
Sensors 2009, 9, 1678-1691; doi:10.3390/s90301678 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 
Article 

Least Square Regression Method for Estimating Gas 
Concentration in an Electronic Nose System 
 

Walaa Khalaf *, Calogero Pace and Manlio Gaudioso 
 

Dipartimento di Elettronica Informatica e Sistemistica, Università della Calabria, 87036 Rende (CS), 

Italy; E-Mails: cpace@unical.it; gaudioso@deis.unical.it 

 

* Author to whom correspondence should be addressed; E-Mail: walaa@deis.unical.it 

 

Received: 14 December 2008; in revised form: 7 March 2009 / Accepted: 10 March 2009 /  

Published: 10 March 2009 

 

 

Abstract: We describe an Electronic Nose (ENose) system which is able to identify the 

type of analyte and to estimate its concentration. The system consists of seven sensors, five 

of them being gas sensors (supplied with different heater voltage values), the remainder 

being a temperature and a humidity sensor, respectively. To identify a new analyte sample 

and then to estimate its concentration, we use both some machine learning techniques and 

the least square regression principle. In fact, we apply two different training models; the 

first one is based on the Support Vector Machine (SVM) approach and is aimed at teaching 

the system how to discriminate among different gases, while the second one uses the least 

squares regression approach to predict the concentration of each type of analyte. 

 

Keywords: Electronic Nose; Support Vector Machine; Least Square Regression; 

Classification; Concentration Estimation. 

 

 

1. Introduction 

 

The paper deals with the problems of gas detection and recognition, as well as concentration 

estimation. The fast evaporation rate and toxic nature of many Volatile Organic Compounds (VOCs) 

could be dangerous for the health of humans at high concentration levels in air and workplaces, 

therefore the detection of these compounds has become a serious and important task in many fields. In 

fact, VOCs are also considered as the main reason for allergic pathologies, lung and skin diseases. 
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Other applications of systems for gas detection are in environmental monitoring, food quality 

assessment [1], disease diagnosis [2-3], and airport security [4].  

There are many research contributions on the design of an electronic nose system based on using tin 

oxide gas-sensors array in combination with Artificial Neural Networks (ANN) for the identification 

of the Volatile Organic Compounds (VOC’s) relevant to environmental monitoring, Srivastava [5] 

used a new data transformation technique based on mean and variance of individual gas-sensor 

combinations to improve the classification accuracy of a neural network classifier. His simulation 

results demonstrated that the system was capable of successfully identifying target vapors even under 

noisy conditions. Simultaneous estimates of many kinds of odor classes and concentrations have been 

made by Daqi et al. [6]; they put the problem in the form of a multi-input/multi-output (MIMO) 

function approximation problem. 

In the literature several different approximation models have been adopted. In particular a 

multivariate logarithmic regression (MVLR) has been discussed in [7], a quadratic multivariate 

logarithmic regression (QMVLR) in [8], while a multilayer perceptron (MLP) has been experimented 

in [4]. Finally, support vector machines (SVM) has been used in [9-11].   

We formulate the problem of gas detection and recognition in the form of a two-class or a multi-

class classification problem. We perform classification for a given set of analytes. To identify the type 

of analyte we use the support vector machine (SVM) approach, which was introduced by Vapnik [12] 

as a classification tool and strongly relies on statistical learning theory. Classification is based on the 

idea of finding the best separating hyperplane (in terms of classification error and separation margin) 

of two point-sets in the sample space (which in our case is the Euclidean seven-dimensions vector 

space, since each sample corresponds to the measures reported by the seven sensors which constitute 

the core of our system). Our classification approach includes the possibility of adopting kernel 

transformations within the SVM context, thus allowing calculation of the inner products directly in the 

feature space without explicitly applying the mapping [13]. 

 

Figure 1. Block diagram of the system. 
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As previously mentioned, we adopt a multi-sensor scheme and useful information is gathered by 

combining the outputs of the different sensors. In fact, in general the use of just one sensor does not 

allow identification of a gas, as the same sensor output may correspond to different concentrations of 

many different analytes. On the other hand, by combining the information coming from several sensors 

of diverse types under different heater voltages values we are able to identify the gas and to estimate 

its concentration.  

The paper is organized as follows. In Section 2 we describe our Electronic Nose (ENose), while 

Section 3 gives a brief overview of the SVM approach. Section 4 is devoted to the description of our 

experiments involving five different types of analytes (acetone, benzene, ethanol, isopropanol, and 

methanol). Finally the conclusions are drawn in Section 5. 

 

2. Electronic Nose 

 

An electronic nose is an array of gas sensors, whose response constitutes an odor pattern [14]. A 

single sensor in the array should not be highly specific in its response but should respond to a broad 

range of compounds, so that different patterns are expected to be related to different odors. To achieve 

high recognition rates, several sensors with different selectivity patterns are used and pattern 

recognition techniques must be coupled with the sensor array [10]. Our system (Figure 1) consists of 

five different types of gas sensors supplied with different heater voltages to improve the selectivity and 

the sensitivity of the sensors which are from the TGS class of FIGARO USA, Inc. The sensing element 

is a tin dioxide (SnO2) semiconductor layer. In particular three of them are of TGS-822 type, each one 

being supplied with a different heater voltage (5.0 V, 4.8 V, and 4.6 V, respectively, see Figure 2), one 

of the TGS-813 type, and the last one is of the TGS-2600 type. Because the gas sensor response is 

heavily affected by environmental changes, two auxiliary sensors are used for the temperature (LM-35 

sensor from National Semiconductor Corporation), and for the humidity (HIH-3610 sensor from 

Honeywell). 

 

Figure 2. Block diagram of the sensors heater voltage supplies. 
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The gas sensors and the auxiliary sensors are put in a box of 3000 cm3 internal volume. Inside the 

box we put a fan to let the solvent drops evaporate easily. All sensors are connected to a multifunction 

board (NI DAQPad-6015), which is used in our system as an interface between the box and the PC. 

The National Instruments DAQPad-6015 multifunction data acquisition (DAQ) device provides plug-

and-play connectivity via USB for acquiring, generating, and logging data; it gives 16-bit accuracy at 

up to 200 kS/s, and allows 16 analog inputs, 8 digital I/O, two analog outputs, and two counter/timers. 

NI DAQPad-6015 includes NI-DAQmx measurement services software, which can be quickly 

configured and allows us to take measurements with our DAQ device. In addition NI-DAQmx 

provides an interface to our LabWindows/CVI [15] running on our Pentium 4 type PC. 

The integrated LabWindows/CVI environment features code generation tools and prototyping 

utilities for fast and easy C code development. It offers a unique, interactive ANSI C approach that 

delivers access to the full power of C Language. Because LabWindows/CVI is a programming 

environment for developing measurement applications, it includes a large set of run-time libraries for 

instrument control, data acquisition, analysis, and user interface. It also contains many features that 

make developing measurement applications much easier than in traditional C language environments. 

For support vector machine (SVM) training and testing in multi-class classification we use 

LIBSVM-2.82 package [16]. LIBSVM-2.82 uses the one-against-one approach [17] in which, given k 

distinct classes, k(k -1)/2 binary classifiers are constructed, each one considering data from two 

different classes. LIBSVM provides a parameter selection tool for using different kernels and allows 

cross validation. For median-sized problems, cross validation might be the most reliable way for 

parameter selection. First, the training data is partitioned into several folds. Sequentially a fold is 

considered as the validation set and the rest are for training. The average of accuracy on predicting the 

validation sets is the cross validation accuracy [18]. In particular the leave-one-out cross validation 

scheme consists of defining folds which are singletons, i.e. each of them is constituted by just one 

sample. 

 

3. Support Vector Machine (SVM) 

 

Support vector machines (SVMs) are a set of related supervised learning methods used for 

classification and regression of multi dimensional data sets [19, 14]. They belong to the family of 

generalized linear classifiers. This family of classifiers has both the abilities of minimizing the 

empirical classification error and maximizing the geometric margin. In fact a SVM is also known as 

maximum margin classifier [9]. In this section we summarize the main features of SVM. Detailed 

surveys can be found in [3, 14, 20-21]. SVM looks for a separating hyperplane between the two data 

sets. The equation of such hyperplane is defined by: 
0)(  bxwxf T  (1)  

where w is the weight vector which defines a direction perpendicular to the hyperplane, x is the input 

data point, and b is the bias value (scalar), for a proper normalization. The margin is equal to ||w||-1. 

Therefore maximizing the margin is equivalent to minimizing ||w||. The advantage of this maximum 

margin criterion is both robustness against noise and uniqueness of the solution. 
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In many practical cases the data are not linearly separable, then the hyperplane tries to both 
maximize the margin and minimize the sum of classification errors at the same time. The error i of a 

point ),( ii yx (  1,1 iy  represents the class membership) with respect to a target margin   and for 

a hyperplane defined by f is:  
))(,0max()),(),,(( iiiiii xfyxfyx    (2) 

where i is called the margin slack variable which measures how much a point fails to have margin . If 

yi and f(xi) have different signs the point xi is misclassified because 
0  i  (3) 

The error i is greater than zero if the point xi is correctly classified but with margin smaller than  . 

0 i  (4) 

Finally, the more xi falls in the wrong region, i.e. satisfies equation 3, the bigger is the error. The 

cost function to be minimized is: 


i

iCw 2||||
2

1
 (5) 

where C is a positive constant, which determines the trade off between accuracy in classification and 

margin width [20-21]. Therefore, this constant can be regarded as a regularization parameter. When C 

has a small value, the optimal separating hyperplane tends to maximize the distance with respect to the 

closest point, while for large values of C, the optimal separating hyperplane tends to minimize the 

number of non-correctly classified points. 

If the original patterns are not linearly separable, they can be mapped by means of appropriate 

kernel functions to a higher dimensional space called feature space. A linear separation in the feature 

space corresponds to a non-linear separation in the original input space [11]. Kernels are a special class 

of functions that permit the inner products to be calculated directly in the feature space, without 

explicitly applying the mapping. The family of kernel functions adopted in machine learning range 

from simple linear and polynomial mappings to sigmoid and radial basis functions [22]. In this paper 

linear kernel is used. 

 

4. Experiments and Results 

 

In our experiments we used five different types of volatile species with different concentrations. 

They are acetone, methanol, ethanol, benzene, and isopropanol. The data set for these volatile species 

is made up of samples in R7 space where each sample correspond to the outputs of the gas and 

auxiliary sensors. 

 

4.1. Samples Preparation 

 

Our box contains the PCB (Printed Circuit Board) where we fixed two different types of sensors, 

i.e. gas sensors and auxiliary sensors. It also contains a fan for circulating the analyte inside during the 

test. The system encompasses one input for inlet air coming from an air compressor which has been 

used to clean the box and the gas sensors after each test. One output is used for the exhaust air. The 

inner dimensions of the box are 22 cm length, 14.5 cm width, and 10 cm height, while the effective 
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volume is 3,000 cm3. The amount of volatile compounds needed to create the desired concentration in 

the sensor chamber (our box) was introduced in the liquid phase using a high-precision liquid 

chromatography syringe. Since temperature, pressure and volume were known, the liquid needed to 

create the desired concentration of volatile species inside the box could be calculated using the ideal 

gas theory, as we explain below. The analyte concentration versus analyte volume injected is shown in 

Table 1. 

A syringe of 10 µL is used for injecting the test volatile compounds. We take methanol as an 

example for calculating the ppm (parts-per-million) for each compound. Methanol has a molecular 

weight MW = 32.04 g/mol and density  = 0.7918 g/cm3. The volume of the box is 3,000 cm3; 

therefore, for example, to get 100 ppm inside the box, from Table 1, we used 0.3 cm3 of methanol. 

 

Table 1. Analyte concentration vs. analyte volume. 

Analyte Concentration (ppm) Volume of Pure Analyte 
(cm3) 

10 0.03 
50 0.15 
100 0.30 
200 0.60 
400 1.20 
800 2.40 

1,000 3.00 
2,000 6.00 

 

The density of methanol is 

TR

MWP




  (6) 

Where:  

 = the density of the gas of Methanol in g/L, 

P = the Standard Atmospheric Pressure (in atm) is used as a reference 

for gas densities and volumes (equal 1 atm), 

MW = Molecular Weight in g/mol, 

R = universal gas constant in atm/mol.K (equal 0.0821 atm/mol.K), 

T = temperature in Kelvin (TK = TC + 273.15). 

As a result we get d = 1.33 g/L. 

Mass = vgas *  = vliq *  (7) 

where vgas is the volume occupied by the gas of methanol which is equal to 0.3*10-3 l,  is the density 

of the gas of Methanol as calculated before,  is the constant density of methanol, therefore; 

vliq = (vgas x ) /   vliq = (0.3 * 10-3 * 1.33) / 0.7918, the volume (vliq) is 0.503*10-6 l which provides 

100 ppm of methanol. This means that if we want to get 100 ppm of methanol we must put 0.503 µL of 

liquid methanol in the box by using the syringe. Table 2 shows different concentrations of Methanol 

(in ppm) versus its quantities (in µL). 
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Table 2. Methanol concentration vs. methanol quantity. 

Methanol Concentration 
(ppm) 

Methanol quantity (µL) 

40 0.2 
100 0.5 
200 1.0 
400 2.0 
800 4.0 

1,000 5.0 
1,400 7.0 
2,000 10.0 

 

4.2. Results 

 

In the first analysis, we used a SVM with linear kernel, and we applied a multi-class classification 

by using the LIBSVM-2.82 package [16]. The optimal regularization parameter C was tuned 

experimentally by minimizing the leave-one-out cross-validation error over the training set.  

In fact the program was trained as many times as the number of samples, each time leaving out one 

sample from training set, and considering such omitted sample as a testing sample check the 

classification correctness. The classification correctness rate is the average ratio of the number of 

samples correctly classified and the total number of samples. The results are shown in Table 3 for 

different values of C. We used 22 concentration samples for acetone, 22 for benzene, 20 for ethanol, 

23 for isopropanol, and 21 for methanol. For each concentration the experiment was repeated twice, 

thus a total number of 216 classification calculations was performed.. By using linear kernel we got 

100.00% classification correctness rate for C = 1,000 adopting a leave-one-out cross-validation 

scheme. We remark that such results are better than those obtained by supplying all sensors by the 

same heater voltage (in such case, in fact, the best classification correctness rate was 94.74%).  

 

Table 3. Multiple C values with linear kernel. 

C values Classification Correctness Rate %

10 91.24 

50 96.31 

100  96.77 

500 98.62 

800 99.08 

1,000 100.00 

2,000 99.54 

 

Once the classification process has been completed, the next step is to estimate the concentration of 

the classified analyte. To this aim, we use the least square regression approach. We build an 

approximation of the response (sensor resistance versus analyte concentration) for each sensor and 

each analyte. Then we use this approximation to find the concentration for each analyte type. 
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For sintered SnO2 gas sensor, the concentration dependence of the response to a simple analyte 

exposure is nonlinear and can be described by a power law of the form [23] 
cR   (8) 

where R is the sensor resistance, δ a constant, c the concentration of the analyte and ω an index that 

lies between 0.3 and 1.0. We applied this equation on all sensors for each analyte. The values of δ 's 

and ω 's, are calculated as follows: 

n

cR

ccn

RcRcn

n

i
i

n

i
i

n

i

n

i
ii

n

i

n

i

n

i
iiii



 

  



 

  









11

1

2

1

2

1 1 1

)(ln)(ln

)ln()(ln

)(ln)(ln)ln(ln

 (9) 

where  , )exp(  and n is the number of samples, which are indexed by i.  

Figure 3 shows, as an example, the original concentrations with respect to their sensor resistances, 

as well as the estimated curve for the analyte acetone. We have five curves, one for each sensor.  

 

Figure 3. Acetone concentrations vs. sensor resistance for each sensor type. 

 
 

The optimal estimate of the concentration is in our model a combination of the outputs of the 

diverse sensors. We have adopted the least square regression model to find the optimal weights on the 

basis of the experimental data. We come out in our experiments with five measures for each analyte 
sample.  The weights α’s are obtained by solving the following minimization problem : 
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where n is the number of analyte samples, c is the true concentration, M is the number of sensors (in 

our case M = 5), c the concentrations that have been previously calculated (from equation 8). Tables 4-

8 show the real concentrations with respect to the results of the proposed method. For comparison 

purposes we add in the table also the results obtained by simply averaging the outcomes provided by 

the five sensors. 

 

Table 4. Experimental results of acetone. 

Real data Our Method Average Method 
% Absolute Error 

of our Method 

% Absolute Error 
of Average 

Method 

22 22.68 25.11 3.110 14.136 
44 43.85 43.75 0.339 0.574 
66 55.79 55.17 15.470 16.404 
88 82.23 80.45 6.554 8.579 
110 110.92 108.18 0.841 1.651 
132 137.36 133.22 4.058 0.928 
154 165.54 160.75 7.492 4.383 
176 189.89 180.88 7.891 2.775 
220 252.73 244.37 14.878 11.079 
264 300.03 287.54 13.647 8.918 
330 379.21 366.94 14.913 11.194 
440 428.31 407.13 2.657 7.470 
484 474.41 443.42 1.981 8.384 
550 533.80 520.15 2.945 5.426 
594 585.78 552.30 1.383 7.020 
660 649.93 644.15 1.526 2.401 
770 761.83 753.86 1.060 2.095 
880 873.91 880.84 0.692 0.095 
990 997.66 1,,010.21 0.774 2.042 

1,100 1,057.31 1096.75 3.881 0.296 
1,320 1,353.41 1,425.29 2.531 7.977 
1,540 1,534.37 1,609.86 0.365 4.536 

 

Table 5. Experimental results of methanol. 

Real data Our Method Average Method 
% Absolute 
Error of our 

Method 

% Absolute 
Error of Average 

Method 
40 41.09 38.76 2.7325 3.1075 
80 76.49 70.86 4.3903 11.4300 
120 118.94 125.38 0.8866 4.4875 
160 164.71 162.21 2.9463 1.3839 
200 193.07 196.57 3.4661 1.7135 
240 237.82 245.19 0.9100 2.1653 
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Table 5. Cont. 

280 273.81 284.39 2.2116 1.5684 
320 307.61 329.55 3.8700 2.9860 
360 367.57 380.85 2.1027 5.7927 
400 408.58 439.90 2.1463 9.9751 
480 481.48 5060.53 0.3087 5.4278 
600 598.60 620.04 0.2324 3.3397 
720 689.76 678.69 4.2004 5.7369 
800 819.69 794.98 2.4616 0.6268 
960 983.12 990.82 2.4083 3.2107 

1,080 1,083.01 1,089.45 0.2790 0.8751 
1,200 1,178.88 1,178.12 1.7597 1.8232 
1,400 1,395.61 1,364.58 0.3136 2.5300 
1,600 1,597.26 1,547.35 0.1711 3.2908 
1,800 1,810.56 1,761.23 0.5868 2.1540 
2,000 1,997.90 1,909.19 0.1047 4.5406 

 

Table 6. Experimental results of ethanol. 

Real data Our Method Average Method 
% Absolute Error 

of our Method 

% Absolute 
Error of Average 

Method 

27 23.84 24.47 11.6921 9.3663 
54 55.01 51.43 1.8721 4.7533 
81 90.55 84.19 11.7858 3.9464 
108 106.07 99.83 1.7893 7.5666 
135 143.28 135.36 6.1326 0.2645 
162 172.99 164.72 6.7826 1.6814 
189 198.07 201.59 4.8000 6.6625 
216 223.99 237.61 3.6991 10.0069 
243 242.01 264.74 0.4110 8.9485 
270 288.60 283.36 6.8887 4.9494 
324 336.74 332.17 3.9314 2.5230 
405 422.82 428.93 4.4003 5.9088 
459 455.81 484.86 0.6948 5.6352 
540 527.63 576.41 2.2900 6.7433 
675 661.31 622.77 2.0285 7.7381 
810 820.18 747.14 1.2567 7.7607 
945 928.10 887.55 1.7881 6.0792 

1,080 1,049.95 1,002.22 2.7819 7.2019 
1,350 1,373.04 1,326.66 1.7067 1.7287 
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Table 7. Experimental results of benzene. 

Real data Our Method Average Method 
% Absolute Error 

of our Method 

% Absolute Error 

of Average 

Method 

18 15.14 16.21 15.8811 9.9555 

36 36.63 35.09 1.7508 2.5043 

54 56.52 55.47 4.6647 2.7224 

72 75.08 74.35 4.2835 3.2601 

90 96.30 96.08 6.9992 6.7518 

108 115.37 116.10 6.8290 7.5011 

126 129.59 130.91 2.8540 3.9012 

144 150.63 154.68 4.6053 7.4186 

162 166.19 170.06 2.5878 4.9739 

180 185.53 187.88 3.0753 4.3775 

234 248.06 246.47 6.0083 5.3295 

270 274.97 276.51 1.8425 2.4126 

324 325.56 326.13 0.4829 0.6590 

360 353.29 356.88 1.8619 0.8661 

414 415.01 407.07 0.2453 1.6730 

468 449.41 447.26 3.9718 4.4310 

540 514.60 503.90 4.7034 6.6841 

630 637.34 641.77 1.1648 1.8692 

720 738.37 726.53 2.5518 0.9075 

810 806.19 794.96 0.4706 1.8567 

900 904.35 860.47 0.4839 4.3921 

1,080 1,074.29 1,072.02 0.5286 0.7390 

 

Table 8. Experimental results of isopropanol. 

Real data Our Method Average Method 

% Absolute 

Error of our 

Method 

% Absolute 

Error of Average 

Method 

21 17.85 16.81 14.9841 19.9374 

42 42.39 42.65 0.9247 1.5425 

63 66.31 67.19 5.2505 6.6589 

84 94.75 93.65 12.8003 11.4851 

105 112.92 113.76 7.5438 8.3477 

126 130.53 131.09 3.5948 4.0371 

147 160.04 157.52 8.8746 7.1591 

168 173.03 171.97 2.9935 2.3634 

189 197.58 199.13 4.5414 5.3587 

210 211.78 212.78 0.8498 1.3222 
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Table 8. Cont. 

252 255.39 255.41 1.3471 1.3522 

294 298.80 292.86 1.6342 0.3873 

357 348.83 343.44 2.2893 3.7973 

420 401.99 407.81 4.2879 2.9030 

483 482.31 470.84 0.1420 2.5169 

567 567.14 548.54 0.0257 3.2557 

630 648.76 626.99 2.9784 0.4781 

735 720.55 695.12 1.9660 5.4257 

840 833.88 818.79 0.7283 2.5243 

945 934.93 915.13 1.0650 3.1612 

1,050 1,071.76 1,068.29 2.0723 1.7416 

1,260 1,251.77 1,260.44 0.6530 0.0350 

 

Finally we considered (Table 9) the correlation coefficient (C.C) as a measure for the estimation 

accuracy [8]. The correlation coefficient is a number between 0.0 and 1.0. If there is no relationship 

between the predicted values and the actual values the correlation coefficient is 0.0 or very low (the 

predicted values are no better than random numbers). As the strength of the relationship between the 

predicted values and actual values increases so does the correlation coefficient. A perfect fit gives a 

coefficient of 1.0. Thus the higher correlation coefficient (near to 1.0) the better is the regressor [7]. 

The correlation coefficient is calculated as follows: 
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where C.C is the correlation coefficient, X are the actual values, X̂  are the predicted values, and n is 

the number of data points. 

 

5. Conclusions 

 

The results demonstrate that our system has the ability to identify the type of analyte and then 

estimate its concentration. The best correctness rate was 100.00%. Also the values obtained in terms of 

concentration estimates appear quite satisfactory. Supplying three similar sensors (TGS-822) with 

different heater voltages, improved the performance of the system. Future work will be devoted to 

identify binary mixture of gases and then to estimate the concentration of each component. 
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Table 9. Correlation Coefficient (C.C) value for each analyte. 

Analyte Type C.C from the 

new method 

C.C from the method of 

average 

C.C from SVM 

regression method 

Acetone 0.998930 0.997757 0.982431 

Benzene 0.999535 0.999196 0.989445 

Ethanol 0.999394 0.997515 0.974048 

Isopropanol 0.999629 0.999322 0.985179 

Methanol 0.999803 0.999251 0.973584 
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