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Abstract: In recent years there has been great progress the application of nanomaterials in 

biosensors. The importance of these to the fundamental development of biosensors has 

been recognized. In particular, nanomaterials such as gold nanoparticles, carbon 

nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated 

for their applications in biosensors, which have become a new interdisciplinary frontier 

between biological detection and material science. Here we review some of the main 

advances in this field over the past few years, explore the application prospects, and 

discuss the issues, approaches, and challenges, with the aim of stimulating a broader 

interest in developing nanomaterial-based biosensors and improving their applications in 

disease diagnosis and food safety examination. 

Keywords: Biosensor; nanotechnology; gold nanoparticle; carbon nanotubes; quantum 

dots, magnetic nanoparticles 
 

1. Introduction  

 

A biosensor is a device incorporating a biological sensing element either intimately connected to or 

integrated within a transducer. Specific molecular recognition is a fundamental prerequisite, based on 
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affinity between complementary structures such as enzyme-substrate, antibody-antigen and receptor-

hormone, and this property in biosensor is used for the production of concentration–proportional 

signals. Biosensor’s selectivity and specificity highly depend on biological recognition systems 

connected to a suitable transducer [1-3].  

In recent years, with the development of nanotechnology, a lot of novel nanomaterials are being 

fabricated, their novel properties are being gradually discovered, and the applications of nanomaterials 

in biosensors have also advanced greatly. For example, nanomaterials-based biosensors, which 

represent the integration of material science, molecular engineering, chemistry and biotechnology, can 

markedly improve the sensitivity and specificity of biomolecule detection, hold the capability of 

detecting or manipulating atoms and molecules, and have great potential in applications such as 

biomolecular recognition, pathogenic diagnosis and environment monitoring [4-6].  

Here we review some of the main advances in this field over the past few years, explore the 

application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a 

broader interest in developing nanomaterials-based biosensor technology. 

 
2. The Use of Nanomaterials in Biosensors 

 

To date, modern materials science has reached a high degree of sophistication. As a result of 

continuous progress in synthesizing and controlling materials on the submicron and nanometer scales, 

novel advanced functional materials with tailored properties can be created. When scaled down to a 

nanoscale, most materials exhibit novel properties that cannot be extrapolated from their bulk 

behavior. The interdisciplinary boundary between materials science and biology has become a fertile 

ground for new scientific and technological development. For the fabrication of an efficient biosensor, 

the selection of substrate for dispersing the sensing material decides the sensor performance. Various 

kinds of nanomaterials, such as gold nanoparticles [7], carbon nanotubes (CNTs) [8], magnetic 

nanoparticles [9] and quantum dots [10], are being gradually applied to biosensors because of their 

unique physical, chemical, mechanical, magnetic and optical properties, and markedly enhance the 

sensitivity and specificity of detection.  

 
2.1. The Use of Gold Nanoparticles in Biosensors 

 

Gold nanoparticles (GNPs) show a strong absorption band in the visible region due to the collective 

oscillations of metal conduction band electrons in strong resonance with visible frequencies of light, 

which is called surface plasmon resonance (SPR). There are several parameters that influence the SPR 

frequency. For example, the size and shape of nanoparicles, surface charges, dielectric constant of 

surrounding medium etc. By changing the shape of gold nanoparticles from spherical to rod, the new 

SPR spectrum will present two absorption bands: a weaker short-wavelength in the visible region due 

to the transverse electronic oscillation and a stronger long-wavelength band in NIR due to the 

longitudinal oscillation of electrons. The change of aspect ratio can greatly affect the absorption 

spectrum of gold nanorods (GNRs) [11]. In the same vein, increasing the aspect ratio can lead to 

longitudinal SPR absorption band redshifts. Different GNP structures shows different properties. In 

comparison with a gold nanoparticle-conjugating probe, the gold nanowire-functionalized probe could 
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avoid the leakage of biomolecules from the composite film, and enhanced the stability of the sensor 
[12,13]. This interesting phenomenon will be enormously beneficial in practical applications such as 

biosensors.  

It is well known that well-dispersed solutions of GNPs display a red color, while aggregated GNPs 

appear a blue color. Based on this phenomenon, Jena et al. [14] established a GNPs-based biosensor to 

quantitatively detect the polyionic drugs such as protamine and heparin. As shown in Figure 1, the 

degree of aggregation and de-aggregation of GNPs is proportional to the concentration of added 

protamine and heparin.  

 

Figure 1. Absorption spectra illustrating the protamine-induced aggregation and heparin-

driven de-aggregation of AuNPs. (a) AuNPs alone; (b, c) after the addition of protamine: 

(b) 0.7 μg/ml and (c) 1.6 μg/ml; (d) after the addition of heparin (10.2 μg/mL). Inset shows 

the corresponding colorimetric response [14].  

 

 
 

Figure 2. AuNPs colorimetric strategy for thrombin detection [16].  

 

 
 

Non-crosslinking GNP aggregation can also be applied for enzymatic activity sensing and 

potentially inhibitor screening [15]. Wei et al. [16] described a simple and sensitive aptamer-based 

colorimetric sensing of alpha-thrombin protein using unmodified 13 nm GNP probes, as shown in 
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Figure 2. This method’s advantage lies in that the general steps such as surface modification and 

separation can be avoided, which ensures the original conformation of the aptamer while interacting 

with its target, thereby leading to high binding affinity and sensitive detection. 

GNPs in biosensors can also provide a biocompatible microenvironment for biomolecules, greatly 

increasing the amount of immobilized biomolecules on the electrode surface, and thus improving the 

sensitivity of the biosensor [17, 18]. The glassy carbon electrode (GCE) was widely used in biosensor, 

and GNP modified GCEs showed much better electrochemical stability and sensitivity. GNPs and 

methylene blue (MB) could be assembled via a layer-by-layer (LBL) technique into films on the GCE 

modified for detection of human chorionic gonadotrophin (HCG) [19]. Due to the high surface area of 

the nanoparticles for loading anti-HCG, this immunosensor can be used to detect the HCG 

concentration in human urine or blood samples.  

For the detection of reduction of H2O2, GNP-modified electrodes also showed much wider pH 

adaptive range and larger response currents [20]. Due to the large specific surface area and good 

biocompatibility of GNPs, horseradish peroxidase (HRP) can be adsorbed onto a GNP layer for the 

detection of H2O2 without loss of biological activity [21]. Shi et al. [22] confirmed that this kind of 

HRP-GNP biosensor exhibited long-term stability and good reproducibility. 

GNPs/CNTs multilayers can also provide a suitable microenvironment to retain enzyme activity 

and amplify the electrochemical signal of the product of the enzymatic reaction [23]. For example, 

GNPs/CNTs nanohybrids were covered on the surface of a GCE, which formed an effective antibody 

immobilization matrix and gave the immobilized biomolecules high stability and bioactivity. The 

approach provided a linear response range between 0.125 and 80 ng/mL with a detection limit of 40 

pg/mL. As shown in Figure 3, because of the advantages of GNPs and CNTs, the hybrid composite has 

more potential applications for electrochemical sensor, which could be easily extended to other protein 

detection schemes and DNA analysis [24]. For example, Wang et al. [25] described the fabrication of 

ZrO2/Au nano-composite films through a combination of sol–gel procedure and electroless plating, the 

organophosphate pesticides (Ops) can be strongly adsorped on the ZrO2/Au film electrode surface, 

which provides an effective quantitative method for OPs analysis.  

 

Figure 3. The immunoassay procedure of GNPs/PDCNTs modified immunosensor using 

HRP–GNPs–Ab2 conjugates as label [24].  
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The gold nanorods (GNR) modified electrode layer shows a better analytical response than GNPs 

[26]. GNR based immunosensors have advantages such as simplicity, being label free, low sample 

volume, reusability and being more suitable for lab-on-chip devices over gold nanoparticles. GNRs are 

sensitive to the dielectric constant of the surrounding medium due to surface plasmon resonance, 

therefore a slight change of the local refractive index around GNRs will result in an observable 

plasmon resonance frequency shift. Irudayaraj and Yu fabricated different aspect ratios of GNRs with 

targeted antibodies to detect three targets (goat anti-human IgG1 Fab, rabbit antimouse IgG1 Fab, 

rabbit anti-sheep IgG (H+L)). Results showed that GNRs can be used for a multiplexing detection 

device of various targets. In another study, they examined the quantification of the plasmonic binding 

events and estimation of ligand binding kinetics tethered to GNRs via a mathematical method. The 

GNRs sensors were found to be highly specific and sensitive with a dynamic response in the range 

between 10-9 M and 10-6 M. For higher-target affinity pair, one can expect to reach femtomolar levels 

limit of detection. This is promising for developing sensitive and precise sensors for biological 

molecule interactions. Chilkoti and his co-workers have miniaturized the biosensor to the dimensions 

of a single gold nanorod [27]. Based on a proof-of-concept experiment with streptavidin and biotin, 

they tracked the wavelength shift using a dark-field microspectroscopy system. GNRs binding 1 nM of 

streptavidin could bring about a 0.59 nm mean wavelength shift. Furthermore, they also indicated that 

the current optical setup could reliably measure wavelength shifts as small as 0.3 nm. Frasch and co-

workers have set single molecules DNA detection in spin by linking F1-ATPase motors and 

GNRs[28]. The biosensor overcomes the defects inherent to PCR or LCR, is faster and reaches 

zeptomol concentrations, which is greatly superior to traditional fluorescence-based DNA detection 

systems which have only about a 5 picomolar detection limit. 

 
2.2. The Use of CNTs in Biosensors 

 

Since Iijima discovered carbon nanotubes (CNTs) in 1991, CNTs have attracted enormous interest 

due to their many novel properties such as unique mechanical, physical, chemical properties. CNTs 

have great potential in applications such as nanoelectronics, biomedical engineering, and biosensing 

and bioanalysis [5, 29, 30]. For example, polymer-CNTs composites can achieve high electrical 

conductivity and good mechanical properties, which offer the exciting possibility of developing 

ultrasensitive, electrochemical biosensors. As shown in Figure 4 and Figure 5, amperometric 

biosensors [31] was constructed by incorporation of single-walled carbon nanotubes modified with 

enzyme into redox polymer hydrogels. First, an enzyme was incubated in a single-walled carbon 

nanotube (SWNT) solution, then cross-linked within a poly[(vinylpyridine)Os(bipyridyl)(2)Cl2+/3+] 

polymer film, and finally formed into composite films. The redox polymer films incorporated with 

glucose oxidase modified SWNTs resulted in a 2 to 10-fold increase in the oxidation and reduction 

peak currents during cyclic voltammetry, while the glucose electrooxidation current was increased 3-

fold to close to 1 mA/cm2 for glucose sensors. Similar effects were also observed when SWNTs were 

modified with horseradish peroxidase prior to incorporation into redox hydrogels.  
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Figure 4. Schematic of the construction of type A and type B sensors. (A) Fabrication of 

type A sensors in which a film of SWNTs was first cast onto a bare glassy carbon electrode 

and allowed to dry, before an alquot of the redox hydrogel was cast on top of the SWNT-

coated electrode. (B) Fabrication of type B sensors in which SWNTs were first incubated 

with an enzyme solution before they were incorporated into the redox hydrogel. An aliquot 

of the redox hydrogel solution containing the enzyme-modified SWNTs was then cast on 

top of a bare glassy carbon electrode [31].  

 
  

 

Conductive polymer-based nano-composite has been utilized as a MEMS sensing material via a 

one-step, selective on-chip deposition process at room temperature [32]. For example, the doped PPy-

MWCNT is confirmed to be sensitive to glucose concentrations up to 20 mM, which covers the 

physiologically important 0-20 mM range for diabetics, so they can be used for diagnosis of diabetes 

[33, 34]. So far, these electrochemical sensors such as enzyme-based biosensors, DNA sensors and 

immunosensors have been developed based on polymer-CNT composites, and can be used to diagnose 

different kinds of diseases quickly [35, 36]. 

The bionanocomposite layer of multiwalled carbon nanotubes (MWNT) in chitosan (CHIT) can be 

used in the detection of DNA [34]. The biocomponent, represented by double-stranded herring sperm 

DNA, was immobilized on this composite using layer-by-layer coverage to form a robust film. SsDNA 

probes could be immobilized on the surface of GCE modified with MWNTs/ZnO/CHIT composite 

film [37]. The sensor can effectively discriminate different DNA sequences related to PAT gene in the 

transgenic corn, with a detection limit of 2.8 mol/L of target molecues.  

Carbon nanofibers are found to be an effective strategy for building a biosensor platform [38]. Bai 

et al. [39] found that the synergistic effects of MWNTs and ZnO improved the performance of the 

biosensors formed. They reported an amperometric biosensor for hydrogen peroxide, which was 

developed based on adsorption of horseradish peroxidase at the GCE modified with ZnO nanoflowers 

produced by electrodeposition onto MWNTs film. Zhang et al. described a controllable layer-by-layer 

self-assembly modification technique of GCE with MWNTs and introduce a controllable direct 

immobilization of acetylcholinesterase (AChE) on the modified electrode. By the activity decreasing 

of immobilized AChE caused by pesticides, the composition of pesticides can be determined [40-43]. 
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Figure 5. Electrochemical characterization of glucose oxidase sensors. (A) Cyclic 

voltammograms of a GCE modified with the redox hydrogel alone (-); a GCE modified 

first with a film of SWNT and then coated with the redox hydrogel (----) ( type A sensor); 

(III) a GCE modified with a redox hydrogel containing GOX-treated SWNTs (-) (type B 

sensor). Scan rate 50 mV/s. (B) Glucose calibration curves for the three types of sensors 
described in (A). T = 25C, E = 0.5 V vs SCE. Values are mean SEM [31]. 

 
  

 

Our group also just reported a highly selective, ultrasensitive, fluorescent detection method for 

DNA and antigen based on self-assembly of multi-walled carbon nanotubes (CNT) and CdSe quantum 

dots (QD) via oligonucleotide hybridization; its principle is shown in Figure 6 [44]. Multi-walled 

carbon nanotubes (CNTs) and QDs, their surfaces are functionalized with oligonucleotide(ASODN) or 

antibody (Ab), can be assembled into nanohybrid structures upon the addition of a target 

complementary oligonucleotide or antigen (Ag). As shown in Figure 6, nanomaterial building blocks 

that vary in chemical composition, size or shape are arranged in space on the basis of their interactions 

with complementary linking oligonucleotide for potential application in biosensors. We show how this 

oligonucleotide directed assembly strategy could be used to prepare binary (two-component) assembly 

materials comprising two different shaped oligonucleotide-functionalized nanomaterials. Importantly, 
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the proof-of-concept demonstrations reported herein suggest that this strategy could be extended easily 

to a wide variety of multicomponent systems. 

 

Figure 6 Surface functionalization of CNT (or QD) with oligonucleotide/Angibody (Ab), 

forming CNT-DNA (or -Ab) probe and QD-DNA (or-Ab) probe, and subsequent addition 

of target oligonucleotide (or Antigen) to form CNT-QD assembly. The unbound QD probe 

was obtained by simple centrifugation separation and the supernatant fluorescence 

intensity of QDs was monitored by spectrofluorometer. (System 1) Formation of CNT-QD 

hybrid in the presence of complementary DNA target; (System 2) Three-component CNT-

QD system with the purpose to detect three different DNA target simultaneously; (System 

3) CNT-QD protein detection system based on antigen-antibody immunoreactions [44]. 

 
 

2.3. The Use of Magnetic Nanoparticales in Biosensor  

 

Magnetic nanoparticles (MNP), because of their special magnetic properties, have been widely 

explored in applications such as hyperthermia [45], magnetic resonance imaging (MRI) contrast agent 

[46], tissue repair [47], immunoassay [48], drug/gene delivery [49], cell separation [50], GMR-sensor 

[51], etc. Zhang et al. [52] prepared a new kind of magnetic dextran microsphere (MDMS) by 

suspension crosslinking using iron nanoparticles and dextran. HRP was then immobilized on a 

MDMS-modified GCE. On the basis of the immobilized HRP-modified electrode with hydroquinone 

(HQ) as mediator, an amperometric H2O2 biosensor was fabricated. Lai et al. [53] prepared a magnetic 

chitosan microsphere (MCMS) using carbon-coated MNPs and chitosan. Hemoglobin (Hb) was 

successfully immobilized on the surface of MCMS modified GCE with the cross-linking of 

glutaraldehyde.  
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Janssen et al. [54] demonstrated that a rotating magnetic field can be used to apply a controlled 

torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid and 

develop a quantitative model, based on results from a comprehensive set of experiments. This control 

of torque and rotation will enable novel functional assays in bead-based biosensors. 

The amperometric biosensor was based on the reaction of alkaline phosphatase (ALP) with the 

substrate ascorbic acid 2-phosphate (AA2P), where the Fe3O4 nanoparticles have led to the 

enhancement of the biosensor response with an improved linear response range. This biosensor was 

applied to the determination of the herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D) [55]. 

In fact, a wide variety of methods have been developed for sensing and enumerating individual 

micron-scale magnetic particles [56]. Direct detection of magnetic particle labels includes Maxwell 

bridge, Frequency-dependent magnetometer, Superconducting quantum interference device (SQUID) 

and methods of magnetoresistance. Indirect detection includes Micro-cantilever-based Force 

Amplified Biological Sensor (FABS) and Magnetic Relaxation Switches (MRS). Two examples 

follow. 

Recently, a highly sensitive, giant magnetoresistance-spin valve (GMR-SV) biosensing device with 

high linearity and very low hysteresis was fabricated by photolithography [57]. The signal from even 

one drop of human blood and nanoparticles in distilled water was sufficient for their detection and 

analysis. 

For the immunomagnetic detection and quantification of the pathogen Escherichia coli O157:H7, a 

giant magnetoresistive multilayer structure implemented as sensing film consists of 20[Cu5.10 

nm/Co2.47 nm] with a magnetoresistance of 3.20% at 235 Oe and a sensitivity up to 0.06 Ω/Oe 

between 150 Oe and 230 Oe. Silicon nitride has been selected as optimum sensor surface coating. In 

order to guide the biological samples, a microfluidic network made of SU-8 photoresist and 3D 

stereolithographic techniques have been included [58, 59]. 

 
2.4. The Use of QDs in Biosensors 

 

Quantum dots have been subject to intensive investigations because of their unique 

photoluminescent properties and potential applications [60-62]. So far, several methods have been 

developed to synthesize water-soluble quantum dots for use in biologically relevant studies. For 

example, quantum dots have been used successfully in cellular imaging [63], immunoassays[64], DNA 

hybridization [65], biosensor, and optical barcoding [66]. Quantum dots also have been used to study 

the interaction between protein molecules or detect the dynamic course of signal transduction in live 

cells by Fluorescence Resonance Energy Transfer (FRET) [67, 68]. These synthesized quantum dots 

have significant advantages over traditional fluorescent dyes, including better stability, stronger 

fluorescent intensity, and different colors, which are adjusted by controlling the size of the dots [64]. 

Therefore, quantum dots provide a new functional platform for bioanalytical sciences and biomedical 

engineering.  

For example, CdTe quantum dots led to an increased effective surface area for immobilization of 

enzyme and their electrocatalytic activity promoted electron transfer reactions and catalyzed the 

electro-oxidation of thiocholine, thus amplifying the detection sensitivity [69]. As shown in Figure 7, 

Deng et al. [70] reported that green and orange CdTe QDs can be used as pH-sensitive fluorescent 
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probes, which could monitor the proton (H+) flux driven by ATP synthesis for dual simultaneous and 

independent detection of viruses on the basis of antibody−antigen reactions.  

Figure 7. (a) Basic design of QD biosensors based on F0F1-ATPase: (1) antibody of β-

subunit; (2) the antibody of MHV68; (3) MHV68; (4) the antibody of H9 avian influenza 

virus; (5) H9 avian influenza virus; (6) CdTe QDs with emission wavelength at 585 nm; 

(7) CdTe QDs with emission wavelength at 535 nm; (8) F0F1-ATPase within 

chromatophores; (9) chromatophores. (b) Changes of fluorescence intensity of QD 

biosensors with and without viruses. Curve a: The changes of fluorescence intensity of 

orange QD biosensors without MHV68 when the ADP is added to initialize reaction. 

Curve b: The changes of fluorescence intensity of green QD biosensors without H9 avian 

influenza virus when the ADP is added to initialize reaction. Curve c:The changes of 

fluorescence intensity of orange QD biosensors with capturing MHV68 when the ADP is 

added to initialize reaction. Curve d: The changes of fluorescence intensity of green QD 

biosensors with capturing H9 avian influenza virus when the ADP is added to initialize 

reaction [70].  
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2.5. The Use of Other Nanomaterials in Biosensors 

 

Aside from GNPs, CNTs, magnetic nanoparticles and quantum dots, there are still many other 

nanomaterials such as metals, metal-oxides [71, 72], polymers and other compounds [73-75], which 

could be used in biosensors. For example, hollow nanospheres CdS (HS-CdS) [76] were first used to 

study the direct electrochemical behavior of Hb and the construction of nitrite biosensors. The HS-CdS 

nanostructure provides a microenvironment around the protein to retain the enzymatic bioactivity.  

Metal nanoparticles [77] , for example, nano-Cu, with great surface area and high surface energy, 

are used as electron-conductors and show good catalytic ability to the reduction of H2O2 [78]. 

Platinum nanoparticles have also been widely used in biosensors.  

Nanoscale metal-oxides have also been widely used in immobilization of proteins and enzymes for 

bioanalytical applications. For example, metal-oxide-based semiconducting nanowires or nanotubes 

play an important role on electric, optical, electrochemical and magnetic transducers [79]. Cheng et al. 

[80] reported a nano-TiO2 based biosensor for the detection of lactate dehydrogenase (LDH). 

Waxberry-like nanoscale ZnO balls, as shown in Figure 8, can act as excellent materials for 

immobilization of enzymes and the rapid electron transfer agent for the fabrication of efficient 

biosensors due to the wide direct band gap [81, 82]. The porous structure can greatly enhances the 

active surface area available for protein binding, provide a protective microenvironment for the 

enzymes to retain their enzymatic stability and activity [83]. 

 

Figure 8. SEM images of as-prepared porous nanosheet-based ZnO microsphere with low 

(left) and high magnification (right) [83].  

 

 
 

Surface functionalized silicon nano-channels with the enzyme urease could detect and quantify urea 

concentration [84]. The differential conductance of silicon nano-channels can be tuned for optimum 

performance using the source drain bias voltage, and is sensitive to urea at low concentration. Zhang et 

al. [85] used silicon-on-insulator (SOI) substrate to fabricate the planar type patch clamp ion-channel 
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biosensor, which is suitable for the high throughput screening. The channel current showing the 

desensitization unique to TRPV1 is measured successfully.  

Poly (ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers with abundant active epoxy 

groups on their surfaces were fabricated through a novel manufacturing process [85,86]. The results 

demonstrated that the PE-co-GMA nanofibers prepared could be a promising candidate as solid 

support materials for potential biosensor applications.  

 
3. Potential Application of Nanomaterials-Based Biosensors 

 

Although few sensors based on nanomaterials work at all in commercial applications, however, 

nanomaterial-based biosensors exhibit fascinating prospects. Compared with traditional biosensors, 

nanomaterial-based biosensors have marked advantages such as enhanced detection sensitivity and 

specificity, and possess great potential in applications such as the detection of DNA, RNA, proteins, 

glucose [87], pesticides [88] and other small molecules from clinical samples, food industrial samples, 

as well as environmental monitoring.  

 
3.1. Nanomaterials-Based Biosensors for the Detection of Glucose 

 

The glucose biosensor has been widely used as a clinical indicator of diabetes. Nanoscale materials 

such as GNPs, CNTs, magnetic nanoparticles [89], Pt nanoparticles [90], Quantum dots, etc. play an 

important role in glucose sensor performance, fibrous morphology and wrapping of PDDA over 

MWCNTs result in a high loading of GOx into the electrospun matrix [91]. Pt nanoparticles could be 

electrodeposited on MWNTs matrix in a simple and robust way. The immobilization of glucose 

oxidase onto Pt/MWNTs electrode surfaces also could be carried out by chitosan-SiO2 gel [92] . The 

resulting biosensors could be used to determine the glucose levels of serum samples with high 

sensivity. 

 
3.2. Nanomaterials-Based Biosensors for the Detection of DNA and Protein 

 

SsDNA–CNTs probes might be used as optical biosensors to detect specific kinds of DNA 

oligonucleotides [93]. MWNTs/ZnO/CHIT composite film modified GCE can be used to immobilize 

ssDNA probes to effectively discriminate different DNA sequences [94, 95]. A biosensor for the 

detection of deep DNA damage is designed employing the bionanocomposite layer of MWNT in 

chitosan deposited on a SPCE [96]. The biocomponent represented by double-stranded herring sperm 

DNA was immobilized on this composite using layer-by-layer coverage to form a robust film. GNPs 

can also be used to recognize DNA sequences by the interactions of DNA and chemical materials [97]. 

And for single-stranded DNA, GNPs functionalized with alkanethiol-capped LNA/DNA chimeras in a 

tail-to-tail hybridization mode could perform excellent [98], and these probes show remarkable 

discrimination between a complementary target and one containing a single-base mismatch. Nano-

SiO2/p-aminothiophenol (PATP) film was fabricated by self-assembly and electrodeposition methods 

and was successfully applied to the detection of the PAT gene sequences by a label-free EIS method 

[99]. Maki et al. [100] reported the first nanowire field effect transistor based biosensor which 
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achieves simple and ultra-sensitive electronic DNA methylation detection and avoids complicated 

bisulfite treatment and PCR amplification. Similarly, using protein–ligand (antigen) interaction 

properties, protein-nanoparticles based biosensors can realize the ultra-sensitive detection of special 

protein molecules.  

 
3.3. Nanomaterials-Based Biosensors for the Detection of Other Molecules  

 

Liposome-based biosensors have successfully monitored the organophosphorus pesticides such as 

dichlorvos and paraoxon at very low levels [101]. The nano-sized liposomes provide a suitable 

environment for the effective stabilization of acethylcholinesterase(AChE) and they can be utilized as 

fluorescent biosensors. Porins embedded into the lipid membrane allow for the free substrate and 

pesticide transport into the liposomes. Pesticide concentrations down to 10−10 M can be monitored.  

By flow injection analysis (FIA), Zhang et al. [102] developed a method for the detection of 

Escherichia coli (E. coli) using bismuth nanofilm modified GCE. Seo et al. [103] constructed a 

biochip sensor system, consisting of two Ti contact pads and a 150 nm wide Ti nanowell device on 

LiNbO3 substrate. When the bacteria were resistant to the phages (uninfected bacteria), small voltage 

fluctuations were observed in the nanowell displaying a power spectral density (PSD) of 1/f shape. 

Medley et al. [104] developed a colorimetric assay for the direct detection of diseased cells. This assay 

uses aptamer-conjugated GNPs to combine the selectivity and affinity of aptamers and the 

spectroscopic advantages of GNPs. Samples with diseased cells present exhibited a distinct color 

change while non-target samples did not change the color.  

Mitochondrial oxidative stress (MOS) has been hypothesized as one of the earliest insults in 

diabetes. Some data support the hypothesis that the induction of MOS is more sensitive to 

hyperglycemia than the induction of the antioxidant response element (ARE). An ARE-GFP vector 

constructed with nanoparticles was successfully delivered to the eyes by using sub-retinal injection 

[105]. These data support the use of nanoparticle-delivered biosensors for monitoring the oxidative 

status of tissues in vivo. 

Li et al. [106] reported an electrochemical aptamer biosensor for the detection of adenosine based 

on impedance spectroscopy measurement, which gives not only a label-free but also a reusable 

platform to make the detection of small molecules simple and convenient. For this method did not rely 

on the molecule size or the conformational change of the aptamer, it may possess the potential of wider 

application for different target molecules. 

 
4. Challenges and Prospects  

 

In recent years, applications of nanomaterials in biosensors provides novel opportunities for 

developing a new generation of biosensor technologies. Nanomaterials can improve mechanical, 

electrochemical, optical and magnetic properties of biosensors, nanomaterial-based biosensors are 

developing towards single molecule biosensors and high throughput biosensor arrays [107]. However, 

like any emerging field, they face many challenges. Biological molecules possess special structures 

and functions, and determining how to fully use the structure and function of nanomaterials and 

biomolecules to fabricate single molecule multifunctional nanocomposites, nanofilms, and 
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nanoelectrodes, is still a great challenge. The mechanism of interaction between biomolecules and 

nanomaterials is also not clarified very well yet. How to use these laws and principles of an optimized 

biosystem for fabricating novel multifunctional or homogenous nanofilms or modifying electrodes is 

also a great challenge. The processing, characterization, interface problems, availability of high quality 

nanomaterials, tailoring of nanomateriala, and the mechanisms governing the behavior of these 

nanoscale composites on the surface of electrodes are also great challenges for the presently existing 

techniques. For example, how to align nanomaterials such as CNTs in a polymer matrix along identical 

direction is a great challenge. How to enhance the signal to noise ratio, how to enhance transduction 

and amplification of the signals, are also great challenges. Future work should concentrate on furtherly 

clarifying the mechanism of interaction between nanomaterials and biomolecules on the surface of 

electrodes or nanofilms and using novel properties to fabricate a new generation of biosensors. 

Nevertheless, nanomaterial-based biosensors show great attractive prospects, which will be broadly 

applied in clinical diagnosis, food analysis, process control, and environmental monitoring in the near 

future. 
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