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Abstract: The paper proposes three alternative extensions to the classical global-best 

particle swarm optimization dynamics, and compares their relative performance with the 

standard particle swarm algorithm. The first extension, which readily follows from the  

well-known Lyapunov’s stability theorem, provides a mathematical basis of the particle 

dynamics with a guaranteed convergence at an optimum. The inclusion of local and global 

attractors to this dynamics leads to faster convergence speed and better accuracy than the 

classical one. The second extension augments the velocity adaptation equation by a negative 

randomly weighted positional term of individual particle, while the third extension considers 

the negative positional term in place of the inertial term. Computer simulations further 

reveal that the last two extensions outperform both the classical and the first extension in 

terms of convergence speed and accuracy.  

Keywords: particle swarm dynamics; metaheuristics; continuous function optimization; 

stability; convergence; lyapunov stability theorem 
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1. Introduction  

 

The concept of particle swarms originated from the simulation of the social behavior commonly 

observed in animal kingdom and evolved into a very simple but efficient technique for global numerical 

optimization in recent past. The Particle Swarm Optimization (PSO) [1,2], as it is called now, does not 

require any gradient information of the function to be optimized, uses only primitive mathematical 

operators and is conceptually very simple. PSO emulates the swarming behavior of insects, animals 

herding, birds flocking and fish schooling, where these swarms forage for food in a collaborative manner. 

PSO also draws inspiration from the boids method of Craig Reynolds and Socio-Cognition [2].  

Since its inception, the research on PSO has centered on the improvement of the particle dynamics 

and the algorithm. Shi and Eberhart incorporated the inertia factor [3] in the basic PSO dynamics for 

faster convergence of the algorithm. Clerc and Kennedy [4] considered in their work an alternative form 

of PSO dynamics using a parameter called constriction factor, and gave a detailed theoretical analysis to 

determine the value of the parameter. Eberhart and Shi compared the effect of inertia factor and 

constriction factor on PSO performance [5]. Angeline [6] introduced a form of selection operation in 

the PSO algorithm, so that the characteristics of good particles are transferred to the less effective 

members of the swarm to improve their behavior. Suganthan [7] employed a neighborhood operator in 

the basic particle swarm optimization scheme to study the swarm behavior. Extension of the PSO 

algorithm to deal with dynamic environment and efficient explorations are undertaken in [8,9]. 

Ratnaweera et al., while proposing a new model of self-organizing hierarchical PSO [10], ignored the 

term involving inertia factor from the velocity adaptation rule. Another contribution of this paper is the 

inclusion of time-varying inertia weight and time-varying acceleration coefficients for better 

performance of the algorithm.  

In [11], a new crossover operator is defined to swap information between two individuals in order to 

determine their next position on the search landscape. Miranda et al. in [12] proposed a mutation 

operator on the parameters of the PSO dynamics and the position of the neighborhood best particle, so 

as to enhance the diversity of the particles, thereby increasing the chances of escaping local minima.  

In [13], the inertia weight is mutated and the particles are relocated when they are too close to each 

other. A further increase in the diversity of the population has been attained in [14,15] through 

introduction of a new collision-avoiding mechanism among the particles. Xie et al. [16] added negative 

entropy to the PSO to discourage premature convergence. In [2], a cooperative PSO (CPSO) is 

implemented to significantly improve the performance of the classical PSO. Hendtlass et al. [17] 

combined Ant Colony Optimization with PSO to determine the neighborhood best of a particle from a 

list of best positions found so far by all the particles. 

Most of existing works on PSO refer to single objective optimization problems. Coello et al. first 

proposed a formulation of multi-objective optimization problem using PSO [18], and later extended it to 

include a constraint-handling mechanism and a mutation operator [19] to improve the power of 

exploration of the optimization algorithm. Agrawal, Panigrahi and Tiwari [20] in a recent paper 

proposed a fuzzy clustering-based PSO algorithm to solve the highly constrained environmental/ 

economic dispatch problem involving conflicting objectives. 

There exists an extensive literature on improving the performance of the PSO algorithm. This has 

been undertaken by two alternative approaches. First, the researchers are keen to improve swarm 
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behavior by selecting the appropriate form of the swarm dynamics. Alternatively, considering a given 

form of particle dynamics, researchers experimentally, or theoretically, attempted to find the optimal 

settings of the range of parameters to improve PSO behavior. In this paper, we adopt the first policy  

to determine a suitable dynamics, and then attempted to empirically determine the optimal  

parameter settings. 

The classical PSO dynamics adapts the velocity of individual particles by considering the inertia of 

the particle and the position of local and global attractors. The positions of the attractors are also 

adapted over the iterations of the algorithm. The motion of the particles thus continues until most of the 

particles converge in the close vicinity of the global optima. In this paper, we consider different versions 

of the swarm dynamics to study the relative performance of the PSO algorithm both from the point of 

view of accuracy and convergence time.  

The formal basis of our study originates from the well-known Lyapunov’s theorem of classical 

control theory. The Lyapunov’s theorem is widely used in nonlinear system analysis to determine the 

necessary conditions for stability of a dynamical system. In this paper, we indirectly used Lyapunov’s 

stability theorem to determine a dynamics that necessarily converges to an optima of the  

Lyapunov-like search landscape. The principles of guiding particle dynamics towards the global and 

local optima, here too, is ensured by adding local and global attractor terms to the modified PSO 

dynamics. The rationale of selecting a dynamics that converges at one of the optima on a multimodal 

surface, and the principle of forcing the dynamics to move towards local and global optima together 

makes it attractive for use in continuous nonlinear optimization. 

There are, however, search landscapes that do not possess the necessary characteristics of a 

Lyapunov surface. This calls for an alternative dynamics, which maintains the motivation of this 

research but can avoid the restriction on the objective function to necessarily be Lyapunov-like. A look 

at the dynamics constructed for Lyapunov-like benchmark functions essentially reveals an inclusion of a 

negative position term in the velocity adaptation rule. This prompted us to realize different variants of 

the classical PSO dynamics, such as (a) replacement of the inertial term by a negative partial derivative 

of the Lyapunov-like search landscape, (b) inclusion of a negative particle position in the velocity 

adaptation rule, (c) replacement of the inertial term by the negative positional term in the dynamics. 

Computer simulations undertaken on a set of eight benchmark functions reveals that the modifications 

in the PSO dynamics results in a significant improvement in the PSO algorithm with respect to both 

convergence speed and accuracy. Note that the extensions developed in this article are primarily meant 

for fast and accurate optimization of continuous and differentiable functions, as all of them involve first 

derivatives of the objective function to be used. 

The rest of the paper is organized as follows. Section 2 provides a set of formal definitions on 

Lyapunov stability of nonlinear dynamics. It explains the basis of selection of a dynamics for a given 

Lyapunov-like objective function. The rationale of speed-up of the proposed swarm algorithm using the 

selected dynamics is given in this section. Experimental results over several numerical benchmarks are 

presented in Section 3. Finally the paper is concluded in Section 4. 
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2. Proposed Extensions of the Classical PSO Dynamics 

 

In this section, we briefly outline one typical PSO dynamics, and the PSO algorithm. We next present 

the possible modifications that we need to undertake in the dynamics to study their relative performance 

with the classical PSO algorithm.  

The global-best (g-best) PSO dynamics for the j
th
 particle is given in vector form through  

Equations 1 and 2: 

               V 1 V (P X ) (P X )l l g g

j j j j jt ω t α t t t α t t t            (1) 

     11  ttt jjj VXX           (2) 

where: 

       ]tvtvt[v D21 jjjj t V  is a D-dimensional velocity vector at time t, 

       ]txtxt[x D21 jjjj t X  is a D-dimensional position vector at time t, 

       ]tptpt[p D21
l
j

l
j

l
j

l
j t P  is a D-dimensional personal (local) best position vector of particle j, 

so far achieved until iteration t , 

       ]tptpt[p D21
g
j

g
j

g
j

g
j t P  is a D-dimensional global best position vector found so far by the 

entire swarm at iteration t . 

Empirically, ω is a random no. in [0,1], α
l
(t) and α

g
(t) are random coefficients in [0, 2] and [0, 4] 

respectively. Inertia factor ω is selected randomly only once in the PSO algorithm, whereas α
l
(t) and  

α
g
(t) are selected randomly in each iteration of the PSO algorithm.  

The basic PSO algorithm is presented here for convenience of the readers. The notion of time t is 

dropped from the algorithm for simplicity. 

 

PSO-Algorithm 

Begin 

Initialize population; 

While terminating conditions not reached do 

Begin 

For 1j to N do                              // N = Number of particles// 

Begin 

Evaluate fitness  f of particle j ;   

If    l
jj ff PX                       

 j
l
j XP  ; 

        End for; 

      ]f,........,f,fArg[Min 21
g l

N
ll

PPPP  ; 

        For 1j to N do 

 

Begin 

Adapt )()( j
gg

j
l
j

l
jj XPXPVV   ; 



Sensors 2009, 9                            

 

 

9981 

Adapt jjj VXX   ; 

            End for; 

End while; 

End. 

 

A look at the PSO algorithm reveals that it attempts to determine the optima on a search landscape 

by allowing several particles (agents) to explore on the surface with an ultimate aim to terminate at the 

global optima. The terminating condition usually includes an upper limit on the iterations or a lower 

limit to the unsigned successive difference in the best particle position, or whichever occurs earlier. 

In the next sub-section, we would look for a dynamics that has a tendency to move towards optima, 

which need not essentially be the global optima. This can be attained by identifying a suitable dynamics 

that ensures asymptotic stability in the vicinity of an optimum over the search landscape. This, of course, 

needs additional restriction on the surface to satisfy the necessary conditions to be Lyapunov-like [24].  

If a suitable dynamics ensuring the convergence to an optimum is identified, we can control the motion 

of the particles towards the global/local optima by adding global and local attractors in the dynamics as 

used in the PSO dynamics.  

 

2.1. Identifying a Stable Dynamics for a Lyapunov-like Surface 

 

This section begins with a few definitions, available in the standard literature in Nonlinear Control 

Theory in [21-24], to explain the methodology of determining a stable dynamics for a Lyapunov-like 

surface. In what follows we shall use the following special notations: ||X|| to define the Euclidean norm 

of a vector. 

 S  to denote an ε-neighborhood surrounding a point defined by the position-vector eX .  S is 

basically a set containing all the points in the vector space for which  eXX . 

 

Definition 2.1. A point eXX  is called an equilibrium state, if the dynamics of the system which is 

given by  

  tf
dt

d
X

X
  

becomes zero at X = Xe for any t. The equilibrium state is also called equilibrium (stable) point in  

D-dimensional hyperspace, when the state Xe has D-components. 

 

Definition 2.2. A scalar function V(X) is said to be positive definite with respect to the point Xe in the 

region Ke XX , if V(X) > 0 at all points of the region except at Xe where it is zero.  

Note that V(X) will be called negative definite if –V(X) is positive definite. A scalar function V(X) is 

said to be indefinite in the region Ke XX , if it assumes both positive and negative values within  

this region. 

 

Definition 2.3. A scalar function V(X) is said to be positive semi-definite with respect to the point eX in 

the region Ke XX , if its value is positive at all points of the region except at finite number of points 

including origin where it is zero. 
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Note that similar as definition 2.2, the scalar function V(X) is said to be negative semi-definite  

if –V(X) is positive semi-definite. 

 

Definition 2.4. A scalar function V(X) is called a Lyapunov surface with respect to the origin, if it 

satisfies the three conditions listed below: 

i. 0)( 0V  

ii. 0)( XV  for 0X  

iii. 
ix

V




 is a continuous function of ix , where ix  is the i

th
 component of X 

 

Definition 2.5. A dynamics dX/dt = f(X(t)) is asymptotically stable at the equilibrium point Xe, if 

(a) it is stable in the sense of Lyapunov, i.e., for any neighborhood  S  surrounding Xe there is a 

region  S ,  , such that trajectories of the dynamics starting within  S  do not leave  S  as 

time t  and  

(b) the trajectory starting within  S  converges to the origin as time t approaches infinity 

The sufficient condition for stability of a dynamics can be obtained from the Lyapunov’s theorem, 

presented below. 

 

Lyapunov’s Stability Theorem [21]: Given a scalar function V(X) and some real number 0 , such 

that for all X  in the region  S  the following conditions hold: 

1) 0)( eV X  

2)  )(XV  is positive definite.  

3) )(XV  has continuous first partial derivatives with respect to all components of X 

Then the equilibrium state eX  of the system dX/dt = f(X(t)) is 

a) asymptotically stable if dV/dt is negative definite, and 

b) asymptotically stable in the large if dV/dt is negative definite, and in addition, )(XV  as 

 eXX  

 

Example 1 

 

Let 2
2

2
1)( xxV X  be a Lyapunov energy function for the given dynamics 1

1 x
dt

dx
 and 2

2 x
dt

dx
  with 

the equilibrium point ]0,0[X e
. Then:  

dt

dx

x

V

dt

dx

x

V

dt

dV 2

2

1

1 







  

   2211 22 xxxx   

  02 2
2

2
1  xx  

i.e., negative definite. 

Here, V(X) satisfies the first two criterions indicated in the theorem, and the partial derivatives 

1/V x   and 2/V x   are also continuous functions of x1 and x2. Consequently, the asymptotic stability of 
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the dynamics is ensured as /dV dt  is found to be negative definite for all points except at x = 0. Further, 

as X , V(X) also approaches infinity. Therefore, the asymptotic stability of the dynamics in the 

large is also ascertained. 

The condition for asymptotic stability, as indicated in Theorem1, can be applied to the particle swarm 

optimization to ensure stability of the dynamics, thereby reducing the convergence time of the algorithm.  

When all the three underlying conditions of a Lyapunov function, indicated in Definition 2.4 are 

supported by the objective function, we would be interested to determine the dynamics that satisfies the 

necessary conditions for asymptotic stability of the dynamics. It follows from Lyapunov’s Theorem that 

the asymptotic stability of an equilibrium state guided by the dynamics dtdxi /  is ascertained if: 

0

1








dt

dx

x

f

dt

df i
D

i i

     (3) 

The inequality (3) essentially holds when: 

i

i

x

f

dt

dx




                  (4) 

It is indeed important to note that the condition (4) holds for the i-th dimension of a particle roaming 

over the Lyapunov-like surface for Di 1 . 

 

Example 2 

 

In this example, we would like to determine a stable dynamics for a Lyapunov-like objective function. 

Consider for instance the Griewank function in D-dimension: 

1cos
4000

1
)X(

1
1

2 







  



D

i

D

i

i
i

i

x
xf  

In order to have asymptotic stability of the dynamics, we set: 

i

i

x

f

dt

dx















































 



D

ijj

jii

j

x

i

x

i

x

,1

cossin
1

2000
 

It is also apparent to note that the given function f(X) satisfies the three necessary conditions of a 

Lyapunov function. Now, if we replace the term involving inertia factor by the obtained value of dxi/dt 

in the PSO dynamics, then the PSO is expected to converge very quickly as the necessary condition for 

asymptotic stability has been satisfied while deriving the dynamics: 










































 



D

ijj

jiii

j

x

i

x

i

x

dt

dx

,1

cossin
1

2000
 

Table 1 provides a list of eight typical benchmark functions along with the derived expressions for 

dxi/dt that ensures the asymptotic stability of the derived dynamics over the Lyapunov-like  

objective function.  

We now define Lyapunov-based PSO dynamics (LyPSO) by adding the local and global attractor 

terms of classical PSO to the derived expression for asymptotically stable Lyapunov dynamics, given in 

Equations (5) and (6): 
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           ( 1) . ( ) ( ) ( )l l g g

j j j j jt f X t t t t t t         


V P X P X          (5) 

     11  ttt jjj VXX                      (6) 

Note that  1/ ,...., / Df f x f x     


denotes the gradient of the scalar function f to be optimized. 

The first term in the right hand side of Equation (5) ensures motion of the particle towards minima, 

while the second and third term controls the motion towards local and global optima respectively. It is 

apparent from Table 1 that /idx dt  obtained for different Lyapunov-like surfaces include a factor of (–xi). 

The condition for /idx dt = –ωxi is tabulated for all the eight benchmark functions in Table 2. 

Consequently, instead of computing /idx dt  by the approach stated earlier, we can simply add a  

term –ωxi to the i
th
 component of the updated velocity in the classical PSO. The resulting dynamics then 

looks like Equations (7) and (8): 

                 , ,1 . . ( ) ( )l l g g

j j i j i j j i jt t t t t t t t t          V X V P X P X      (7) 

     11  ttt jjj VXX           (8) 

The dynamics given by Equations (7) and (8) is referred to as Position-based PSO (PPSO). 

Table 1. The derived dynamics for the selected benchmark functions. 

Function name Functional form ))(( tf X  /idx dt  

Sphere 

Function  


D

i
ixf

1

2)(X  ix2  

Rosenbrock’s 

Function 



 

1

1

222
1 ])1()(100[)(

D

i
iii xxxf X     1

2 200122400  iiii xxxx  

Step Function  


D

i
ixf

1

2)5.0()(X  5.02  ix  

Schwefel’s 

Problem 1.2 
  


D

i

i

j
jxf

1 1

2)()(X  













 





1

1

2

i

j

ji xx  

Rastrigin’s 

Function  


D

i
ii xxf

1

2 ]10)2cos(10[)( X   ii xx  2sin202   

Ackley’s 

Function 
ex

D

x
D

f

D

i
i

D

i
i













20)2cos
1

exp(

)
1

2.0exp(20)(

1

1

2



X

 








































































D

i

ii

D

i

i

i
D

i

i

x
D

x
D

x
D

x
x

DD

1

1

21

2

2cos
1

exp2sin
2

1

1
2.0exp

4




 

Griewank’s 

Function 

2

1 1

1
(X) cos 1

4000

DD i
ii i

x
f x

i
 

 
   

 
   










































 



D

ijj

jii

j

x

i

x

i

x

,1

cossin
1

2000
 

Salomon’s 

function 
  11.02cos

1

2

1

2 













 



D

i

i

D

i

i xxf X  

2

3

1

2

1

2
2

3

1

2

11.0

2sin2



























































D

i

ii

D

i

i

D

i

ii

xx

xxx 
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Table 2. Reduced form of /idx dt . 

Function 

name 
Reduced form of 

dt

dxi  Condition for reduction 

Sphere 

Function 
ix2  Unconditional 

Rosenbrock’s 

Function 
 1

2 4002400  iii xxx  When 
200

1
1 ii xx  

Step Function ix2  When 5.0ix  

Schwefel’s 

Problem 1.2 













 





1

1

2

i

j

ji xx  
 

Unconditional 

Rastrigin’s 

Function 
 242  ix  When ix is very small. 

Ackley’s 

Function 












































































 






DD

x
D

x
x

DD

x

D

i

i

i
D

i

i

i

1
exp

2

1

1
2.0exp

4

1

21

2



 When ix is very small. 

Griewank’s 

Function 










i
xi

1

2000

1
 When ix is very small 

Salomon’s 

function 





















































































2

3

1

2

1

2
2

3

1

2

11.0

2sin2

D

i

i

D

i

i

D

i

i

i

x

xx

x



 Unconditional 

 

For the sake of completeness of our study, we consider a third category of the dynamics, where the 

inertial term is dropped from the PSO dynamics, indicated in Equations (9) and (10). The modified 

dynamics, called Steepest-PSO (SPSO) for its fast convergence (vide Section 3), is formally  

given below: 

               1 . ( ) ( )l l g g

j j j i jt t t t t t t t
j

        V X P X P X  (9) 

     11  ttt jjj VXX               (10) 

In the next section, we would justify the reason for accuracy and speed-up of PPSO and SPSO over 

classical PSO. 

 

2.2. The Rationale of Speed-up of the PPSO and SPSO Dynamics over Classical PSO  

 

To compare the relative performance in speed-up and convergence of the proposed algorithms, we 

study the stability behavior of the proposed PPSO and SPSO dynamics, in absence of the local and the 
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global attractors. This is performed by solving the first order difference equations. The condition for 

asymptotic stability and the location of the stable point can be ascertained from the solution of the 

dynamics. Theorems 1 to 2 provide interesting results, indicating asymptotic stability of the SPSO and 

PPSO dynamics to the origin irrespective of the search landscape, whereas Theorem 3 indicates 

asymptotic stability of the classical PSO to a stable point, which need not essentially be the origin. The 

rate at which the particle position approaches the origin further indicates that the speed of convergence 

of the SPSO algorithm far exceeds that of PPSO, while the speed of PPSO algorithms beats  

classical PSO. 

 

Theorem 1: The dynamics of the j
th
 particle in the i

th
 dimension given by 

   t
ij

xtv ij ,
1,                         (11) 

has a stable point at the origin, when 1 . 

Proof. Let E be an extended difference operator, such that  

)1()()1()()())(( ,,,,,  txtxtxtxtxE ijijijijij  

Now extending the concept of derivatives to the discrete time domain, Equation (11) now can be 

written as  

   

   
 tx

tt

txtx
ij

ijij

,

,,

1

1





  

     txtxtx ijijij ,,, 1              (12) 

Replacing )1(, tx ij by ))(( , txE ij  in (12) we obtain: 

      01 ,,  txtEx ijij     

    01 ,  txE ij  

 1E  

Consequently, the solution of the dynamics (11) is given by 

   tij Atx  1,                              (13) 

where A is a constant. The expression (13) indicates that for 1 ,   0, tx ij when t .Therefore, the 

dynamics is asymptotically stable at the origin for 1 . When 1 ,   0, tx ij at all time t . Hence, the 

theorem follows. 

 

Theorem 2: The dynamics of the j
th
 particle in the i

th
 dimension given by 

     t
ij

xtvtv ijij ,
1 ,,         (14) 

Is asymptotically stable with a stable point at the origin, when 1 . 

Proof. We can rewrite Equation (14) as 

   

   
     1

1

1
,,,

,,





txtxtx

tt

txtx
ijijij

ijij
      (15) 
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Replacing )1(, tx ij by ))(( , txE ij and )1(, tx ij by ))(( ,
1 txE ij
 in Equation (15), we obtain 

      0,
1

,,   txEtxtEx ijijij   

    01 ,
2  txE ij  

 12E  

 1E  

So, the solution of the dynamics (16) is given by:  

     tt

ij BAtx   11,                         (16) 

where A and B are constants. It is apparent from expression (16) that  tx ij,  asymptotically converges 

to the origin for 1 . Therefore, the dynamics is asymptotically stable with a stable point at the origin 

for 1 . When 1 ,   0txi for all t. This proves the Theorem. 

Theorem 3: The dynamics of j
th

 particle in the i
th
 dimension given by: 

   tvtv ijij ,, 1         (17) 

is asymptotically stable and it converges to a stable point, which need not essentially be zero.  

Proof. We can rewrite Equation (17) as: 

   

   

   

  




















1

1

1

1 ,,,,

tt

txtx

tt

txtx ijijijij
       (18)  

Let E be an extended difference operator, such that    ntxtxE ijij
n  ,, , and    ntxtxE ijij

n 
,,  for any 

positive integer n. Consequently, Equation (18) is transformed to: 

        01 ,
1

,,   txEtxtEx ijijij  , 

        01 ,,,
2  txtExtxE ijijij  , 

     01 ,
2  txEE ij , 

  02  EEE , 

   01  EE  . 

1,E . 

So, the solution of the dynamics (17) is given by:  

    tt

ij BAtx  1,  

  t
ij BAtx  , ,        (19) 

where A and B are constants. It is apparent from expression (21) that  tx ij, asymptotically converges to 

A as time t approaches infinity. Since A is not zero unconditionally, therefore the statement of the 

theorem follows. 

Table 3 provides the results of computation of /idx dt for SPSO, PPSO and classical PSO. The 

computations in the table are performed from Equations 13, 16 and 19 respectively. Figure 1 shows the 

variation of /idx dt with respect to time for ω = 0.6 and ω = 0.8. It is apparent from the graphs that in 

the absence of local and global attractors, the dynamics of SPSO converges faster than that of PPSO, 

which further converges faster than the classical PSO. 



Sensors 2009, 9                            

 

 

9988 

Table 3. /idx dt  for SPSO, PPSO and classical PSO. 

Dynamics /idx dt  

SPSO      1log1 e
t

A  

PPSO  
    


1log1

2

2
e

tBA
 

Classical PSO  e
tB log  

Figure 1. Variation of /idx dt  with respect to time: (a) for ω = 0.6. (b) for ω = 0.8. 
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3. Computer Simulations and Experimental Results 

 

3.1. Benchmarks 

 

In order to study the performance of the proposed three alternative PSO dynamics, we used eight 

well-known benchmark functions as listed in Table 1. All the functions listed here have global minima at 

the origin except the Rosenbrock function. The performance of the three proposed dynamics for these 

eight functions is compared with that of classical PSO.  

 

3.2. Parametric Range and Error Criterion 

 

Early methods of performance evaluations for evolutionary algorithms were restricted to symmetric 

initializations. In recent time, researchers prefer asymmetric initialization [25]. We here used the 

asymmetric initialization method to evaluate the performance of proposed three dynamics along with the 

classical PSO. In Table 4, we provide the initialization range of the objective function variables, the 

position of theoretical optima and the error criterion used to terminate the algorithm. Different error 

criterions were used for different benchmark functions. 
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Table 4. Parametric range of benchmark functions. 

Function Name Dimension Initialization 

Range 

Theoretical 

Optima 

Error 

Criterion 

Sphere Function 30 [50, 100] [0,0……,0] 0.01 

Rosenbrock’sFunction 30 [15, 30] [1,1……,1] 0.001 

Step Function 30 [50, 100] [0,0……,0] 0.01 

Schwefel’s Problem 1.2 30 [50, 100] [0,0……,0] 0.001 

Rastrigin’s Function 30 [2.56, 5.12] [0,0……,0] 0.1 

Ackley’s Function 30 [15, 32] [0,0……,0] 0.01 

Griewank’s Function 30 [300, 600] [0,0……,0] 0.001 

Salomon’s function 30 [50, 100] [0,0……,0] 0.001 

 

3.3. Simulation Strategies 

 

Parameter selection of the PSO dynamics also is a crucial issue for speed-up and accuracy of the 

PSO algorithm. For a given benchmark function, we initially took wider range of the PSO dynamics 

parameters: α
g
(t), α

l
(t) and ω. The initial ranges selected in our simulation were α

g
(t) in [0, 4], α

l
(t)  

in [0, 2] and ω < 1. Several hundred runs of the PSO programs with random parameter settings in the 

above ranges confirm that for a specific function, the best choice of parameters are restrictive as 

indicated in Table 5. 

Table 5. Range of optimal values of  tg ,  tl and  of LyPSO, PPSO and SPSO. 

 Parameters for PSO Algorithm 

Function Name  g t ,  tl and  of LyPSO   tg ,  tl and  of PPSO/SPSO 

  tg   tl     tg   tl    

Sphere Function 0.9999–1.9999 0.0001–0.001 0.5–0.7 0.1999–1.9 0.0001–0.01 0.4–0.7 

Rosenbrock’s Function 0.1999–0.3999 0.001–0.003 10−12–10−11 0.001–0.999 0.001–0.009 0.3–0.6 

Step Function 0.9999–1.9999 0.0001–0.001 0.5–0.7 0.199–0.999 0.001–0.01 0.3–0.7 

Schwefel’s Problem 

1.2 
0.599–0.799 0.001–0.003 10−12–10−9 0.199–0.999 0.001–0.01 0.4–0.7 

Rastrigin’s Function 0.2999–0.5999 0.0001–0.0005 0.0001–0.0009 0.2999–0.5999 0.0001–0.0005 0.3–0.6 

Ackley’s Function 0.1–0.2 0.7–0.8 0.001 Random Random 0.3–0.7 

Griewank’s Function Random Random 56–60 Random Random 0.3–0.7 

Salomon’s function 0.1999–0.5999 0.0001–0.0005 5000 0.1999–0.5999 0.0001–0.0005 0.3–0.6 

 

The following observations readily follow from Table 5.  

 

Observation 1: For each benchmark function, the parameter set of the dynamics including  tg , 

 tl and  for LyPSO has a relatively restricted range than those of PPSO and SPSO.  

 

Observation 2: The parameter sets for most of the benchmark functions for the LyPSO dynamics have 

a common range as listed below:  tg in [0.1999, 0.5999] and  tl in [0.0001, 0.001]. The parameter 
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sets for most of the benchmark functions for the PPSO and SPSO dynamics have a common range as 

listed below:  tg in [0.199, 0.999],  tl in [0.0001, 0.01 ] and ω in [0.3, 0.6]. Moreover, the size of 

the population is taken as 40 and a maximum of 5,000 iterations were taken for 30-dimensional particles. 

 

3.4. Experimental Results from the Simulations 

 

The relative comparison of the convergence time of the three algorithms with respect to classical 

PSO are given in Figure 2a–h. It is observed from these figures that SPSO always outperforms PPSO in 

convergence time and accuracy. It is further revealed from these graphs that PPSO yields better 

performance in accuracy and convergence time with respect to both classical PSO and LyPSO. The 

performance of the four algorithms is summarized with a ‘≤’ operator, where, x ≤ y indicates that 

performance of y is better than or equal to that of x. Relative performance: 

Classical PSO ≤ LyPSO ≤ PPSO ≤ SPSO 

Figure 2. Progress towards the optima: (a) Sphere function. (b) Rosenbrock’s function.  

(c) Step function. (d) Schwefel’s Problem 1.2. (e) Rastrigin’s function. (f) Ackley’s function. 

(g) Griewank’s function. (h) Salomon’s function. 
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Figure 2. Cont. 
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(g)             (h) 

 

Table 6 provides the mean error and standard deviation for the globally best particle obtained by 

execution of the PPSO, SPSO, LyPSO and classical PSO over eight benchmark functions. The error 

was obtained by taking the Euclidean distance between the theoretical optima and the position of the 

best-fit particle for a given program run. The mean error designates the average of errors over 50 

independent runs. In order to make the comparison fair enough, runs of all the algorithms were let start 

from the same initial population. The variance denotes the second moment of the errors with respect to 

the mean error. It is clear from Table 6 that for mean error for the SPSO algorithm is comparable but 

less than that obtained by PPSO algorithm, and the mean error obtained by the PPSO algorithm is 

insignificantly less than that of LyPSO algorithm. Further, the mean error obtained by the LyPSO 

algorithm is less in comparison to that of the classical PSO algorithm. This confirms that the SPSO 

algorithm outperforms the PPSO and LyPSO and definitely the classical PSO algorithm from the point 

of view of accuracy in solution. The speed-up of the SPSO algorithm has already been demonstrated in 

graphs vide Figures 2a–2h. 

Table 7 shows results of unpaired t-tests between the best and second best algorithms in each case 

(standard error of difference of the two means, 95% confidence interval of this difference, the t value, 

and the two-tailed P value). For all cases, sample size = 50 and degrees of freedom = 98. It is 

interesting to see from Tables 6 and 7 that one or more of the proposed PSO methods can always beat 

the classical PSO in a statistically significant way.  
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Table 6. Mean error and standard deviation over the benchmarks. 

Function 

Name 
Dimension 

Classical PSO LyPSO PPSO SPSO 

Mean Error 

(Standard 

Deviation) 

Mean Error 

(Standard 

Deviation) 

Mean Error 

(Standard 

Deviation) 

Mean Error 

(Standard 

Deviation) 

Sphere Function 30 
2.04e+00 

(1.08e+00) 

4.3e−03 

(7.94e−04) 

1.32e−02 

(4.00e−03) 

4.3e−03 

(7.94e−04) 

Rosenbrock’s 

Function 
30 

7.77e+00 

(0.77e+00) 

1.58e+00 

(2.07e−01) 

9.99e−01 

(9.4e−04) 

9.94e−01 

(2.7e−03) 

Step Function 30 
2.45e+01 

(1.56e+00) 

5.00e−01 

(1.00e−03) 

3.42e−01 

(8.62e−02) 

2.46 e−01 

(1.01e−01) 

Schwefel’s 

Problem 1.2 
30 

4.2.4e+01 

(6.35e+00) 

1.89e+01 

(1.86e+00) 

2.7e−03 

(1.3e−03) 

1.90e−03 

(1.20e−03) 

Rastrigin’s 

Function 
30 

2.97e+00 

(1.9e−01) 

1.48e+00 

(8.06e−02) 

2.70e−03 

(8.27e−04) 

2.79e−04 

(6.82e–05) 

Ackley’s 

Function 
30 

7.03e+00 

(6.22e+00) 

2.76e+00 

(3.85e−01) 

1.70e−03 

(6.20e−04) 

1.74e−04 

(4.95e−05) 

Griewank’s 

Function 
30 

1.73e+00 

(1.13e+00) 

9.93e−01 

(3.00e−03) 

5.17e−02 

(1.81e−02) 

1.58e−02  

(3.50e−03) 

Salomon’s 

function 
30 

1.14e+01 

(9.66e+00) 

4.44e+00 

(1.25e+00) 

2.43e−01 

(1.57e−01) 

6.03e−04 

(1.65e−04) 

Table 7. Results of unpaired t-tests on the data of Table 6. 

 

Our experimental results suggest that for multi-modal problems having the fitness landscape 

punctuated with multiple local optima, the SPSO dynamics is the most preferable choice. However, for 

uni-modal functions, LyPSO and SPSO are nearly equivalent in terms of their final accuracy and 

convergence speed.  

Function Std. Err t 95% Conf. Intvl Two-tailed P Significance 

Sphere 

Function 

0.000 21040.9635 –0.16340 to  

–0.16337 

<0.0001 Extremely 

significant 

Rosenbrock’s 

Function 

0.000 13.3484 –0.00585820 to 

–0.00434179 

<0.0001 Extremely 

significant 

Step Function 0.019 5.1050 –0.1329012 to 

–0.0584988 

<0.0001 Extremely 

significant 

Schwefel’s 

Problem 1.2 

0.000 3.1974 –0.0012965 to 

–0.0003035 

0.0019 Very statistically 

significant 

Rastrigin’s 

Function 

0.000 206.2488 –0.002444193 to 

–0.002397606 

<0.0001 Extremely 

Significant 

Ackley’s 

Function 

0.000 191.1514 0.0016651516 to 

0.0017000883 

<0.0001 Extremely 

Significant 

Griewank’s 

Function 

0.007 4.8989 –0.0504426 to 

–0.0213574 

<0.0001 Extremely 

significant 

Salomon’s 

function 

0.022 10.9511 –0.286844994 to 

–0.198834365 

<0.0001 Extremely 

significant 
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In order to compare the scalability of the proposed PSO-variants against the growth of 

dimensionality of the search space, we need to plot the no. of fitness function evaluations with 

dimension of the search landscape. The results shown in figures are average over 50 independent runs of 

the PSO program. It is clear from Figure 3 that the number of Fitness Function evaluations for PPSO 

and SPSO do not increase significantly in comparison to that of LyPSO and classical PSO algorithms.  

Figure 3. Variation in number of fitness function evaluations with function dimension:  

(a) Sphere function. (b) Rosenbrock’s function. (c) Step function. (d) Schwefel’s  

Problem 1.2. (e) Rastrigin’s function. (f) Ackley’s function. (g) Griewank’s function.  

(h) Salomon’s function. 
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Figure 3. Cont. 
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Table 8. Mean convergence time of the benchmarks over 30-dimensions. 

Function Name Dimension 
Mean Convergence Time (in seconds) 

Classical PSO LyPSO PPSO SPSO 

Sphere Function 30 24.0 4.8 6.0 4.8 

Rosenbrock’sFunction 30 21.1 11.5 7.2 5.9 

Step Function 30 23.0 10.5 11.0 6.6 

Schwefel’s Problem 1.2 30 36.8 18.6 8.3 4.3 

Rastrigin’s Function 30 563.5 23.0 26.0 9.0 

Ackley’s Function 30 148.9 67.2 23.2 10.9 

Griewank’s Function 30 172.1 60.5 11.5 8.0 

Salomon’s function 30 925.9 758.7 28.4 17.2 

 

The PPSO, SPSO, LyPSO and PSO algorithms have been executed on eight benchmark functions, 

and for each algorithm the average of the convergence time for 50 independent runs to meet the error 

limit for individual function as specified in Table 6 is recorded in Table 8. It is clear from this Table that 

the mean convergence time of the SPSO is less than that of PPSO. The mean convergence time of 

PPSO is less than that of LyPSO, and the latter is less than the mean convergence time of classical PSO. 

The above phenomena is true for all benchmark functions except the sphere, where the LyPSO and 

SPSO gives identical results because of same functional form in the SPSO and LyPSO dynamics. 

 

4. Conclusions 

 

Classical g-best PSO has a proven impact in optimization of multi-modal nonlinear objective 

functions. However, for many nonlinear continuous multi-modal functions, where partial derivatives 

with respect to objective function variables exist, classical g-best PSO is not very efficient as it does not 

utilize gradient information of the search landscape. The paper bridges the gap between gradient-free 

and gradient-based optimization algorithm. It does not truly utilize gradient information of the search 

space, but it requires the background information that the gradient of the surface exists. When the 
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prerequisite knowledge about the search space is known, we extend the classical g-best PSO algorithm 

by the principles outlined in the paper. 

Three alternative approaches to improve the speed of convergence of the PSO dynamics over 

continuous fitness landscapes is discussed in the paper. The first approach attempted to replace the 

inertial term in the dynamics by a factor that ensures asymptotic stability of the PSO dynamics. 

Construction of such dynamics presumes the characteristics of the surface being Lyapunov-like. This, 

however, is not a very restrictive assumption as many multi-modal surfaces support the conditions for 

Lyapunov function. On the contrary, the Lyapunov-based extension, even without local and global 

attractors, has a natural tendency to move towards optima on the surface. The convergence of the 

algorithm to local and global optima, however, is controlled by the presence of attractors in the  

PSO dynamics.  

The second alternative approach to make the PSO smarter was derived from the Lyapunov-based 

formulation, just by noting that the Lyapunov-based dynamics includes a factor of negatively weighted 

position of the particle. Incorporation of this new term to the existing velocity adaptation rule classical 

PSO gives birth to the second alternative form of the extended PSO dynamics. The resulting dynamics 

has been found to have asymptotic stability for a selective range of  < 1, i.e., same as in classical PSO. 

The third extension lies in replacement of the inertial term by the negative position of the particle itself. 

A random factor is attached to this term to maintain explorative power of the PSO dynamics to avoid its 

premature convergence. Computer simulations undertaken ensure that the third alternative form of 

extended PSO dynamics results in significant improvement in convergence time and accuracy compared 

to the results obtained by the first and second attempt. However, all three approaches outperform the 

classical PSO dynamics from the point of view of the convergence time and accuracy. 

Future research efforts will focus on the extensions of Lyapunov-based dynamics of gbest PSO for 

handling non-continuous multi-modal functions. The particle dynamics will be combined with an 

estimate of the gradient of the function, instead of using any analytical expression of the partial 

derivatives of the objective function. Also the Lyapunov-based particle dynamics will be examined in 

context to non-linearly constrained optimization problems, where only a portion of the search space will 

be used to generate feasible optimal solutions.  
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