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Abstract: With the development of quantitative remote sensing, scale issues have attracted 

more and more the attention of scientists. Research is now suffering from a severe scale 

discrepancy between data sources and the models used. Consequently, both data 

interpretation and model application become difficult due to these scale issues. Therefore, 

effectively scaling remotely sensed information at different scales has already become one 

of the most important research focuses of remote sensing. The aim of this paper is to 

demonstrate scale issues from the points of view of analysis, processing and modeling and 

to provide technical assistance when facing scale issues in remote sensing. The definition 

of scale and relevant terminologies are given in the first part of this paper. Then, the main 

causes of scale effects and the scaling effects on measurements, retrieval models and 

products are reviewed and discussed. Ways to describe the scale threshold and scale 

domain are briefly discussed. Finally, the general scaling methods, in particular up-scaling 

methods, are compared and summarized in detail. 
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1. Introduction  

 

The advance of remote sensing technology in the 20th century has provided a powerful means to 

conduct regional and global measurements. Remote sensing technology can quickly access a wide 

range of real-time land surface spatial information and provides an effective way for resource surveys, 

environmental monitoring and disaster prediction. With the help of remote sensing technology, one 

can get geo-information quickly, accurately, efficiently and comprehensively. Undoubtedly, remote 

sensing will play an increasingly important role in the field of geosciences.  

At present, remote sensing technology has entered an era of quantitative analysis. Thus, the 

important issues – scale effects and scaling – have already become one of the most important research 

focuses of remote sensing [1,2]. The scale represents the window of perception [2], the ability of 

observation, and reflects the limitation of knowledge through which a phenomenon may be viewed or 

perceived [1]. Consequently, scale issues should be carefully dealt with in remote sensing [3]. On the 

one hand, most retrieval models and algorithms are basically derived at small scales, implying that the 

land surface is homogeneous. If the models and algorithms are used at large scales, they may produce 

certain errors [4]. On the other hand, geo-information which is closely related to human cognition has 

the concept of regional scale, for example, weather forecasting, environmental monitoring, crop 

growth and yield estimation, disaster assessment, resource survey and so on. In short, the description 

of a process must be expressed at a certain scale. For instance, soil moisture content that is estimated 

from a small piece of farmland cannot be used as a drought index for large-scale agricultural drought 

monitoring. In other words, small scale information cannot be used as a substitute for regional scale 

information. The discrepancy between observation scale, model scale and land surface process scale 

may lead to different conclusions in the processes of monitoring and forecasting. As a result, the 

scaling of geo-information is inevitable for many disciplines. Scale effects constrain the accuracy of 

retrieval and limit the development of remote sensing applications. Consequently, they are becoming 

emerging problems which attract more and more the attention of scientists. Firstly, in order to analyze 

the scale issues of remote sensing, the problems of scale and the importance of scale will be reviewed 

and discussed. 

As we know, research about scale has already permeated various disciplines, such as hydrology [5-

7], meteorology [8], ecology [9,10] and geography [1,2,11]. The reasons why we need to transfer 

information across scales are simple. The instrument is one of the reasons; different instruments have 

different instantaneous fields of view that correspond to different spatial resolutions. In addition, the 

scale at which the available data has been measured is usually different from the scale required by the 

models. Again, the scale at which these models operate often varies from model to model. 

Furthermore, several factors, such as manpower, finances, time and other resources, constrain the 

choice of scale. For example, running a general circulation model will take a long time, even with a 

high-performance computer. Under the limitation of resources, a larger scale may be preferable. 

Finally, the scale of model output may not be in coincidence with the policy scale at which the 

decision is made. Taking into account these factors, the reason why more attention has been paid to 

scale issues, is easy to be understood. 

Obviously, research is suffering from a severe scale discrepancy between data sources and the 

models used. Both data interpretation and model application become difficult due to scale issues. 
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Openshaw [12] proposed the Modifiable Areal Unit Problem (MAUP), which means the results of 

studies could be different using different areal units and is thought of as the combined output of a scale 

problem and an aggregation problem. That is to say, different spatial processes may operate at 

different scales, and thus conclusions based on one scale may not be applicable to another scale. 

Again, spatial patterns are also scale dependent. Spatial patterns may look like a cluster at one scale 

but random at another [13]. Therefore, remote sensing can be thought of  as a particular case of the 

MAUP [2]. Model application should be carefully dealt with rather than data interpretation. Retrieval 

models used in remote sensing are usually developed at a local scale, implying that models are merely 

suitable when the medium where the process takes place is homogeneous [4]. If these models are 

directly applied to a large scale, scale effects may be generated. In addition, the dominant factors are 

not the same at different scales, and they may lead to different retrieval models for different scales. 

Depending upon the observation scale, the process which appears homogeneous at a local scale may 

become heterogeneous at a large scale and parameters and factors which are important at one scale 

may become trivial at another [3,14,15]. For example, in the research on heat-water exchange, the 

turbulence flux that can be ignored at the large scale has to be taken into account at the local scale. 

Furthermore, the action of coupling different types of models makes the problem more severe. 

Atmospheric processes often occur at larger spatial scales and smaller temporal scales than 

hydrological processes [5,16]. How to couple these two types of models is not a simple question to 

answer. Without thorough consideration, using data and models at an inappropriate scale could lead to 

a meaningless conclusion [13]. 

To scientists, scale is undoubtedly one of the most important bases of research. What we study 

cannot be disengaged from the scale. Goodchild and Quattrochi [1] pointed out that scale is important 

because it not only defines the limits of our observations of Earth, but also is often a parameter in the 

physical and social processes which shape geographic phenomena. Scale research is also an important 

step in the campaign of validation of remote sensing products [17]. As spatial resolution becomes 

coarser, a scaling method must be developed in order to determine the accuracy of retrieval products 

[18]. Furthermore, the scale may determine the reliability of the research. From microscopic and 

macroscopic scales, we can understand both details and trends. It is helpful to thoroughly interpret 

geographic phenomena. In addition, the scale may determine the cost of research because detailed data 

is generally more expensive to measure, process and analyze. Undoubtedly, the development of scale 

research can relate the data measured at different scales and make use of this data effectively. It will 

solve the problems discussed above and drive the evolution of other relevant disciplines. 

The aim of this paper is to demonstrate scale issues from the points of view of analysis, processing 

and modeling and to provide technical assistance when facing scale issues in remote sensing. The next 

sections will be organized as follows. In Section 2, some basic definitions will be given, as researchers 

may not seem to have agreed on the meaning of such concepts. They are the basis of analysis the scale 

issues. In Section 3, the mechanism of scale effects, which may benefit the scaling model, is briefly 

discussed. The main causes of scale effects and the scaling effects of the measurements, retrieval 

models and products will be reviewed and discussed. These are the key points in resolving scale issues 

in remote sensing. If the scale effects could be estimated correctly, the scaling model would become 

easier. One of the great advantages of remote sensing is its capacity for providing data at multi-scales, 

which is increasingly used to evaluate the influence of scale effects for identifying structure or patterns 
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and modeling results. This raises a problem: where is the interval in which the phenomenon or the 

structures are nearly invariable or slowly variable? And, what is the validation scope of the retrieval 

models? In Section 4, the quantitative descriptions of scale threshold (invariance of scale) and scale 

domain are given. The analysis of scale threshold and the scale domain is imperative for understanding 

the dynamics of landscapes. In addition, they can be thought of as the linkage point between 

heterogeneity and homogeneity, which is closely related to the scale effects. Demonstrated in Section 

5 are a few general scaling approaches, especially the up-scaling method, to characterize the influence 

of scale. Although the hypotheses and starting points are not the same, all roads lead to the same end 

result. These scaling methods can enhance upscaling from one scale to another. Under different 

circumstances, however, we can choose different methods.  

 

2. The definition of scale and relevant terminologies 

 

2.1. Notions of scales 

 

In the field of scientific research, scale is often one of most involved terminologies. The scale can 

refer both to the magnitude of a study (e.g., its geographic extent) and also to the degree of detail (e.g., 

its level of geographic resolution) [1]. There are several terms that share the same meaning with 

observation scale that describe the detail, such as resolution, grain, support and so on. With remote 

sensing, scale might be resolution and can be thought of as the smallest objects being distinguished by 

sensors. For ecology, scale is likely to be grain, which is the measured size of patches. To 

environmental research, scale could be support, the largest area or time interval in which the parameter 

of interest is homogeneous [15]. To cartography, scale may be defined simply as the ratio between 

distance on the map and on the ground. There is much confusion and abuse concerning the term 

"scale" and it is necessary to identify the meaning of this word. Lam and Quattrochi [13] and Cao et al. 

[3] pointed out that at least four meanings of scale can be identified within the spatial domain. They 

are the observation scale, the operational scale, the geographic scale and the cartographic scale. 

Bloschl and Sivapalan [5] and Bierkens et al. [15] proposed another two meanings of scale: the 

modeling scale and the policy scale, respectively. From analysis, modeling and demonstrating 

perspective, scale needs to be divided into at least such six types. Here are the definitions used by the 

authors [3,5,13,15] with some modifications combined. Table 1 shows a comparison of the six 

meanings of scale used in various fields of scientific research. 

 

Table 1. Comparison of the six meanings of scale used in the field of scientific research. 

Meaning Description Remarks 

Observation 
scale 

The measurement units at which 
data is measured or sampled 

Referring to the description of resolution, time interval, 
spectral range, solid angle or polarization direction. 

Modeling 
scale 

The scale at which the model is 
built or derived 

In order to better reveal the process, the modeling scale 
should be coincided with both the observation scale and 
the operational scale. 
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Table 1. Cont. 

Operational 
scale 

The scale of action at which a 
certain process is supposed to 
operate. 

Depending on the nature of the process. Variability lower 
than modeling scale may be lost if the operational scale 
is smaller than the modeling scale. 

Geographic 
scale 

The spatial extent of research 
A larger geographic scale study involves a larger spatial 
area and a smaller geographic scale study only contains a 
smaller spatial area. 

Policy 
scale 

The scale at which the decisions 
are made or the policy is 
implemented 

In order to infer a reliable conclusion, the policy scale 
should be larger than the operational scale. 

Cartographic 
scale 

The ratio between distance on the 
map and on the ground 

A smaller cartographic scale corresponds to a larger 
geographic scale and may show fewer instances of 
features or less detail. 

 

(1) Observation scale can be called a "measurement scale". It depends on the method or the 

characteristics of the instrument and can be thought of as measurement units (i.e., intervals or areas 

or volumes) at which data is measured or sampled. To remote sensing, the measurement scale 

refers to the description of resolution, time interval, spectral range, solid angle or polarization 

direction. As the limitation of data collection and storage capacity, the smaller measurement scale 

usually corresponds to the smaller geographic scale and vice versa. 

(2) Modeling scale is the scale at which the model is built or derived in order to give reliable output. 

Both the measurement scale and the operational scale may influence the modeling scale. 

Observations sampled at a measurement scale are used as input for models, so the measurement 

scale must coincide with the modeling scale. If the measurement scale is smaller or larger than the 

modeling scale, it should be scaled. Again, a model needs to reveal the process; the modeling scale 

should also coincide with the operational scale. Similarly, it also needs to be scaled. 

(3) Operational scale refers to the scale at which a certain process is supposed to operate. It can also be 

called the "scale of action". For example, thunderstorms may happen in an area of dozens of square 

kilometers. The operational scale of thunderstorms may be dozens of kilometers. It can be defined 

either as spatial extent (the lifetime), period (cycle) or the correlation length (integral scale), 

depending on the nature of the process [5]. Here, if the operational scale is smaller than the 

modeling scale, the variability lower than the modeling scale may be lost and the process may not 

be observed or found.  

(4) Geographic scale, which is also called "coverage", refers to the spatial extent of research. It 

determines the biological organization level on which the surface property is observed, such as the 

leaves (a few centimeters), the canopy (10 to 100 m), the landscape (100 m to a few kilometers) or 

the region (about 100 km) [19]. A larger geographic scale study involves a larger spatial area, and 

a smaller geographic scale study only contains a smaller spatial area. The ratio between geographic 

scale and measurement scale often determines data volume and constrains storage and processing 

capacities. 
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(5) Policy scale is the scale at which the decisions are made or the policy is implemented [15]. For 

example, whether the crop yield of one specific village is reduced or not, may be judged on village 

level on the basis of one year. In order to infer a reliable conclusion, the policy scale should be 

larger than the operational scale. 

(6) Cartographic scale is defined simply as the ratio between distance on the map and on the ground. It 

is often used to represent the spatial distribution of research results. Generally speaking, a smaller 

cartographic scale corresponds to a larger geographic scale and may show fewer instances of 

features or less detail when compared to a larger cartographic scale.  

The six meanings of scale described above are mutually related. It is indispensable to determine the 

desirable scale before investigation. But, how do you select the suitable scale in remote sensing? 

Generally speaking, the choice of scale may only depend on the goals of the study if you do not take 

other factors (i.e., manpower, finance and time) into account. Commonly, the policy scale is 

determined first. And then, the operational scale is decided based on the previous knowledge of the 

research. Due to the fact that the policy scale is selected by the decision-making department and the 

operational scale is the natural characteristic of the process, they may have nothing to do with remote 

sensing. Remote sensing may only be used to provide knowledge to reveal the actual operational scale. 

By comparion, the observation scale, modeling scale and geographic scale are more closely related to 

remote sensing. They are more or less determined by the application of remote sensing. The smaller 

observation scale is not always correct. For example, the optimum observation scale for classification 

in land use and land cover is the scale where the variability within classes is at its minimum and the 

variability between classes is at its maximum. On the whole, the geographic scale should be large 

enough to characterize the image spatial variability or structures. At the same time, the observation 

scale and modeling scale should be smaller than the operational scale and be mutually consistent with 

each other. The result is not reliable when the observation scale and the modeling scale are totally 

different. Finally, the cartographic scale is determined to show the results and images which serve for 

decision-making after the research. 

 

2.2. Characteristics of scales 

 

Although "scale" is a widely used term and has different meanings in various disciplines, in general, 

it can be thought of as having multi-dimensionality, complexity and variability. Firstly, scale has a 

multi-dimensional nature [11]. It can be expressed as the variability in space and the expansibility in 

time [1]. Consequently, the scale is divided into spatial scale and temporal scale, respectively, based 

on the different research targets or fields. As the observations of remote sensing are more specialized 

compared to conventional measurement methods, the scale notion can be extended to spectral scale, 

directional scale and polarization scale. The spectral scale expresses the ability to discriminate fine 

spectral differences and refers to the full width at half maximum (FWHM) of band. The directional 

scale describes the angular geometry of the sun–object–sensor system [11]. The polarization scale 

refers to the polarization direction of the signal. In general, the spatial and temporal scales are closely 

related. Then, within a specific discipline, the processes that operate over larger temporal scales may 

also operate over larger spatial scales due to the transport mechanisms between space and time [1]. 

Bloschl and Sivapalan [5] demonstrated a scheme to classify hydrological processes according to 
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typical space and time scales. Skoien et al. [20] used the ratio of spatial scale and temporal scale to 

discriminate the different processes in a space-time coordinate system. In reality, all sensors boarded 

on spacecrafts are a kind of "hand-made" equipment. The spatial resolution, the bandwidth and the 

spectral response function are not the same. The difference between sensors must be analyzed first. 

That is to say, both spatial and spectral scaling is necessary when comparing the retrieval products of 

different sensors. Even if the resolutions of the sensors are close to each other, i.e., MODIS and 

AVHRR, spectral scaling is needed. Such a point of view may improve our understanding of scale 

effects. 

Secondly, scale has complex hierarchies. It is the reflection of the level of the organization of 

nature, which results in the research targets varying with scales. For example, small-scale hydrological 

studies may mainly focus on the scale of vegetation and soil; meso-scale studies may focus on the 

response of the hydrology unit to the changes of land surface; while large-scale studies may be mainly 

about the interaction of the atmosphere and the land surface. These phenomena and processes 

occurring at different scales may interact with each other, consequently, many regional or global 

changes, such as pollution, the greenhouse effect and biodiversity may be rooted in local scale or 

small-scale environmental problems. Similarly, large-scale changes (such as global climate change and 

ocean circulation anomalies), in turn, will influence small-scale phenomena and processes. This shows 

that both large-scale and small-scale studies are equally important. Large-scale describes the abstract 

features or macro-structure, and small-scale characterizes the details. On the one hand, we can 

understand the macro-changes and the general trend through large-scale studies; on the other hand, we 

may find the mechanism of the development of the process and give reasonable explanations through 

small-scale studies. 

Finally, scale may also have variability, that is, the targets at different scales will show different 

characteristics. The isothermal surface would become non-isothermal. The spectral curve of emissivity 

may become smoother when the spectral scale is coarser. It has increased the difficulty of scale 

analysis. 

 

2.3. Scale threshold and scale domain 

 

With the development of scale research, scientists have found that the dominant factors which affect 

the processes change with the scale. Marceau and Hay [2] pointed out that the degree of explanation in 

the variation of normalized difference vegetation index  (NDVI) varies with the scale. The variation of 

NDVI is mainly affected by the local scale topographic orientation when the resolution is finer, which 

shows the effect of solar radiation on vegetation in terrain areas. When resolution decreases, the 

elevation gradually becomes the dominant factor to describe the distribution of vegetation [2,14]. 

Based on these facts, scientists have proposed the concept of scale domain and scale threshold. The 

scale domain can be considered as the interval in which the phenomenon or the structures are nearly 

invariable or slowly variable, while they may change dramatically in a different scale domain that is 

separated by the scale threshold. The understanding of these concepts would benefit the analysis of the 

processes. In the same scale domain, scaling may be easier as the dominant factors of the processes are 

the same or similar. However, scaling may become more complex across scale domain due to different 
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dominant factors. Therefore, one of the focuses of scale research is to determine the scale domain and 

the scale threshold [2]. 

 

2.4. Scaling and scale effects 

 

Apart from the concept of scale, we have to pay attention to the terms, "scaling" and "scale effects". 

Scaling, is just defined as transferring information across scales [16]. When one speaks of scaling, one 

must distinguish between two cases: up-scaling and down-scaling. Up-scaling is a process that 

transfers information from local scale to large scale. It concerns the extraction of global parameters 

from local measurements and has been much more studied [4]. On the contrary, down-scaling is to go 

from large scale to local scale. In general, up-scaling and down-scaling may also be called aggregation 

and disaggregation, respectively [18]. Scale effects refer to the contrast of information or the different 

characteristics at different scales. For example, the production of farmland estimated from TM and 

AVHRR are significantly different. The difference varies with the region and lacks regularity. It is 

mainly due to the dependence on the scale. How to select the appropriate scaling method and 

determine scale effects will be clearly analyzed next. 

 

3. Mechanism analyses of scale effects 

 

In order to analyze the mechanism of scale effects, firstly, we need to abstract the retrieval process 

from reality, which is concluded as follows: 

( )products f measurements  (1) 

where measurements refer to the physical quantity measured by remote sensing; f refers to the retrieval 

model that is used to estimate products from measurements; products are the characteristic parameters 

of land surface, such as biophysical (e.g., leaf area index, fraction of photosynthetically active 

radiation absorbed by vegetation) or geophysical variables (e.g., albedo, emissivity). The 

measurements, retrieval model and products may not be the same at different scales. So they can be 

considered as scale-dependent. The relationships are demonstrated in Figure 1. 
Here, nr  or R  , f  or F  and np  or P   represent the measurements, retrieval models and 

products at the local or large scale, respectively. Apparently, if the retrieval models at both local scale 

and large scale are available, there is no scale effect yet. The products retrieved by remote sensing can 

be estimated by the corresponding models. However, only retrieval models at a local scale are usually 

proposed, as they can be easily validated in the laboratory or the testing field. Generally, the retrieval 

model may not be the same for different scales as the dominant factors or stated variables are variable 

at different scales. For example, both Lowtran and Modtran are radiative transfer models, however, 

they are only suitable for the low spectral scale and the moderate spectral scale, respectively. In such a 

situation, the scaling for the retrieval model is necessary. The first task of scale research in remote 

sensing is to determine the validation scope of retrieval models. Based on physical analysis, the 

retrieval models are simplified or re-parameterized to adapt to the new scale. If we do not scale 

retrieval models and only adopt the same form at different scales, there are two other alternative 

methods to compensate for the scale effects: the scaling of measurements and the scaling of products. 
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If we assume the retrieval models are the same at any scale, there are two ways to estimate 

measurements or retrieve products at a large scale. One is to aggregate measurements and products 

directly using local scale data, thereby producing average measurements 2R   and distributed 

products 1P  . The other is to use 2R   and 1P   through the retrieval model and the inverse 

model to generate the corresponding ones, thereby producing lumped products 2P   and equivalent 

measurements 1R  . It is difficult to determine which are best. We can only select the appropriate 

one by real situations. For example, the goal of scaling for leaf area index (LAI) is to make the values 

derived from coarse resolution sensor data equal to the arithmetic average of values derived 

independently from fine resolution sensor data [21]. If the retrieval model is proposed at local scale 

and the products estimated are associated with the unit area, such as LAI, 1P   may be more suitable 

because it follows the law of conservation of matter. Otherwise, 2P   may be more advisable. The 

product of temperature is an example. Here is the other thing we need to pay more attention to. The 

aggregation may not be area-weighted, the aggregation of radiance in a heterogeneous terrain region 

should consider both the area and the local slope angle effects [22]. Besides, not all the aggregation is 

scientifically reasonable. As the aggregation of temperature follows neither the law of conservation of 

energy nor the law of conservation of matter, consequently, it may not make sense. The discrepancy 

between 1R   and 2R  , and 1P   and 2P   may be the focus of scale research. From the 

discussion above, the research on scale effects and scaling in remote sensing should begin around the 

points of view of measurements, retrieval models and products. 

 

Figure 1. The relationship of measurements, retrieval model and products at different scales. 
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3.1. Main causes of scale effects 

 

The main causes of scale effects can be summed up in three main reasons from the perspective of 

analysis, processing and modeling.  

The first reason is the limitation of measurement. Any measurement equipment has its own scale 

representation. It can only reflect the specific information within the scope of observation. An infrared 

radiometer at ground level can merely represent the temperature at the scale of points; however, the 

Large Aperture Scintillometer (LAS) can reflect the exchange of energy at the scale of a region. Zhang 

et al. [23] have shown that the criterion for judging whether the surface temperature is isothermal or 

not may only be dependent on the spatial scale or the spectral scale through experimental verification. 

Along with the change of scale, the isothermal surface could become non-isothermal. 

The second reason is the scale applicability of the retrieval models. The retrieval models do not 

explicitly express the characteristics of scale; however, they may be suitable for homogeneous surface 

or point measurements [4]. Chehbouni et al. [24] pointed out that it is not appropriate to use 

relationships between model and observational variables developed and calibrated at a local scale for 

application at a larger scale just by scaling the parameters. As a result, they need to be simplified or re-

parameterized to adapt to the new circumstances since the driving force or mechanism may be totally 

different at various scales. It is difficult to imagine that models at the scale of leaves are still applicable 

to the scale of canopy. Consequently, the models or algorithms proposed at one scale would be neither 

effective, nor similar, or need to be revised at any other scale. Therefore, the first step of scale research 

is to investigate the impact of scale on the mechanism of physical models and algorithms. At present, 

the scale applicability of Lambert's assumption [25], Beer's law [26], Helmholtz's reciprocity principle 

[27], and Planck's Law [28,29] have already been discussed at the pixel scale in remote sensing 

applications. The results showed that we need to carefully consider the scale's applicability for 

retrieval models when using them at different scales. 

The third reason is the heterogeneity of land surface and the characteristics of linearity or 

nonlinearity of the retrieval models. These two factors affect the scale effects together. If the 

measurements are homogeneous, it would not cause scale effects no matter whether the retrieval 

models are linear or not. The heterogeneity could be thought of as the inherent nature of land surfaces, 

which are a mosaic of different cover types. In other words, heterogeneity would be considered as the 

surface properties vary over the observed scene [19]. When observing through sensors, it may be very 

heterogeneous, especially in the case of coarser spatial resolution sensors. As the resolution decreases, 

the possibility that one pixel contains more than one cover type would increase. Therefore, 

heterogeneity is the most fundamental characteristic of all landscapes [30]. If land surface 

measurements or media properties vary in observation unit (space), it can be thought of as 

heterogeneity [5]. The surface heterogeneity is often of great concern when deriving surface 

parameters using remotely sensed data [31]. Here, the heterogeneity may be caused either by the 

change of density or the discontinuity that means the contrast change between cover types. The scale 

effects due to density change are usually smaller and can be negligible [31, 32]. On the whole, the term 

heterogeneity is a relative concept. The homogeneous canopy may still cause the heterogeneity of 

temperature due to the shade. In order to limit the influence of heterogeneity on the description of land 

surface processes, Garrigues et al. [19] suggested two strategies. One is to quantify the intra-pixel 
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spatial heterogeneity. The other is to define the proper pixel size to capture the variability of data and 

minimize the intra-pixel variability. Besides the heterogeneity of the land surface, the characteristics of 

linearity or nonlinearity of the retrieval models is the other factor. We cannot arbitrarily draw the 

conclusion that the linear retrieval models would not cause a scale effect or that the nonlinear retrieval 

models would cause a scale effect. The linear retrieval models could also incur scale effects when the 

retrieval models for different cover types are quite different [31]. The nonlinear retrieval models may 

also cause no scale effects when the medium is homogeneous, which has been successfully 

demonstrated by the Taylor series expansion [33,34]. Chen [31] suggested that nonlinear algorithms 

applied to pixels mixed with different land cover types may be the major cause of scaling errors. 

Considerable scale effects may be expected for mixed pixels where the mixture is unknown, as 

radiative signals from different cover types can be very different for the same measurements [32]. 

Generally speaking, the linear retrieval models may cause smaller scale effects than nonlinear ones in 

such a situation [31].  

 

3.2. Effects of scale on the measurements, retrieval models and products 

 

The mechanism analyses of scale issues undoubtedly involve several questions. The first one is 

what the main causes of scale issues are in remote sensing, which has already been analyzed above. 

The following one is what the effects of scale on the measurements, models and products are. 

With measurements, what we are more concerned about may be the mean, variance and correlation 

lengths. Bloschl et al. [5] and Western et al. [35] have already demonstrated the effect of the 

measurement scale on the apparent variance and the apparent integral scale (apparent correlation 

length). Here, the "apparent" means the statistical properties that appear in the data. The apparent 

variance decreases with increasing resolution, while the apparent correlation length, the average 

distance (or time) over which a property is correlated, always increases with increasing resolution. 

To the retrieval models, the effects of scale may be difficult to analyze. We may select suitable 

models at the corresponding scale; for example, the radiative transfer model of vegetation at the leaf 

scale [36] or canopy scale [37]. Whether the change of scale has an effect on the retrieval model is 

dependent on the status of the measurements and the form of the retrieval model. In the case of three-

dimensional structures, the retrieval models may need to be remodeled. Smolander and Stenberg [38] 

used a clumping index to correct the radiation attenuation coefficient at a shoot scale and proposed the 

forest reflectance models for coniferous forests. In the case of big-leaf assumptions, if measurements 

are homogeneous, the scale has no effects on the retrieval model no matter if the model is linear or 

non-linear. If the measurements are heterogeneous, there is a scale effect on the retrieval model. There 

is only no effect when the retrieval model is linear and does not vary with the land cover types, which 

means the model has a uniform form. Otherwise, the retrieval model may need to be simplified or re-

parameterized. Raffy [4] proposed a spatialisation model to overcome the scale effects by using the 

lower and upper bounds of the retrieval model. Tian et al. [21] addressed the problem of how the scale, 

or spatial resolution of reflectance measurements impacts retrievals of LAI and developed a physically 

radiative transfer formulation with explicit spatial resolution dependents.  

To the products, the effects of scale have already been widely discussed. There is conflicting 

conclusions in the literature as to whether products are scale dependent or scale free. The main reason 
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is that the scaling effects are usually dependent on the real application. If the retrieval model that is 

used is linear, there may be no scale effects, yet when the retrieval model has a uniform form for all 

the land covers, for example, if simply mapping the reflected solar radiation to the surface albedo,  we 

can argue that the reflected solar radiation parameterization is scale invariant. Otherwise, the 

nonlinearity of albedo with topography and spectral dependence of albedo and the reflected solar 

radiation would be scale dependent. This demonstrates that a different parameterization and different 

assumptions related to the retrieval model can lead to different conclusions for the same physical 

process [39]. Raffy [4] used a convex hull to judge whether products are overestimated or not. The 

concave retrieval model overestimates the arithmetic average of values derived independently from 

fine resolution, while the convex retrieval model underestimates them. Garrigues et al. [34] pointed 

out that the magnitude of scaling effects increases rapidly with pixel size until the size is larger than 

the typical length scale of data for the univariate retrieval model. For the bivariate transfer function, 

the scaling effects are the combined effects of several components, which may add up or compensate 

for each other. The effects of scale on specific products are theoretically and practically analyzed. We 

may resort to relevant literature, such as bidirectional reflectance distribution function (BRDF) and 

albedo [40], the temperature [22], the emissivity [23], the infrared radiation and the reflected solar 

radiation from the surface [39], the latent, sensible and ground heat fluxes [16,39,41-44], carbon flux 

[45,46], soil moisture [47-50], NDVI and vegetation fraction [51,52], LAI [17,31,33,34,53,54], net 

primary production (NPP) and gross primary productivity (GPP) [55-57], directional gap fraction [58]. 

 

4. Quantitative descriptions of scale threshold and scale domain 

 

After discussing on the main causes of scale issues and the effects of scale on the measurements, 

models and products, the analysis of scale threshold and scale domain becomes an another critical 

problem waiting to be resolved. It is the basis of understanding scale issues. At present, one great 

advantage of remote sensing is the capacity to provide data at various resolutions. It may become 

easier to identify the scale thresholds below by identifying which biophysical or geophysical variables 

are spatially dependent and whether they become less dependent or independent. Here, we may take 

the scale domain as the appropriate scale for a given geographical environment. The relevant 

knowledge of scale threshold and scale domain may benefit the understanding of the validation scope 

of the retrieval model, dynamics of landscapes. In the following, several representative methods will 

be presented. Although these approaches may not necessarily apply to all cases, they in fact provide 

effective ways to cope with the problems. 

 

4.1. Geographic variance method (GVM) 

 

Moellering and Tobler [59] proposed the geographic variance method to analyze the scaling effects 

of geographic phenomena. Geographic variance analysis, which is a hierarchical analysis, can 

determine the relative variability and independent contribution at each level in a nested hierarchy. 

Most spatial data can be constructed to a nested hierarchy by a simple aggregation approach, and then 

the geographic variance method can be applied [30]. According to this theory, the total variability can 

be divided using the sum of squares at each level, while most geographical phenomena may occur at 
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the level where the level variability is the highest. In other words, the operational scale of a 

phenomenon coincides with the scale of maximum variability in the data. Wu et al. [30] argued that 

the geographic variance method may be a potentially powerful method to detect and describe multi-

scale structures of landscapes. However, Cao and Lam [3] thought its validity remains unclear and 

more analysis is needed. In consequence, this method needs to be further investigated systematically in 

remote sensing. 

 

4.2. Wavelet transform method (WTM) 

 

The wavelet transform method, which is a relatively new mathematical technique, has already been 

widely used in various disciplines. It uses a localized function in time or space. The wavelet's size can 

be adjusted and shifted to analyze a data set. Thus, we can investigate features of interest in the data 

set at an appropriate scale, for example, broad features at a large scale and fine features at a small 

scale. With the help of the wavelet transform method, we can find where changes in a data set take 

place and simultaneously measure how large these changes are. Percival [60] suggested that the 

wavelet variance calculated by the wavelet transform method is a natural tool to investigate the spatial 

scales of variability in remote sensing data. It can be used as an indicator to quantify the length scale 

of land surface. Through the analysis of simulating images, the hypothesis is confirmed that the 

dominant length scales in the landscape may correspond to the scale with the highest wavelet variance 

[16]. The best wavelet to identify length scales is the Haar wavelet. The results indicate that the 

wavelet transform method is also a suitable tool to analyze the heterogeneity of land surface and infer 

the optimum scale under which the main variability presented in the image may be lost. Apparently, 

GVM and WTM are different methods. One starts from the space domain, while the other starts from 

the frequency domain. However, these two methods will produce the same conclusion through several 

data simulations. It may be due to the fact that the cumulative variance and covariance are equal to the 

variance and covariance within the specific scale in the case of the Haar wavelet. Wavelet analysis 

would be a good tool to study multi-scale relationships of spatial pattern and heterogeneity [10]. 

However, the manner of WTM is also dependent on the mother wavelet. WTM's potential for using 

other wavelets, such as Daubechies, Coiflet and so no, needs to be further explored. 

 

4.3. Local variance method (LVM) 

 

In order to choose an appropriate scale for a particular application, Woodcock and Strahler [61] 

proposed the local variance method, which is related to the relationship between the size of objects in a 

scene and the spatial resolution of sensors. The local variance uses the standard deviation as an 

indicator to reflect the mean value of the standard deviation of a moving window over the entire 

image. According to the graphs of local variance as a function of scale, the spatial structure of an 

image can be measured. The reasons are very simple. When the spatial resolution is considerably finer 

than the size of objects in the scene, most of the measurements in the image will be highly correlated 

with their neighbors and the local variance would be low. As the size of spatial resolution increases, it 

may approximate the size of objects, then the likelihood of neighbors being similar decreases and the 

values tend to be different from each other. It thus causes the local variance to increase. If the size of 
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spatial resolution increases further, it would be greater than the size of the object, and the possibility of 

one single pixel containing many objects increases, then the local variance gradually starts decreasing. 

Therefore, the peak would appear when the size of spatial resolution matches the size of the objects. 

Multiple high local variance peaks may show that the scene has multiple scales of variation. For 

example, the local variance as a function of resolution for agricultural areas, may indicate two distinct 

scales of high variance, one related to the size of individual crop rows, and the other related to the size 

of the field [61]. With the help of analysis of local variance, the scale where the geographic 

phenomenon may occur can be found, and then the observational scale of study can be determined. 

Here, the local variance looks like the texture analysis in digital image processing [3]. The only 

difference is that the texture analysis method can use several indices, such as moments, min-max, 

entropy, and so on. The local variance method tries to find the "scale of action", however, there are 

certain limitations involved in the usage, which are acknowledged by the authors. One limitation is 

that it is unrealistic to assume an idealized square wave on the part of the sensor and the pixel value of 

a coarse resolution image is simply an average of finer resolution pixels within corresponding coarse 

pixels. The other limitation is that it is dependent on the global variance in the image and the values of 

local variance cannot be directly compared between different images. Therefore, the relevant 

improvements should be made around these limitations. 

 

4.4. Semivariogram based method (SVM) 

 

The semivariogram is often used as a tool to measure the difference in property values at two 

sample locations as a function of the distance between these locations. It provides the mean 

characteristics of spatial heterogeneity at the image scale. There are three features to characterize the 

semivariogram: nugget, sill and range. These features can be used to characterize and quantify the 

spatial heterogeneity of a land surface [19]. The nugget is the discontinuity of the semivariogram at the 

origin. It can be used to judge if uncorrelated noise (measurement error) exists or spatial structures are 

smaller than the pixel size. The sill is the value that the semivariogram may reach when the distance 

heads toward infinity. It can be an indicator of the spatial variability of the data. The range is the 

distance at which it reaches a sill. It can be used to characterize the image spatial structures. Artan et 

al. [62] used the semivariogram and the characteristic length calculated from the spatial 

autocorrelation to determine the scale of variability of the remotely sensed data. In order to account for 

the multiple length scales of data, Wackernagel [63] and Garrigues et al. [19] proposed a linear 

combination of elementary variogram models to model the semivariogram. Then, the structural 

parameters of the semivariogram model can be generalized into a single parameter: the integral range 
( A ). Here, its square root cD  is a weighted average of several range parameters and quantifies the 

mean length scale of data. Based on Shannon’s theorem, the spatial sampling frequency must be larger 
than 2 / cD , therefore, the pixel size must be smaller than / 2cD  to retain the major part of spatial 

variability. Here, either A  or cD  can be used to judge whether the geographical scale is large enough 

to detect the length scales of the landscape. In addition, the rate of data regularization can be used to 

characterize the rate of the loss of image spatial variability at a given spatial resolution. Tarnavsky et 

al. [52] applied variogram modeling to evaluate the difference in spatial variability at different scales 
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and characterize the impact of scale. Based on the analysis, an approach for selecting the spatial 

resolution is proposed. Subsequently, Garrigues et al. [64] proposed to use multivariate, red and near 

infrared spectral properties to quantify the landscape spatial heterogeneity by direct and cross-

variograms modeled together with the geostatistical linear model of co-regionalization. The result 

showed it to be more powerful than univaritate variogram modeling. 

 

4.5. Fractals method (FM) 

 

The term "fractals", first proposed by Mandelbrot [65], is now widely used in different science 

domains, such as biology, physics, chemistry, geography and so on. The reason why fractals attract 

more and more attention is that the real world is too regular to be measured or simulated by traditional 

methods [13]. Many curves or surfaces in the world may be statistically made up of copies of itself at a 

reduced scale. This statistical self-similar property is the key point to understanding the concept of 

fractals. In classical geometry, the dimension of a point is zero, a line is 1, a plane is 2, and a cube is 3. 

While, in fractal geometry, the fractal dimension D of an object can be any non-integer dimension 

[66]. For example, the fractal dimension of a curve can be any value between 1 and 2. The fractal 

dimension of a surface can be any value between 2 and 3. Empirical studies indicate that true fractals 

with strict self-similarity do not exist. However, the information that fractal dimensions provide with 

scale can be used to indicate the optimum measurement scale. There are many ways to determine 

fractal dimensions. Xia and Clarke [67] introduced several frequently used definitions of fractal 

dimension, which could be used to find the process scale. The turning points of fractal dimension may 

contain some important information. For example, they should be those where new patterns may 

emerge or resolutions approach dominant operational scales. Generally speaking, the more irregular an 

object, the bigger the fractal dimension. The fractal dimension of an image is expected to be lower as 

the resolution becomes coarser due to coarser resolution corresponding to lower variability and vice 

versa. Therefore, the scale at which the highest fractal dimension is measured may be the scale at 

which most processes operate [13]. Although no agreement has been reached on the definition of 

fractal dimension, it is a promising research direction. Table 2 summarizes the advantages and 

disadvantages of the above mentioned methods. 

 

Table 2. Comparison of different methods used to quantitatively describe scale threshold 

and scale domain. 

Methods Advantages Disadvantages References 

GVM 

- A hierarchical analysis to determine 
the relative variability and 
independent contribution at each 
level. 
- The data set can be divided into any 
arbitrary nested scale. 

Its validity remains unclear and more 
analyses are needed. 

[3] 
[30] 
[59] 
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Table 2. Cont. 

WTM 

It can investigate features of interest 
in the data set at an appropriate scale 
and find the length scale of the 
variability. 

- The dimension of data set must be the 
exponent of 2. 
- The manner of WTM is dependent on 
the mother wavelet. 

[16] 
[60] 

LVM 
The principle is easy to be 
understood. 

- It is unrealistic to assume the pixel 
value of a coarse resolution image is 
simply the average of finer resolution 
pixels within the corresponding coarse 
pixel. 
- It is dependent on the global variance in 
the image and the values of local 
variance cannot be directly compared 
between different images 

[61] 

SVM 

- It can be used to judge whether the 
geographical scale is large enough to 
detect the length scales of the 
landscape. 
- The loss of image spatial variability 
at a given spatial resolution can be 
estimated. 

The second order stationarity hypothesis 
should be satisfied. 

[19] 
[63] 

FM 

- It has a theoretical basis that many 
curves or surfaces in the world may 
show the statistical self-similar 
property. 
- The more irregular an object, the 
bigger the fractal dimension. The 
turning points of fractal dimension 
may contain some important 
information. 

No agreement has been reached on the 
definition of fractal dimension which can 
be used to determine the characteristic 
scale. 

[13] 
[67] 

 

5. Overview of general scaling methods 

 

In order to solve scaling problems and compensate for scaling effects, several authors have already 

developed some frameworks. These frameworks provide a few systematic approaches to characterize 

the influence of scale on the measurements, retrieval models and products. In order to better 

understand these approaches, we classify them into three main categories which will be briefly 

summarized below.  

 

5.1. Scaling methods for measurements 

 

Scaling methods for measurements are easier to deal with because the measurements recorded by 

remote sensors usually capture the radiance emitted or reflected by the surface. In such cases, the 

Area-Weighted Scaling Methods (AWM) may be applicable in a flat region. Otherwise, the influence 

of slope angle should be taken into account [22]. These methods were all developed on the basis of the 
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law of conservation of energy or matter. If the retrieval models at both local and large scale are known 

in priori, the scaling methods mentioned above would work well. However, if the retrieval model at 

one scale, either local scale or large scale is known, the retrieval model derived from one scale cannot 

be guaranteed to be used at the other scale. Therefore, AWM alone is insufficient; correction items to 

the area-weighted measurements need to be added in order to scale products correctly. This process 

could be thought of as finding the representative measurements corresponding to a large scale. The 

aim of these methods is to get the scale invariant result at large scale when the local scale retrieval 

model is used. Bierkens et al. [15] proposed a scaling method, Finding Representative Parameters 

Method (FRPM), and gave an example of finding the representative conductivity for blocks in a 

numerical model of groundwater flow. Through the comparison of model output at both local scale and 

large scale, the representative conductivity can be thought of as the sum of two items. One is the 

arithmetic block average of parameters. Another is the block covariance of parameters. Through 

numerical analysis and comparison, we may give the analytical solution to the representative 

measurements in remote sensing. Then, the correction items may be the combined effects of the 

nonlinearity of the retrieval model and the heterogeneity of measurements. 

 

5.2. The scaling methods for retrieval models 

 

Generally speaking, we may only know the retrieval model at a specific scale. That is to say, we 

need to scale the retrieval models to the other scales through the appropriate assumptions and 

simplifications in order to not only consider the scaling effects but also provide scale invariant 

algorithms. Raffy [4] proposed a general method, the Computational Geometry Method (CGM), to 

reduce the scaling effects introduced by the heterogeneity of measurements and the nonlinearity of a 

retrieval model at a local scale. The method takes advantage of the convex hull of computational 

geometry to determine the interval where the distributed result may exist. Considering all possible 

distributions of measurements, the distributed result always falls into the interval of the lower and 

upper bounds of the retrieval model which measures the maximum error due to the scaling. Here, the 

bounding functions can be interpreted as a measure for the non-linearity of the model [16]. 

Subsequently, Raffy and Gregoire [68] used such a concept combined with a least square method to 

determine the coefficients of the semi-empirical model that is validated at a small scale and upscale the 

model to the large scale with global radiances. If there is not more information available other than the 

domains of measurements and the retrieval model at the local scale, one can expect to reduce the 

scaling effects by employing the model spatialization method, which is the function of the convex and 

concave function of the retrieval model at a local scale. Garrigues et al. [34] argued that the 

assumption that the retrieval model follows a uniform distribution in the interval between the convex 

and concave function is inappropriate within a moderate resolution pixel. This may be one of the 

reasons limiting the application of the spatialization model. For the specific retrieval model, a more 

specific scaling method would be used, the Physical Scaling Method (PSM) based on the radiative 

transfer theory. Tian et al. [21] developed this method with an explicit spatial resolution dependent in 

order to upscale LAI retrieved from AVHRR data to the coarser resolutions. Malenovsky et al. [11] 

discussed PSM and gave examples of the radiative transfer scaling in a Norway spruce forest stand. 
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5.3. The scaling methods for products 

 

Compared to the scaling methods of measurements and retrieval models, the scaling methods for 

products are more widely studied in research. These scaling methods provide a few systematic 

approaches to characterize the land surface heterogeneity and compensate for scaling effects. Here, we 

just emphasize the spatial domain. Other scaling methods applied in different domains can be realized 

by certain approaches. For example, scaling in the temporal domain may consider the general diurnal 

patterns of meteorological variables [69] or assume that the evaporative fraction (EF) is constant 

throughout the day [70]. Scaling in the spectral domain and the directional domain would rely on 

experimental regression or look-up tables (LUT) to solve the scale problem, respectively. Since land 

surface is very heterogeneous, up-scaling is probably more important than downscaling in product 

validation. Therefore, we may be more concerned about the up-scaling method. The downscaling 

method resorts to relevant literature [18]. In general, the simple up-scaling method can use statistical 

algorithms to estimate the spatial means at a large scale by either area-weighted products of 

homogeneous patches or the integration over the probability density function of products [42]. In the 

following, other extensively used scaling methods in the spatial domain, such as Empirical Regression 

Method (ERM), Taylor Series Expansion Method (TSEM), Contextural Parameters Method (CPM), 

Statistical Fractal and Self-similar Method (SFSM) will be analyzed in detail.  

ERM is simply used to empirically calibrate the relationship of products between fine and coarse 

scales [71-73]. The goal is to relate the products at different scales by regression. Fernandes et al. [53] 

simply used empirical relationships between spectral vegetation indices and surface estimations of 

LAI, which are in-situ measurements from the auxiliary sites, to estimate coarse-scale LAI. Martinez 

et al. [74] used a multivariate ordinary least squares (OLS) algorithm which uses an iteratively re-

weighted least squares (IRLS) algorithm to build an empirical relationship and upscale the field LAI 

data to the corresponding satellite products. Although the scaling method is simple, the relationship of 

regression is usually site, time, model and scale dependent. If any one factor is changed, the 

relationship may need to be recalibrated. Consequently, it would gradually be replaced by other 

scaling methods. 

TSEM is based on Taylor's theorem of linearizing the retrieval model around the arithmetic average 

of measurements [16,33,34]. It characterizes the scaling effects as the combined effects of degree of 

non-linearity of the model and the heterogeneity of the land surface. The key to using this method is to 

know how to estimate the variance and covariance within the pixel at coarse resolution. Hu and Islam 

[33] proposed a novel method based only on the mean values of measurements at pixel scale to 

parameterize the variance and covariance terms by the half ellipse relationship between the normalized 

standard deviation of radiance and the normalized average radiance over the pixel. They used this 

relationship to study the effects of subgrid scale heterogeneity of soil wetness and temperature on grid-

scale evaporation [75]. Garrigues et al. [34] used the local dispersion variance and covariance which 

are calculated by semivariogram and cross semivariogram from concurrent high spatial resolution 

images or a spatial sampling per type of landscape of the high spatial resolution data to quantify the 

spatial variability within the moderate resolution pixel. Afterwards, Garrigues et al. [76] proposed a 

spatio-temporal model of the variogram to estimate the intra-pixel spatial heterogeneity. It is a novel 

approach to predict the variogram at a date at which the high spatial resolution scene is not available 
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by the seasonal cycle of phenological variability. Although its validity is argued by Chen [31], it is still 

useful for product scaling. In conclusion, the method is easy to understand and operate. If the intra-

pixel spatial heterogeneity can be successfully represented, it can give reasonable results. The 

disadvantage of TSEM is that it must satisfy some hypotheses. The model needs to be continuous and 

have at least up to second order continuous derivatives in the interval under consideration. If the model 

has strong non-linearity, the approximation would not be appropriate. When using complicated models 

with a large number of variables, it would be difficult to find the derivatives of the model [16]. Again, 

failure to include high order terms or interactive terms (covariance) may limit the application of this 

technique. 

Generally, the variance and covariance within one pixel are important for the traditional textural 

parameters that can capture the spatial variability of the surface. However, they are difficult to be 

estimated due to the fact that the concurrencies of high and low resolution images are often not 

available. In addition, they may not be used to discriminate the situations where the surface 

heterogeneity can be caused either by the cover type changes or by density change within the same 

cover type. If the surface heterogeneity is caused by cover type changes, the linear models which have 

different forms for different cover types may also cause scale effects. In contrast, if the surface 

heterogeneity is caused only by density change, the non-linearity of the model would generally cause 

very small scale effects [31, 32]. In short, TSEM would be useless when the model is discontinuous or 

piecewise against the measurements. In order to break through the limitations of using textural 

parameters, Chen [31] proposed a different scheme, CPM. It took the contextural parameters (e.g., the 

fractions of subcomponents) as a bridge to quantify the scaling effects. Simic et al. [55] tried to use 

such subpixel information to upscale NPP. The result showed that the correlation between the 

distributed NPP and lumped NPP was greatly improved. El Maayar and Chen [44] thought the scale 

effects resulted from the overlooking of sub-pixel variability of land surface characteristics and 

proposed a simple algorithm that used contextural parameters of vegetation, soil cover, and surface 

topography to correct evapotranspiration (ET) estimates. Jin et al. [54] developed such algorithms to 

remove the biases in lumped LAI maps using sub-pixel land cover-type information and correct coarse 

resolution products of LAI. Here the fractions can be estimated either by the sub-pixel land cover 

masks at high resolutions or the linear unmixing method. Braswell et al. [77] used the Bayesian-

regularized artificial neural network with combined MODIS-MISR data to estimate sub-pixel land 

cover fractions and yielded a quantitative improvement result over spectral linear unmixing of single-

angle, multispectral data. The result is promising. However, contexture-based methods are usually 

model-dependent. They cannot provide a general method to compensate for scaling effects. The 

mapping function needs to be redefined when the model is changed. When the model has several 

variables, the mapping functions become very hard to be derived. Therefore, contexture-based 

methods are not alternatives to texture-based methods. They are new attempts to solve scaling effects. 

In practice, we need to choose the corresponding scaling methods according to actual requirements. 

SFSM is based on the simple scaling and multiscaling characteristics of products. Dubayah et al. 

[78] have found the log-log linearity relationship between the statistical moment and the scale factor, 

and the non-linear dependence of scaling exponents with order moment. That is to say, the statistical 

properties (moments) of process can be extended from one scale to the other scale. Hu et al. [47] 

analyzed the statistical characterization of soil moisture retrieved from remotely sensed passive 



Sensors 2009, 9 

                            

 

1787

microwaves. They found these properties and suggested a deviation from simple scaling and the 

possible presence of multiscaling [49,79]. Das and Mohanty [50] argued that the scaling exponent of 

soil moisture during dry-down suggests a transition from simple scaling (in wet fields) to multiscaling 

(in dry fields) behavior. However, the fluctuation parts of soil moisture, which is decomposed by 

wavelet transforms, showed a simple scaling characteristic which implied the possibility of scaling soil 

moisture. In addition to soil moisture, other products also behave with self-similarity characteristics, 

such as NDVI and radiometric temperature [80]. Based on the multiple moments scaling law, the wish 

of scaling between different scales without other prior knowledge may be realized. 

Table 3 summarizes the general scaling methods discussed above. Besides these methods, we can 

use other methods for scaling the products, such as disaggregation-aggregation combined methods[81], 

process simulation methods [9] and so on. Again, additional information provided by optical and 

thermal sensors can be used as auxiliary knowledge to assist the scaling. Kustas [82] utilized such 

information and proposed the DisTrad technique to estimate subpixel variation of surface temperature. 

On the whole, scaling methods for products have already become a universally recognized problem. Its 

development needs the development of cross-disciplines in order to achieve theoretical and technical 

innovation. 

 

Table 3. Summaries of general scaling methods used in remote sensing. 

Categories Methods Advantages Disadvantages Ref. 

Scaling 
methods for 

measurements 

AWM 
- Simple principle. 
- Easy usage. 

- May be only suitable for flat regions. [22] 

FRPM 

- Simple principle. 
- The analytical 

solution to scale 
measurements. 

- The representative parameters may have no 
specific physical meanings. 

- It is difficult to get representative parameters 
when facing a large number of input arguments. 

[15] 

Scaling 
methods for 

retrieval models 

CGM 

- Regardless of 
whether or not 
retrieval models 
are continuous or 
derivable. 

-  Does not take into account the actual 
distribution of parameters. The weights for 
lower and upper bounds of a retrieval model 
may be inappropriate. 

- Needs a large amount of computing time and a 
special algorithm to retrieve convex hull, when 
facing a large number of input arguments. 

[4] 
[16] 
[68] 

PSM - More accurate. 
- It is difficult to derive when facing a large 
number of input arguments. 

[11] 
[21] 

Scaling 
methods for 

products 

ERM 
- Simple principle. 
- Easy usage. 

- Less accurate. 
[53] 
[74] 

TSEM 
- Better basis of 

mathematics. 
- Easy usage. 

-  The retrieval model and its derivatives must be 
continuous in the domain. 

-  It may cause greater error when the model is 
strongly non-linear. 

-  The model needs to use the local variance as 
input, which may usually not be available. 

[16] 
[33] 
[34] 
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CPM 

- Taking the 
discontinuity as 
the main cause of 
scale effects. 

- Easy usage. 

- Neglects the heterogeneity within certain land 
types. 

- Has no theoretical or physical basis. 

[31] 
[55] 
[44] 
[54] 

SFSM 

- Simple principle. 
- Grasps the simple 
scaling and multi-
scaling 
characteristics of 
surface nature. 

- Scaling products  
without other prior 
knowledge. 

- The scale domain is not fully understood. 
[78] 
[47] 
[80] 

 

6. Conclusions 

 

Scale has already been recognized as a crucial concept in the description of the hierarchical 

structure of our world. Undoubtedly, remote sensing will advance the development of scale research. 

In reviewing the scale issues in remote sensing from analysis, modeling and demonstrating perspective, 

we found that there is no universal scaling method. Each has specific problems and limitations, 

although they could provide the possibility for solving scaling problems and compensating for scaling 

effects. The decision as to which method to use depends on real situations. The reason why no one 

method is proved to be effective may mainly stem from the heterogeneity of land surface and the 

nonlinearity of the retrieval models. We may expect the advancement in the understanding of the scale 

threshold and scale domain would bring rapid progress of scale research in remote sensing. 

Although important steps have already been made, the research concerning scale is still in the initial 

stage and the scaling methods are not mature. In the future, we may pay more attention to: 1) How to 

effectively scale data with the concurrence of both local and large scale data. The optimal scale to 

estimate land surface parameters, the relationship between scale domain and coefficients of scaling can 

be deeply investigated when the data at different scales is available. 2) How to characterize the inner 

pixel heterogeneity without the concurrence of local data. We may use other spectral bands (i.e. optical, 

thermal or microwave sensors) or combine the Land Model with time-series data to estimate the 

heterogeneity within the pixel. 3) How to well combine the TSEM and CPM and absorb the 

advantages of both methods. The effect of heterogeneity caused either by the change of density or the 

discontinuity on scaling can be resolved. 4) How to well define the input variables, models and output 

parameters. Different parameterizations may result in different conclusions. Furthermore, the clear 

separation of system errors from the retrieval model and scale effects is also the key perspective of 

scale research. 5) How to effectively validate products at different scales. This needs the development 

of scale research. We will face the challenges to bridge the gap between theory and application.  
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