows that the LSR method 
produces the smallest value of the condition number as compared to other methods. It means that 
image reconstructed by LSR method is more stable than the other methods. 

Figure 10. GCV curve with optimization value of ß. 
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Figure 11. Simulation images for different types of flow pattern using LBP, FBP and LSR methods. 
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Figure 11. Cont. 
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Table 1. Images condition number for different types of flow. 

Flow rate/Condition number LBP (condition number) FBP (condition number) LSR (condition number) 
Full Flow 8.06 × 1017 2.908 × 1017 125.60 
Three quarter Flow 1.79 × 106 3.13 × 106 187.07 
Half Flow 3.14 × 1018 3.35 × 1017 302.34 
Quarter flow 2.13 × 106 3.65 × 105 432.48 

 
4.3. Experimental Images 
 

This section will discuss the result processed from the data being measured in electrical charge 
tomography measurement system using an electrodynamic sensor and CCD camera. For comparison, 
two types of flow rate had been chosen i.e., 10 and 50 flow rate speed indications, as recorded by  
the system. 
 
4.3.1. Flow Rate with 10-Indication Speed 
 

From the experiments conducted using the apparatus shown in Figure 5, several images had been 
captured to verify images from LBP, FBP and LSR image reconstruction algorithm. Figure 12 shows 
the image captured by the CCD Camera with three different modes. Figure 12(a) shows the original 
image after identification of the sensing area for material flow in the pipeline. Figure 12(b) is the 
image of Figure 12(a) after being resized to a 16 by 16 matrix with gray color and Figure 12(c) is the 
image of Figure 12(b) after being converted to color mode-using MATLAB. 
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Figure 12. Image recorded by CCD Camera (a) Real Image Captured (b) Real image 
resized to 16 × 16 pixels with grey color (c) Real image resized to 16 × 16 pixels with  
color mode. 

  
(a) (b) (c) 

 
The Figure 13 shows image reconstructed by the LBP, FBP and LSR methods based on the data 

captured by the electrodynamics sensor at the same time the CCD camera recorded the video (as 
shown in Figure 12). 

Figure 13. Image reconstructed by (a) LBP (b) FBP and (c) LSR methods. 
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In Figure 13(a), the image reconstructed using the LBP method shows that the high concentration 

values of the image are not focusing on the area shown by the image captured by the CCD camera [as 
shown in Figure 12(c)]. Besides, it focuses around the sensor located near the real image labeled as 
A1, A2 and A3. It means that LBP method is not suitable for reconstructing the image for electrical 
charge tomography because of its non-linearity to the sensing mechanism. 

Figure 13(b) shows that the image reconstructed using the FBP method is accurate in detecting the 
high concentration area labeled as A4. However, there is a larger point image compared to the one in  
Figure 12(c). Another problem with FBP is that a high concentration exists near the sensor which 
reduces the value away toward the centre. As a result, two or many charges in the sensing area cannot 
be differentiated by FBP.  

In Figure 13(c), the high image concentration area for the LSR method is similar to the real image 
recorded by the CCD camera area, labeled as A, B, C and D in Figure 12(c). It means that LSR method 
is capable of differentiating two or many charges in the sensing area, as shown in Figure 13(c). It 
shows that charge concentrations areas detected by the LSR method are scattered around the sensing 
area as well as around the image presented by the CCD Camera. Although the number of pixels area 
for high concentration is different, the pattern is the same. This is due to the problem in selecting the 
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sensing area in the pipeline cross-section during image processing. This can be avoided by using a 
marking system around the pipe with sensor location as a reference point. 
 
4.3.2. Flow Rate with 50-Indication Speed  
 

Figure 14 shows the images captured by the CCD camera with different processing modes as 
discussed in 4.3.1. Figure 14(a) is the real image with identified sensing area. Figure 14(b) is the image 
of Figure 14(a) after being resized to a 16 by 16 matrix with gray color. Figure 14(c) is the image of  
Figure 14(b) after converted to color mode-using MATLAB.  

Figure 14. Image recorded by CCD Camera (a) Real Image Captured (b) Real image 
resized to 16 × 16 pixels with grey color (c) Real image resized to 16 × 16 pixels with  
color mode. 

  

(a) (b) (c) 

 
Figure 15 shows the image reconstructed by the LBP, FBP and LSR methods based on data 

captured using the electrodynamics sensor at the same time the CCD camera recorded the video (as 
shown in Figure 14).  

Figure 15. Image reconstruction by (a) LBP (b) FBP and (c) LSR methods. 
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produces a similar image to the image produces by the CCD camera. It shows that the charge 
concentrations area detected by the LSR method are scattered around the sensing area as well as image 
presented by the CCD Camera as shown in Figure 14(c). Thus, images in Figure 15(a) and (b) obtained 

A4 
A3

A2 

A1

A1
A2 A3
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by the LBP and FBP methods are rejected. Table 2 shows the condition number for two types of flows 
as discussed in 4.3.1 and 4.3.2. 

Table 2. Images condition number for two types of flow. 

Flow rate/Condition 
number 

LBP (condition 
number) 

FBP (condition number) LSR (condition number) 

10 7.62 × 105 5.15 × 105 219.99 
50 7.96 × 106 2.00 × 106 283.73 

 
It shown that LSR method produced the smallest value of the condition number compared to the 

LBP and FBP methods. It means that image reconstructed by the LSR method is more stable.  
 
5. Conclusions 
 

Electrical charge tomography (EChT) is considered as one of the promising tomography process 
technologies due to its advantages such as high speed, low cost and non-intrusive sensors, especially 
for dilute flow condition where the solid-air ratio is low. As a result, the measured concentration data 
using an electrodynamics sensor enjoys a large degree of immunity from the effects of solid 
acceleration. The success of application in image reconstruction depends greatly on the precision of 
the image reconstruction algorithm. In this paper, an image reconstruction algorithm – least squares 
with regularization (LSR) has solved some problems in EChT image reconstruction such as ill-
condition of matrix S and accuracy of the reconstructed image. With an imposed regularization method 
and empirically chosen regularization parameters, results show that the proposed algorithm is efficient 
in overcoming the problems of stability and accuracy of the image being reconstructed. In addition, 
more work such as computation of image errors and data measurement errors should be done in 
validating the proposed algorithm. The ill-posed sensitivity matrix should also be improved. In terms 
of electrodynamics sensor improvement, the sensor of spatial resolution such as diameter, length and 
number of sensors to be used should also be more rigorously considered. This will directly affect the 
data measurement and the quality of the reconstructed images. To enable EChT technology to be used 
in real industry environment, more work on hardware and software systems should be carried out and 
the image reconstruction algorithm should be further developed.  
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