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Abstract: Exudates are the primary sign of Diabetic Retinopathy. Early detection can 

potentially reduce the risk of blindness. An automatic method to detect exudates from low-

contrast digital images of retinopathy patients with non-dilated pupils using a Fuzzy C-

Means (FCM) clustering is proposed. Contrast enhancement preprocessing is applied 

before four features, namely intensity, standard deviation on intensity, hue and a number of 

edge pixels, are extracted to supply as input parameters to coarse segmentation using FCM 

clustering method. The first result is then fine-tuned with morphological techniques. The 

detection results are validated by comparing with expert ophthalmologists’ hand-drawn 

ground-truths. Sensitivity, specificity, positive predictive value (PPV), positive likelihood 

ratio (PLR) and accuracy are used to evaluate overall performance. It is found that the 

proposed method detects exudates successfully with sensitivity, specificity, PPV, PLR and 

accuracy of 87.28%, 99.24%, 42.77%, 224.26 and 99.11%, respectively.  

 

Keywords: Exudates, diabetic retinopathy, non-dilated retinal images, Fuzzy C-Means 

clustering. 
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1. Introduction  

 

Diabetic retinopathy eye diseases are the main cause of vision loss and their prevalence is set to 

continue rising [1]. The screening of diabetic patients for the development of diabetic retinopathy can 

potentially reduce the risk of blindness in these patients [2-6]. Early detection enables laser therapy to 

be performed to prevent or delay visual loss and may be used to encourage improvement in diabetic 

control. Current methods of detection and assessment of diabetic retinopathy are manual, expensive 

and require trained ophthalmologists. Exudates are one of the primary signs of diabetic retinopathy [7, 

8]. Automatic exudates detection would be helpful for diabetic retinopathy screening process. 

Gardner et al. proposed an automatic detection of diabetic retinopathy using an artificial neural 

network. The exudates are identified from grey level images and the fundus image is analyzed using a 

back propagation neural network. The classification of a 20x20 region is used rather than a pixel-level 

classification [9]. Sinthanayothin et al. reported the result of an automated detection of diabetic 

retinopathy on digital fundus images by a Recursive Region Growing Segmentation (RRGS) algorithm 

on a 10x10 window [10]. In the preprocessing step, adaptive, local, contrast enhancement is applied. 

The optic disc, blood vessels and fovea detection are also localized [6]. Wang et al. used color features 

on a Bayesian statistical classifier to classify each pixel into lesion or non-lesion classes [11]. Phillips 

et al. have applied a thresholding technique based on the selection of regions to detect exudates. A 

patch of size 256 x 192 pixels is selected over the area of interest. Global thresholding is used to detect 

the large exudates, while local thresholding is used to detect the lower intensity exudates [12]. Huiqi Li 

et al. proposed an exudate extraction technique by using a combination of region growing and edge 

detection techniques. The optic disc is also detected by principal component analysis (PCA). The 

shape of the optic disc is detected using a modified active shape model [13]. Sanchez et al. combined 

color and sharp edge features to detect the exudates. The yellowish objects are detected first; the 

objects in the image with sharp edges are then detected using Kirsch’s mask and different rotations of 

it on the green component. The combination of results of yellowish objects with sharp edges is used to 

determine the exudates [5]. Hsu et al. presented a domain knowledge based approach to detect 

exudates. A median filter is used to compute an intensity difference map. Dynamic clustering is then 

used to determine lesion clusters. Finally domain knowledge is applied to identify true exudates [2]. 

Usher et al. detected the candidate exudates region by using a combination of RRGS and adaptive 

intensity thresholding [14]. Goh et al. used the minimum distance discriminant to detect the exudates. 

The spectrum feature center of exudates and background are computed and then the distance from each 

pixel to class center is calculated. The pixel is classified as exudate if it falls within the minimum 

distance [15]. Ege et al. used a median filter to remove noise. Bright lesions and dark lesions are 

separated by thresholding. A region growing algorithm is used to locate exudates. Bayesian, 

Mahalanobis and K-Nearest Neighbor classifier were tested. From these experiments, the Mahalanobis 

classifier was shown to yield the best results [16]. Walter et al. detected exudates using grey level 

variation and contours determined by means of morphological reconstruction techniques [17]. 

Niemeijer et al. have proposed a machine learning-based to detect exudates [18]. 

The Fuzzy C-Means (FCM) clustering is a well-known clustering technique for image 

segmentation. It was developed by Dunn [19] and improved by Bezdek [20]. It has also been used in 

retinal image segmentation [3, 21-24]. Osareh et al. used color normalization and a local contrast 
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enhancement in a pre-processing step. The color retinal images are segmented using Fuzzy C-Means 

(FCM) clustering and the segmented regions are classified into two disjoint classes – exudate and non-

exudate patches – using a neural network [3, 21]. The comparative exudate classification using 

Support Vector Machines (SVM) and neural networks was also applied. They showed that SVM are 

more practical than the other approaches [23]. Xiaohui Zhang and Chutatape Opas used local contrast 

enhancement preprocessing and Improved FCM (IFCM) in Luv color space to segment candidate 

bright lesion areas. A hierarchical Support Vector Machines (SVM) classification structure was 

applied to classify bright non-lesion areas, exudates and cotton wool spots [24].  

Many techniques have been performed for exudate detection, but they have limitations. Poor quality 

images affect the separation result of bright and dark lesions using thresholding and exudate feature 

extraction using the RRGS algorithm, while other classification techniques require intensive 

computing power for training and classification. Furthermore, based on experimental work report in 

the previous work, most of techniques mention above worked on images taken when the patient had 

dilated pupils. Good quality retinal images with large fields that are clear enough to show retinal detail 

are required to achieve good algorithm performance. Low quality images (non-uniform illumination, 

low contrast, blurred or faint images) do not give good results even when enhancement processes are 

included. The examination time and effect on the patient could be reduced if the automated system 

could succeed on non-dilated pupils.  

 

2. Materials and Methods  

 

Forty digital retinal images of patient are obtained from a KOWA-7 non-mydriatic retinal camera 

with a 45 field of view. The images were stored in a JPEG image format (.jpg) files using the lowest 

compression rates. The image size is 500 x 752 pixels at 24 bit.  

 

2.1. Exudate detection 

 

Exudates can be identified on the ophthalmoscope as areas with hard white or yellowish colors with 

varying sizes, shapes and locations. They normally appear near the leaking capillaries within the retina. 

The main cause of exudates are proteins and lipids leaking from the blood into the retina via damaged 

blood vessels [3, 8]. This part of the paper describes how FCM clustering is use and how the features 

are selected and used. 

 

2.2 Coarse Segmentation using Fuzzy C-Means Clustering 

 

FCM clustering is an overlapping clustering algorithm, where each point may belong to two or 

more clusters with different degrees of membership. The features (discussed in Section 2.3) with close 

similarity in an image are grouped into the same cluster. The similarity is defined by the distance of the 

features vector to the cluster centers. Euclidean distance is used to measure this distance and data will 

be associated to an appropriate membership value [24, 29, 30]. The cluster center is updated until the 

difference between adjacent objective function, as displayed in Equation 1 is close to zero or 

practically less than a predefined small constant: 
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where m is an exponential weighting function that controls the fuzziness of the membership function, it 

is set to 2 by Bezdek [20]. M is number of features. C is number of clusters. uij is the degree of 

membership of xi in the cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension 

center of the cluster, and ||*|| is any norm expressing the similarity between any measured feature and 

the center. 

Fuzzy partitioning is carried out through an iterative optimization of the objective function shown 

above, with the update of membership uij and the cluster centers cj by Equations 2 and 3: 

 

2

1

1

1
ij

mc
i j

k i k

u

x c

x c






 
 
  



 (2)

 

1

1

M
m
ij i

i
j M

m
ij

i

u x
c

u









 

  (3)

 

The iteration will stop when Equation 4 is satisfied: 

 

 ( 1) ( )
max

k k
u uij ij ij     (4)

where  is a termination criterion, 0.00001 for our case. k is the iteration number, it is set to a 

maximum of 200 for our case. This procedure converges to a local minimum or a saddle point of Jm.  

The input to the FCM algorithm is a set of features. Rhe algorithm is composed of the following 

steps: 

Step 1: Initialize the fuzzy partition matrix U = [uij] (U(0)) by generating random numbers in the 

range 0 to 1 subject to Equation 5: 

1 1

1
M C

ij
i j

u
 

 (5)

Step 2: At k-step: calculate the centers vectors C(K)=[cj] with U(K) according to Equation 3. 

Step 3: Update the fuzzy partition matrix U(K) , U(K+1) by the new computed uij according to 

Equation 2. 

Step 4: Compute the objective function according to Equation 1. If the difference between adjacent 

values of the objective function is less than termination criterion () then stop the iteration; otherwise 

return to step 2. 

The output from FCM clustering is a list of cluster centers and n membership-grades for each pixel, 

where n is a number of desired clusters. A pixel will be assigned to the cluster with highest 

membership-grade. 
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2.3 Feature selection 

 

We asked ophthalmologists how they identify exudates in an image so that our feature selection 

would reflex ophthalmologists’ expertise. We found that color, shape and texture are among those top 

features they look at. To differentiate exudate pixels from non-exudates pixels, we attempt to mimic 

ophthalmologist expertise by extracting these relevant and significant features. Four features are 

empirically selected and used as input for FCM clustering. They are intensity value after pre-

processing, standard deviation of intensity, hue and number of edge pixels from an edge image. The 

reasons for the features selection and their details are explained in this section. 

1. Intensity image after pre-processing (ICLAHE) is selected as one of the classification features 

because exudate pixels can usually be distinguished from normal pixels by their intensity. Firstly, the 

Red, Green and Blue (RGB) space in the original image is transformed to Hue, Saturation and 

Intensity (HSI) space. A median filtering operation is then applied on the I (intensity) band to reduce 

noise before a Contrast-Limited Adaptive Histogram Equalization (CLAHE) is applied for contrast 

enhancement [23]. The original intensity band image and intensity band after preprocessing are shown 

in Figures 1A and 1B, respectively. 

 

Figure 1. Pre-processing result. (A) Original I band. (B) I band after pre-processing. (C) 

Standard deviation of (A). 

 

 
(A) (B) (C) 

 

2. Standard deviation of ICLAHE is also chosen as an input parameter because distribution 

measurement of the pixel values would differentiate exudate area from the others since standard 

deviation shows the main characterization of the closely distributed cluster of exudates. The standard 

deviation of the intensity bands after preprocessing is shown in Fig. 1C. Standard deviation is defined 

in Equation 6: 
2

( )

1
( ) . ( ( ) ( ))

1 CLAHECLAHE I
i W x

Std x I i x
N




 
   (6)

where x is a set of all pixels in a sub-window W(x), N is a number of pixels in W(x), ICLAHE(x) is mean 

value of ICLAHE(i) and iW(x). A window size of 15 x 15 pixels was used in this step. 

3. Hue, also extracted from HSI space, is the third feature selected for input to FCM clustering 

because hue components make up chrominance or color information. From visual inspection, exudates 

appear differently in a yellowish or white color.  
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4. Normally exudates gather together in small clusters so they tend to have many edge pixels around 

the area. A number of edge pixels is also selected as our last feature to FCM clustering. However, 

during this feature extraction, we remove some irrelevant edge pixels, as described:  

4.1 For fast edge detection, a Sobel edge operator with a mask size of 3x3 pixels is used to compute 

the gradient magnitude.  

4.2 The result from the previous step is then thresholded by a fixed and low value in order to get 

most of the edge pixels.  

4.3 However, some of the resulting edge pixels from the previous step do not represent the edge of 

the exudates. Some of them are part of vessel’s edge and these vessel edge pixels need to be removed 

before proceeding to the next step. Quick and approximate blood vessel detection is achieved by using 

a decorrelation stretch on the Red band. The decorrelation stretching is a process used to enhance or 

stretch the color differences found in a color image. Contrast exaggeration is used to expand the range 

of intensities of highly correlated images [24, 25]. Blood vessels can be detected by thresholding this 

result and the detection result are shown in Fig. 2A. 

4.4 Some exudates are soft exudates which cannot be detected by a strong edge. High-value red 

pixels selected from the decorrelation stretch image are chosen and added to the result from the 

previous step because the soft exudates normally appear red. However, red pixels which belong to the 

optic disc, which also appear red, have to be removed first.   

The optic disc is quickly detected by using an entropy feature on ICLAHE. The entropy is a statistic 

measurement of randomness that can be used to characterize the texture of the input image. The optic 

disc which is normally smooth appears in relatively low intensity in Entropy space. The resulting 

image is thresholded at an automatically selected grey level, using the Otsu algorithm [26]. Normally, 

the optic disc can be easily identified as the largest area. However, in some cases, such as the 

appearance of huge exudates in the image, there might be some areas in the image which are larger 

than the optic disc. Because the shape of optic disc is round, therefore the optic disc region selection 

process needs to be made specific to the largest one among the regions whose shapes have 

compactness, as calculate by Equation 7, close to one. To ensure that all the neighbouring pixels of the 

thresholded result are also included in the candidate region, a binary dilation operator is also applied. 

For this step, a flat disc-shaped structuring element with a fixed radius of 11 is used. An example result 

of an image with all the optic disc area masked out is shown in Figure 2B.  

 

Figure 2. Blood vessel and optic disc detection. (A) Blood vessel detected from 

decorrelation stretch image. (B) Optic disc area eliminated from the contrast enhanced 

image. 

 

 
(A) (B) 
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4.5 A number of neighboring white pixels of the resulting image from the process 4.1 – 4.4 is 

counted using a window size of 17 x 17 to form our final feature, namely an image of the number of 

edge pixels as shown in Figure 3D: 
24 ( ) /( )Compactness area perimeter         (7)

where area is the number of pixels in the region and perimeter is the total number of pixels around the 

boundary of each region. 

There are many parameters used in this experiment. They are, namely, window size in standard 

deviation, window size in fast edge detection using Sobel operator, the size of structuring element used 

for dilation operation in optic disc detection, window size used for find a number of edge pixel and a 

number of cluster. They are varied and tested empirically in order to assess the algorithm performance 

and parameters which give highest accuracy are chosen. Note that this manual parameters adjustment 

is a form of algorithm training and can significantly influence final evaluation, if the data is not 

sufficiently large, by introducing a positive bias. Example result of the four features is shown in Figure 

3. These four features will be used in the segmentation process as described in the next section.  

 

Figure 3. Input features for FCM clustering of image1. (A) Intensity image after pre-

processing. (B) Standard deviation of intensity image. (C) Hue image. (D) Image of edge 

pixels. 

 

 
(A) (B) (C) (D) 

 

2.4 Fine Segmentation using Morphological Reconstruction 

 

The FCM clustering algorithm is applied to forty test images to get a result of eight clusters (n=8) 

for each image; the result is shown in Figure 4.  

 

Figure 4. FCM clustering results with n=8. (A) Cluster 1. (B) Cluster 2. (C) Cluster 3. (D) 

Cluster 4. (E) Cluster 5. (F) Cluster 6. (G) Cluster 7. (H) Cluster 8. 

 

 
(A) (B) (C) (D) 
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Figure 4. Cont. 

 
(E) (F) (G) (H) 

 

The result from the previous section is a rough estimation of the exudates. In order to get a better 

result, a fine segmentation using morphological reconstruction is applied in this step. Morphology 

reconstruction is a part of morphological image processing. Morphological reconstruction is based on 

dilation on two images, a marker and a mask.  

The important cluster obtained from the previous steps is the cluster which contains most of the 

original image information but all exudate areas are missing, as displayed in Figure 4A. The term first 

cluster will be used throughout the text to represent this cluster even though it might not belong to the 

first cluster of clustering result. The exudate pixels can be obtained by subtracting this first cluster with 

the original intensity image, as displayed in Figure 5A. The first cluster is again used as a marker while 

the original intensity image is used as a mask. The morphological reconstruction by dilation is then 

applied on the previous overlaid image. Dilations of the marker image under the mask image are 

repeated until the contour of the marker image fits under the mask image. The result is displayed in 

Figure 5D. 

Final result is obtained by applying a threshold operation at automatically selected grey levels to the 

difference between the original image and the reconstructed image. The result image is shown in 

Figure 5E and Figure 5F shows the result superimposed on the original image. 

 

Figure 5. Exudates detection (A) Candidate areas after using FCM clustering. (B) Marker 

image. (C) Mask image. (D) Reconstructed image. (E) Difference image. (F) Result 

superimposed on the original image. 

 

 
(A) (B) (C) 

 
(D) (E) (F) 
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2.5 Performance measurement 

 

As a simple baseline for comparison, nearest neighbor classifier with Euclidean distance is used. 

The nearest neighbour classifier simply classifies a test instance with the class of the nearest training 

instance according to some distance measure. Performance of each parameter is measured by 

comparing the detection results with ophthalmologists’ hand-drawn ground truth. Nine performance 

measurements, namely, true positive (TP, a number of exudates pixels correctly detected), false 

positive (FP, a number of non-exudate pixels which are detected wrongly as exudate pixels), false 

negative (FN, a number of exudate pixels that are not detected), true negative (TN, a number of non-

exudates pixels which are correctly identified as non-exudate pixels), sensitivity, specificity, positive 

predictive value (PPV), positive likelihood ratio (PLR) and accuracy are calculated [31,32]. Equations 

8, 9, 10, 11 and 12 show the computation of sensitivity, specificity, PPV, PLR and accuracy, 

respectively: 

 
TP

Sensitivity
TP FN




(8)

 
TN

Specificity
TN FP




(9)

 
TP

PPV
TP FP




(10)

 
/( )

/( ) 1

TP TP FN Sensitivity
PLR

FP FP TN Specificity


 

 
(11)

 
TP TN

Accuracy
TP FP FN TN




  
(12)

 

3. Results  

 

Forty images were tested on an AMD Athlon 1.25 GHz PC using the MATLAB platform. Each 

image took approximately 18 minutes for FCM clustering and another three minutes for morphological 

reconstruction. The result from the coarse segmentation was used as input to the fine segmentation 

using morphological reconstruction. 

After fine segmentation, most of the classified exudate regions are true exudate pixels, which gives 

a smaller true positive value; however, it also reduces the false positive value because misclassification 

of non-exudate pixels is also lower. Figure 6 displays the comparison of exudate detection from the 

first cluster resulting from coarse segmentation and result of FCM clustering followed by 

morphological reconstruction and a ground-truth image. Three examples of exudates detection result of 

FCM clustering followed by morphological reconstruction are shown in Figure 7. 
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Figure 6. Comparison of exudates detection. (A) Coarse segmentation using FCM 

clustering. (B) Fine segmentation using morphological reconstruction (C) Ground truth 

image. 

 

 
(A) (B) (C) 

 

Figure 7. Exudates detection on low contrast images (A), (C) and (E) are original images, 

(B), (D) and (F) are detected exudates superimposed on original images of (A), (C) and (E) 

respectively. 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
(F) 

 

The performance of our technique was evaluated quantitatively by comparing the result of 

extractions with ophthalmologists’ hand-drawn ground-truth images. Ten examples of detailed results 

of performance measurement using FCM clustering followed by morphological reconstruction are 

displayed in Table 1. The sensitivity, specificity, PPV, PLR and accuracy of validation results are 

shown in Table 2. 
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From experimental results, if FCM clustering is the only technique used; it gives a high true 

positive value but also a high false positive value. However, the PPV and PLR values are low. Using 

FCM clustering followed by morphological reconstruction, we have higher accuracy with a lower false 

positive value.  Comparing with baseline algorithm, the results indicate that the FCM clustering 

followed by morphological performs better in PPV, PLR, accuracy than nearest neighbor. 

 

Table 1. The example results of exudates detection from FCM clustering followed by 

morphological operator 

24-bit 

images 
TP FP FN TN 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

PLR 

 

Accuracy

(%) 

Image1 4898 1677 741 368684 86.86 99.55 74.49 191.83 99.36 

Image2 1019 350 61 374570 94.35 99.91 74.43 1010.70 99.89 

Image3 81 3548 27 372344 75.00 99.06 2.23 79.46 99.05 

Image4 838 2294 227 372641 78.69 99.39 26.76 128.60 99.33 

Image5 1247 4978 67 369708 94.90 98.67 20.03 71.43 98.66 

Image6 1479 2905 204 371412 87.88 99.22 33.74 113.23 99.17 

Image7 126 2445 23 373406 84.56 99.35 4.90 129.99 99.34 

Image8 1234 2734 525 371507 70.15 99.27 31.10 96.03 99.13 

Image9 381 322 38 375259 90.93 99.91 54.20 1060.62 99.90 

Image10 424 1729 76 373771 84.80 99.54 19.69 184.17 99.52 

 

Table 2. Comparison of average result from FCM clustering only, FCM clustering 

followed by morphological reconstruction and nearest neighbor 

Method Sensitivity (%) Specificity (%) PPV (%) PLR Accuracy (%) 

FCM clustering 97.2 85.4 5.9 7.9 85.6 

FCM clustering and morphological 87.2 99.2 42.7 224.2 99.1 

Nearest neighbor 90.4 96.6 28.6 6.2 96.5 

 

4. Discussion and Conclusions  

 

In this paper, we have investigated and proposed methods to automatically extract exudates from 

images taken from diabetic patients with non-dilated pupils. The work is based on the FCM clustering 

segmentation and morphological techniques. Four input features based on the characteristics of 

exudates, namely intensity, standard deviation, hue and number of edge pixels, are selected. Blood 

vessels and optic disc pixels are also removed from the fourth feature in order to prevent 

misclassification. The performance of the algorithm is measured against ophthalmologists’ hand-drawn 

ground-truth. Sensitivity, specificity, PPV and PLR are used as the performance measurement of 

exudate detection because they combine true positive and false positive rates. Accuracy values are also 

used to evaluate the system.  
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The result shows that PPV, PLR and accuracy values increase when the FCM clustering technique 

is combined with morphological technique. If any applications need to detect maximum number of 

exudate pixels or require more execution speed, the FCM clustering technique could be used in 

isolation. However, if the applications require higher accuracy, the FCM clustering combined with the 

morphological technique should be chosen.  

There are some incorrect exudate detections which are caused by the artifacts that are similar to 

exudates, artifacts from noise in the image acquisition process, the exudates that are proximate to 

blood vessels or exudates that appear very faint. These missing faint exudates may have not affected 

the sensitivity much since even human experts are not sure about some ambiguous regions. However, 

the performance of the algorithm can be improved if these set of low-contrast exudates can be 

detected. This system intends to help ophthalmologists in diabetic retinopathy screening process to 

detect symptoms faster and more easily. This is not a final-result application but it can be a preliminary 

diagnosis tool or decision support system for ophthalmologists. Human ophthalmologists are still 

needed for the cases where detection results are not very obvious. 

One main weakness of the algorithm arises from the fact that the algorithm depends on other tasks, 

namely, the detection of optic disc, and vessel removal. The result of exudate detection depends on the 

success of these methods. Future work will address improvement of the performance of this system by 

improving the robustness of optic disc and blood vessel detection and finding more specific 

characteristics of exudates which could distinguish them more effectively. A supervised clustering 

method might be used in order to obtain better result. 
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