
Sensors 2009, 9, 2926-2943; doi:10.3390/s90402926 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Language-Based Access to Large Sensor Repositories 

Peter Baumann  

Jacobs University Bremen, Campus Ring 12, 28759 Bremen, Germany; E-Mail: p.baumann@jacobs-

university.de; Tel. +49-421-200-3178; Fax: +49-421-200-493178 

Received: 25 February 2009; in revised form: 20 April 2009 / Accepted: 21 April 2009  /  

Published: 22 April 2009 

 

Abstract: Sensor data have broadened their scope recently, ranging now from the simple 

time series measurements to, e.g., hyperspectral satellite image maps timeseries. In 

addition to observed data, simulation data increasingly have to be merged, for example 4-D 

ocean and atmospheric data. The majority of these data fall into the category of multi-

dimensional rasters. However, when it comes to flexible retrieval, including sensor data 

search, aggregation, analysis, fusion, etc., standard query language support in the past has 

not kept up with the service level of, e.g., metadata retrieval. To close this gap, the Open 

GeoSpatial Consortium (OGC) has issued the Web Coverage Processing Service (WCPS) 

Standard in December 2008. WCPS defines a request language for multi-dimensional 

raster data, suitable for specifying navigation, download, and analysis of sensor, image, 

and statistics data. This contribution emphasises sensor data modeling and the perspectives 

for an integrated, cross-dimensional sensor data retrieval. Further, the WCPS reference 

implementation is briefly discussed. 

Keywords: Sensor data management; raster services; standards; OGC; WCPS; WCS. 

 

1. Motivation 

 

Sensor data contribute substantially to today's geo data mix. An ever-increasing number of 

instruments with a plethora of individual characteristics deliver data which needs to be received, 

actively polled, homogenized, stored, evaluated, and fed forward to human users for inspection and 

decision making or, via automated chaining, to tools for further analysis.  

Technically, measurements can often be represented as raster data of some particular dimension, 

such as 1-D timeseries, 2-D imagery, 3-D image time series or geophysical data, 4-D climate/ocean 

data, and n-D statistics data with "abstract", non-spatiotemporal axes. While today's efforts still 

OPEN ACCESS



Sensors 2009, 9                            
  

 

2927

emphasize mere data availability through open, easy-to-navigate extraction interfaces, the upcoming 

trend of “Data as a Service” (DaaS) suggests transforming data stewardship into service stewardship 

with flexible, on-demand analysis capabilities. 

Use of open standards seems indispensable in view of the large, disparate communities to be served, 

and also their increasing demands (or pressure, depending on the viewpoint) for integration. In the 

family of open geo standards developed and maintained by the Open GeoSpatial Consortium (OGC, 

www.opengeospatial.org) it is the Sensor Web Enablement (SWE) suite of standards which provides 

interface specifications for open access to heterogeneous sensor networks [1]. Like other OGC 

standards, it too relies on the Geography Markup Language (GML) [2] and the compulsory baseline 

definitions of OWS Common [3]. For raster data access, OGC offers the Web Coverage Service 

(WCS) standard which provides open, interoperable raster (ie, "coverage") data access [4]. WCS 

defines a service interface for data extraction based on spatial and temporal subsetting, range ("band", 

"channel") subsetting, scaling, reprojection, and data format encoding. 

This suite of standards helps to access data, but it does not allow versatile retrieval and processing 

with a quality similar to what, e.g., SQL accomplishes on alphanumeric data. Therefore, since 

December 2008 the tentatively simple raster data subsetting of WCS is complemented by the Web 

Coverage Processing Service (WCPS) standard, which adds a coverage processing language for 

flexible ad-hoc navigation, extraction, and analysis of multi-dimensional raster data [5]. Sensor, 

image, and statistics data offered by some server can be addressed through requests of unlimited 

complexity, due to the language approach; for this reason WCPS has been dubbed "SQL for 

coverages". 

Core goals in the design of WCPS have been to combine expressiveness, flexibility, usability, 

optimizability, and safety in Web environments. Expressiveness aims at allowing a large range of 

sensor, imaging, and statistics functionality, including cross-dimensional and cross-domain operations. 

Flexibility is needed because a set of predefined functions will never be able to accommodate current 

and future needs in the manifold application domains anticipated; a language-based approach seems to 

be the only viable way. Usability addresses the understandability of the specification document; while 

a mathematically formalized semantics serves best for a clear, unambiguous conceptualization, it 

cannot be assumed that all implementers are familiar with such techniques; therefore, a semi-formal 

approach was adopted. Only a sufficiently high-level, declarative language will be optimizable, i.e., 

leave room for the server to rephrase incoming requests for best execution performance. The database 

domain has a rich body of experience there, so this was duly considered. Good practice in databases is 

also to design query languages “safe in evaluation”, which means that no single request can block a 

server for unlimited time. For a detailed discussion of the design rationales see [6]. 

At the moment front-end services offering access to consolidated sensor data repositories certainly 

constitute a core application domain of WCPS. However, WCPS is also useful for upstream sensor 

data access whenever non-trivial on-the-fly filtering and data processing is required. 

In this contribution we present WCPS with emphasis on sensor retrieval tasks. Findings presented 

stem from our active work in OGC, which includes advancing the WCS specification as co-chair of the 

respective working group, development of the WCPS specification, and architecting its  

reference implementation. 
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The remainder of this contribution is organized as follows. In the next section, the main concepts of 

the WCS coverage model, the WCPS language, concrete protocol embeddings, and the reference 

implementation service stack are presented. Section 3 illustrates application of WCPS by means of 

scenarios covering 1-D to 4-D sensor data. Section 4 concludes the paper. 

 

2. WCPS  

 

In this section, we first introduce the notion of a coverage. Then, core WCPS language constructs 

are introduced and exemplified. Finally, a brief discussion of the protocol embeddings and the 

reference implementation is given. 

 

2.1. The WCS Coverage Model 

 

ISO 19123 [7] and OGC Abstract Topic 6 [8], which technically are identical as they are mutually 

adopted by ISO and OGC, normatively define the term coverage as being a “feature that acts as a 

function to return values from its range for any direct position within its spatial, temporal, or spatio-

temporal domain”. Coverage types are grouped into discrete and continuous, both of which are 

subdivided further into various regular and irregular variants. Based on this abstract notion, The Web 

Coverage Service (WCS) standard defines a concrete coverage data structure (Additionally, GML 

contains a built-in model for small-scale coverages; as this is suitable only for special cases of raster 

data, hence we disregard it here.) for the discrete point coverage subtype – i.e., raster data –and an 

access service based on this notion. 

A coverage basically is a function which maps coordinate locations to values. It is materialized as a 

multi-dimensional value array, containing cells ("pixels", "voxels") at the grid locations. The set of 

admissible coordinate values is called the coverage's domain, which is spanned by a number of axes 

(or dimensions) defining the coverage's dimensionality. For each axis, the coverage is delimited by 

some lower and upper bound, expressed in some coordinate reference system (CRS). Each coverage 

has a list of CRSs associated in which it can be queried; requesting values in another CRS than the one 

in which the coverage is stored (or in the image coordinate system, directly using pixel coordinates) 

obviously will involve reprojection. 

A coverage array can be of one, two, three, or four dimensions, comprised of x, y, z, and time axes. 

Coverages are allowed to have any combination of axes, including, for example, 1-D time-only sensor 

time series, 2-D x/z planes, or 5-D x/y/z/time/pressure cubes. For the future it is foreseen to 

additionally allow so-called abstract axes with application-defined semantics (such as products offered  

by a company).  

WCPS slightly extends this notion by adding specific axis semantics. Axis types provided are x, y, z 

for Cartesian coordinates, r and phi for polar coordinates, and t for time. In future, additional user-

defined axes without spatio-temporal semantics will be supported, such as pressure.  

The structure of a coverage's cell values (denoting the set of all possible values associated with a 

cell) is given by its range type. Range values can be atomic, or a list of named components called 

range fields (commonly known as "bands" or "channels"). Range fields, in turn, can be atomic or can 

consist of multi-dimensional arrays of values themselves (The latter feature is recognized as being 
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relatively complex to implement and handle; hence, it is optional now and is likely to be factored out 

into a bespoke extension in the next WCS version). With each range component a set of possible 

interpolation method can be associated, one of which can become default; they are specific to each 

component because interpolation (like summarizability) depends on the actual semantics of data: 

visual images can be interpolated, while land use data cannot. Interpolation methods available are 

none, linear, quadratic, and cubic, with the obvious meanings. Further, the concept of null resistance 

serves to control the impact of null values when interpolating over a set of cells of which at least one 

has a null value. 

In WCPS, range types actually are less general than in WCS, to allow for well-defined processing 

semantics: only the numeric data types known from programming language are available, plus 

complex numbers in single and double precision, as well as single-nested records. This allows 

expressing SCADA sensors, hyperspectral satellite imagery, elevation and bathymetry data, and 

spectral data, to name but a few. 

WCS provides three request types on such coverages when offered by a server. Following OGC 

convention, the first is GetCapabilities. This request informs a client about the procedural capabilities 

it has (such as the data formats supported) and gives a list of the coverages offered. Detailed metadata 

about each coverage can be obtained via the second request type, DescribeCoverage. The workhorse, 

finally, is the GetCoverage request type which serves to extract data from some coverage by applying 

spatiotemporal subsetting, range component (“band”) subsetting, reprojection, scaling, and format en-

coding of the result. An interpolation method can be indicated in the request to enforce a method other 

than the default when rescaling or reprojecting. 

Care has been taken in the design of WCS that it is always possible to request a coverage (or a 

subset of it) with cell values untouched, retaining their original values. For example, while there may 

be many CRSs in which a given coverage can be accessed it is required that there is always one 

particular, so-called Image CRS which allows to retrieve data in cell (i.e., integer) coordinates. On a 

side note, this is a main difference to the  Web Map Service (WMS) standard which serves to portray 

features and coverages as images aimed at human consumption only. 

 

2.2. Coverage Processing Language 

 

Below we introduce the WCPS language. Following a presentation of the overall request structure 

we illustrate representative processing functions. 

 

2.2.1. Overall Structure 

 

The overall structure of a WCPS request, which is related to XQuery, follows this syntax scheme: 

for $var1 in ( cov1,1, cov1,2, …), 
    … 
    $varn in ( covn,1, covn,2, …) 
where 
 filter_predicate( $var1, …, $varn ) 
return 
 processing_expression( $var1, …, $varn ) 
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As the syntax suggests, this denotes an n-fold nested loop where in each loop a variable 

successively is bound to the coverages listed. In each iteration, the filter predicate is applied first; only 

if it evaluates to true will the processing expression be evaluated so that it can contribute a result item. 

The outcome of such a request is a list of either coverages or, for scalar-valued processing expressions, 

a  

list of scalars. A processing expression mainly consists of calling the encode() function which prepares 

a coverage-valued result for shipping to the client using a suitable data format.  

 

Example: “Coverages WaterTemperature and AirTemperature, each encoded in CSV (comma-

separated values).” 

for $t in ( WaterTemperature, AirTemperature ) 
return 
 encode( $t, "csv" ) 

By applying the store() function, the result optionally is not shipped directly, but stored in the 

server for subsequent retrieval through the client which, for this purpose, gets a URL for each result 

coverage instead of the coverage itself. In this case, the previous example can be rewritten as 

for $t in ( WaterTemperature, AirTemperature ) 
return 
 store( encode( $t, "csv" ) ) 

Core to WCPS is the coverage expression where, based on the variables to which the stored 

coverages are bound, a new, transient coverage is derived. This will be inspected next. 

 

2.2.2. Value-Manipulating Functions 

 

To modify values in a coverage, induced operations can be used. This concept, which traces back to 

Ritter et al. [9], allows to apply any operation that is available on the cell type to all cells of a coverage 

simultaneously, regardless of its dimensionality.   

 

Example: “The logarithm of the river water temperature, transformed from Fahrenheit to Celsius.” 

for $r in ( RiverSensor ) 
return 
 encode( log( 9 / 5 * $r.temp – 32 ), "csv" ) 

Induced operations, which can be unary and binary, are provided for Boolean, arithmetic, trigono-

metric, and exponential operations. Further, coverages containing complex records (“structs”) as cell 

values can be constructed this way. A cast operator allows to adjust data types and lengths. 

 

2.2.3. Domain-Manipulating Functions 

 

So far we have manipulated the cells of a coverage, but not its extent. This is done with subsetting 

operations. The trim() operation cuts out a sub-coverage by way of a given bounding box. The 

dimension of the coverage remains unchanged. This is different with the slice() operation where, at the 

specified position in the original coverage, a lower-dimensional cutout is produced. For trim and slice 
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operations there is a convenient shorthand notation using brackets. For reasons of completeness there 

is also an extend() operation which grows a coverage while maintaining its dimensionality; the new 

positions are filled with null values.  

Along with the subsetting operations, coordinates come into play. These can be expressed in some 

coordinate reference system (CRS) supported by the coverage on hand or simply in the coverage’s 

integer cell coordinates. Axis types predefined with the standard are x and y for cartesian coordinates, r 

and phi for polar coordinates, z for elevation (i.e., height or depth), and t for time. Conceptually, 

WCPS is prepared for further axis with a non-spatiotemporal semantics, so-called abstract axes, once 

WCS supports these. 

Let us first inspect direct access using cell coordinates. 

 

Example: “From my MODIS image, the first 100 by 100 pixel.” 

for $m in ( ModisImage ) 
return 
 encode( $m[ x( 0:99 ), y( 0:99 ) ], "png" ) 

As can be seen, the lower and upper bound is indicated for each dimension individually and identi-

fied by the axis name. Therefore, the sequence of axes within the brackets can be arbitrary. This we 

next extend by indicating a CRSs in which the coordinates provided are expressed. For each CRS 

supported by OGC a URN is assumed to be available, to be maintained by the forthcoming OGC 

naming authority. For example, the well-known EPSG list of CRSs is already defined. For a coverage 

available in the WGS84 system a trim operation might be as follows. 

 

Example: “From my MODIS image, a cutout between corner points (-10,40) and (+20,60), expressed  

in WGS84.” 

for $m in ( ModisImage ) 
return 
    encode( 
      $m[ x:"ogc:urn:def:crs:EPSG::4326"( -10 : 20 ), 
          y:"ogc:urn:def:crs:EPSG::4326"(  40 : 60 ) 
        ], 
      "hdf-eos" 
    ) 

The only time coordinate system supported currently is ISO 8601 [10]. Time coordinates can be 

applied just like with the geo coordinates before. 

 

Example: “From time series WaterTemperature, all values between February 1, 2009 and February 20, 

2009.” 

for $t in ( WaterTemperature ) 
return 
    encode( 
      $t[ t:"ogc:urn:def:crs:ISO::8601" 
            ( "P2009Y02M02D" : "P2009Y02M20D" ) 
        ], 
      "csv" 
    ) 
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Another extent changing function is scaling. Again, axes are treated independently from each other 

so that any combination is possible. This is particularly relevant when it comes to non-horizontal 

scaling where the scale factors are not coupled like it usually is the case with the x and y axis. 

However, scaling needs an additional parameter set which is due to the inherent complexity of this 

operation. As in WCS, the scaling operation allows to specify which interpolation method to apply in 

case that resampling occurs. However, we omit discussion of this mechanism and refer to the WCS 

specification [4] for further details. 

 

Example: “All salinity measurement values, scaled down to a list of size 100, using default inter-

polation.” 

for $s in ( SalinityColumn ) 
return 
    encode( scale( $s, { z( 0:99 ) ), "csv" ) 

Yet another complex operation, both conceptually and in evaluation, is a reprojection. Function 

crsTransform() receives a coverage-valued argument plus, for each axis, the target CRS. As with 

scaling, the interpolation method to be applied can be specified. 

 

Example: “My MODIS image, reprojected to EPSG:63266405 using default interpolation.” 

for $m in ( ModisImage ) 
return 
    encode( 
      crsTransform( 
        $m, 
        { x:"ogc:urn:def:crs:EPSG::63266405", 
          y:"ogc:urn:def:crs:EPSG::63266405"  
        }, 
        { } 
      ), 
      "jpeg" 
    ) 

The empty set provided in the above expression specifies default itnerpolation; alternatively, 

specific interpolation methods can be invoked per range component. The above functions allow 

performing a substantial part of the day-to-day sensor analysis and retrieval tasks. We now inspect 

some of the advanced functionality. 

 

2.2.4. Aggregation 

 

Aside from returning selected and processed coverages, it is often required to obtain summary data 

about one or more coverages. To this end, WCPS provides aggregation operations similar to SQL, but 

extending it with coverage-specific operators. Well-known from SQL are aggregation functions like 

count, average, max, min, and the existential quantifiers all and exist. All of them are available on 

coverage cells as well, with the intuitively expected semantics. 
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Example: “The maximum temperature measured by sensor WaterTemperature.” 

for $w in ( WaterTemperature ) 
return 
    max( $w ) 

No coverage encoding is performed here as the result is a scalar. Such values are transferred as 

ASCII numbers; in future, XML encodings may be considered in addition. A prominent place where 

these so-called condensers (which have been named like this to differentiate language wise cell array 

from set processing) appear is the filter predicate. Here condensers serve to express statements about 

coverages which need to be fulfilled to allow them participating in the  

result list. 

 

Example: “All sensors where, sometime in 2008, threshold T was exceeded.” 

for $s in ( Sensor1, Sensor2, … ) 
where 
    some( 
       $s[ t:"ogc:urn:def:crs:ISO::8601"( "P2008":"P2009" )  
         ] > T 
    ) 
return 
    identifier( $s ) 

These so-called condensers actually represent specializations of a more general construct. A general 

condenser inspects all cells of a given extent, applies some evaluation function on them, and 

aggregates the result using the summation function specified. The syntax is as follows: 

condense summation 
over     name_1 axis_1 ( extent_1 ), 
         …, 
         name_n axis_n ( extent_n ) 
using    value_expression( name_1, …, name_n ) 

For summation, operators available are +, *, max, min, and, and or. The name_i variables iterate 

over the extent of their respective axis. For each position of the new coverage, the value expression – 

which may contain occurrences of the coordinate iterators – is evaluated.  

 

Example: “The sum of the absolute changes between subsequent temperature measurements.” 

for $w in ( WaterTemperature ) 
return 
    condense + 
    over     pt t ( … ) 
    using    abs( $w[ t(pt) ] - $w[ t(pt-1) ] ) 

2.2.5. Coverage Construction 

 

The coverage constructor creates a new coverage by filling values which are computed on the fly 

into some extent indicated. The main difference to the induced operations is that the coverage 

constructor provides explicit coordinates which can be used in the computation of new values. The 

syntax is: 
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coverage fieldname 
over     name_1 axis_1 ( extent_1 ), 
         …, 
         name_n axis_n ( extent_n ) 
values   value_expression( name_1, …, name_n ) 

The field name is the name which the single range field component will receive; while not 

necessary for a single-component coverage, it is required by WCS and hence mandatory in the 

expression. The name_i variables iterate over the extent of their respective axis. For each position of 

the new coverage, the value expression – which may contain occurrences of the coordinate iterators – 

is evaluated. 

Actually, induced operators are a special case of the coverage constructor. Assume a coverage with 

a single band b and a 2-D x/y extent is bound to variable $c. Then, the induced expression 2*$c can be 

rephrased as: 

coverage b 
over     px x( … ), 
         py y( … ) 
values   2 * $c[ x( px ), y( py ) ] 

The careful reader will notice that the result of slicing $c is a zero-dimensional coverage. By 

definition we consider such a single-cell array as equivalent to a scalar. Histograms form a typical 

application example for the coverage constructor, as the following example shows. 

 

Example: “A histogram of the (8-bit) red channel of my MODIS image.” 

for $m in ( ModisImage ) 
return 
    encode( 
      coverage histogram 
      over     bucket x ( 0:255 ) 
      values   count( $m.red = bucket ), 
      "csv" 
    ) 

For each of the 8-bit bucket values the induced comparison of the bucket value is performed against 

the complete image matrix. The resulting Boolean matrix is passed to the count aggregate which 

determines the number of true values, thereby finding the frequency of the bucket under consideration. 

The axis type – here randomly chosen: x – is of no further concern for the result. 

This way, completely new structures can be derived from existing coverages. Queries up to the 

complexity of the Fast Fourier Transform have been expressed with such constructs during the assess-

ment of WCPS prior to its standardization. 

 

2.2.6. Further Features 

 

Cross-dimensional sensor fusion can be expressed by nested loops. 

 

Example: “For location x0/y0, the difference between temperature measured in situ and by an AVHRR 

SST (sea surface temperature) satellite image time series.” 

 



Sensors 2009, 9                            
  

 

2935

for $i in ( InSitu ), 
    $a in ( AvhrrTimeSeries ) 
return 
    encode( $i - $a[ x(x0), y(y0) ], "csv" ) 

Aside from the coverage processing functions introduced so far there is also a set of functions for 

retrieving and setting metadata of coverages excerpted. To avoid misunderstandings, these are not 

general or application metadata, but only those ones defined with WCS coverages. Sometimes these 

are termed “technical metadata” as they are the bare minimum required to correctly interpret the cell 

data. 

Coverage, cell indexing, and arithmetic expressions can be nested arbitrarily, thereby allowing for 

requests of unlimited complexity. Well-known features from programming languages, like the 

expected operator precedence, parentheses, and dynamic type adjustment have been incorporated to 

help immersing into the language quickly.  

 

2.3. Protocol Embedding 

 

Tentatively the WCPS language has been defined in a service-neutral manner. The core WCPS 

specification [5] contains only the language syntax and semantics. Although WCPS has emerged from 

the work on WCS, it is formulated in a high-level manner and independent from particular OGC 

service protocols. Actually, there are already two such embeddings already. The first one is defining 

WCPS as an extension to WCS whereby an additional request type, ProcessCoverages, is introduced. 

In the corresponding standards document [11] concrete service bindings are indicated for HTTP GET 

and XML/POST. A service implementer can choose to implement only the mandatory, comparatively 

simple GetCoverage request or additionally the optional, more complex ProcessCoverages request. 

The second embedding relates WCPS to the Web Processing Service (WPS) [12]. WPS defines an 

XML-RPC based interface to geo services where the operational semantics is only given by function 

name and function parameters. Consequently, WPS implementations are not interoperable per se; the 

concept rather is that concrete, focused application profiles (in OGC terminology) be defined in an 

interoperable manner. WCPS is such an interoperable WPS application profile, defined in [13]. In the 

WPS context, the advantage of the language approach is that not only static functionality can be 

invoked remotely, but dynamic run-time request composition by clients becomes feasible. 

Additionally, the well-defined semantics of WCPS expressions opens up avenues for automatic 

orchestration of service clouds, but also server-internal optimization. 

A third connection, to the Sensor Web Enablement (SWE), is under discussion. Hence, WCPS with 

its abstract concept of “coverage processing as a service” bridges those OGC standards where 

coverages are relevant. On a side note, this shows how a clear modularization can require splitting of a 

concept over several specification documents. While sometimes implementers complain about too 

many specifications, OGC itself works hard on minimizing the amount of standards documents. 
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Figure 1. WCPS reference implementation service stack. 

 
 

2.4. Reference Implementation 

 

The reference implementation of WCPS is based on the rasdaman raster DBMS [1,5,14,15] and the 

PostgreSQL relational DBMS. Figure 1 shows the overall architecture. WCPS requests are translated 

into queries of the rasdaman query language, rasql. In the rasdaman server, queries are optimized and 

then executed against raster objects stored in a standard relational database, partitioned ("tiled") into 

Binary Large Objects (BLOBs). Due to the formal semantics of rasql [1,14] there is a stable interface 

which allows implementations to perform manifold optimizations, including exploitation of hardware 

parallelism. 

Query optimization is a wide research area and one of our core research domains. The following is 

a list of some important methods currently available:  

 Algebraic optimization rewrites a query Q into another query Q' such that Q and Q' deliver the 

same result, but Q'  does so faster. Currently, about 110 optimizing rules are incorporated in 

the rasdaman rule base. For example, for a given query: 

for $c1 in ( MyFirstCoverage ), 
    $c2 in (MySecondCoverage ) 
return 
    sum( $c1 + $c2 )  

the rule “sum(a + b)  sum(a) + sum(b)” allows to substitute the above query by the one below, 

effectively changing the induced operation “+” (which requires one addition per cell) into a 

scalar addition (which requires only one addition at all) and, thereby, saving 1/3 of the main 

memory processing cost. 

for $c1 in ( MyFirstCoverage ), 
    $c2 in (MySecondCoverage ) 
return 
    sum($c1) + sum($c2)  

 Parallel evaluation allows both concurrent database access and performance increases by 

tasking more than one CPU with answering a query. Concurrent processes can run on the same 

server or in a cluster. 
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 Just-in-time compilation determines suitable query fragments, generates C code ready to pro-

cess one tile in the way specified, compiles this into a shared library, loads this into the server 

executable, and executes it [16]. Once such a library has been loaded, it can be reused with 

subsequent queries of same structure, but possibly varying parameter values. Preliminary per-

formance evaluations show that query evaluation gets close to the speed of hand-crafted code. 

 Alternatively, the query fragments found can be mapped to Graphic Processing Unit (GPU) 

code for processing in parallel to the CPU, which can evaluate the remaining part of the query 

meantime [17]. The gain in parallelism is substantial due to the many cores a GPU provides. 

 

3. Use Case Scenarios 

 

Following the functionality-driven presentation of the WCPS language, we now focus on some real 

sensor data retrieval use cases available on the Web. The www.earthlook.org demonstration website 

has been developed to showcase WCPS retrieval on 1-D to 4-D base data sets. The following sub-

sections discuss these. At www.earthlook.de/tech/wcps-tutorial/sandbox-abs.php there is also a “sand-

box” available which allows typing in and submitting own requests against sample data sets. 

 

3.1. One-Dimensional Data 

 

3.1.1. Scenario 1 

 

Sensor TS delivers scalar values (such as temperature values). Task on hand is to determine times 

when threshold tmax has been exceeded. The result of this request is a 1-D array containing true for 

values above and false for values below threshold, encoded as comma-separated values (see Figure 2). 

Figure 2. Sample time series (top) and threshold indicator array (bottom). 

  

 
for $t in ( TS )  
return 
    encode( $t > tmax, "csv" ) 

 

3.1.2. Scenario 2 

 

The above sensor now needs to be monitored continuously. To this end, a simple watchdog process 

periodically requests the current value. Nothing is done as long as the result is false, but some action 

(like sending an e-mail or SMS) is performed for a true result. The underlying query, which returns 

such a Boolean result value, is:  
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for $t in ( TS )  
return 
    $t[ 
       t:"ogc:urn:def:crs:ISO::8601"( "P2009Y02M22DT16H13M24S" ) 
      ] > tmax 

On EarthLook, two different scenarios are provided: fetching the current value and fetching the 

average over all values seen so far. 

 

3.2. Two-Dimensional Data 

 

The core application of 2-D data obviously is mapping. The standard use case here is a map overlay 

presented for zoom and pan, as the OGC Web Map Service (WMS) specifies. From the examples pro-

vided on EarthLook, we discuss the more complex one. For the area of the Northernmost known 

underwater mud volcano, Håkon-Mosby, four map layers are provided: one bathymetry layer and three 

video mosaics obtained from a camera on board a Remotely Operated Vehicle (ROV) of type Ifremer 

Victor6000 [18]. These have been ingested into a rasdaman database (see Section 2.2.4) where they are 

available through a WMS interface. Figure 3 shows screenshots made using the WMS client coming 

with rasdaman. In the top left part of each screenshot the navigation controls are visible. In this use 

case we inspect the structure of the queries submitted by the client. 

Figure 3. Overview of the Håkon-Mosby Seafloor Mud Volcano (left) and detail zoom 

(right), obtained as EarthLook screenshots (data acquired on AWI Polarstern cruise 

ArcXIX3b [13]). 

        
 

3.2.1. Scenario 4 

 

The client fetches images piecemeal. Each individual query is a WMS request which can be 

emulated by the following WCPS request. We assume bounding box coordinates (x0,y0) / (x1,y1) 

expressed in the coverage’s native CRS, say, UTM Zone 33N. 
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for $b in ( HM-Bathymetry ), 
    $d1 in ( HM-Dive1 ), 
    $d2 in ( HM-Dive2 ), 
    $d3 in ( HM-Dive3 ) 
return 
    encode( 
      scale( 
        ( 
          ( 
              ($b < -1300) 
                 * struct{ red:0, green:0, blue:0 }  
          +   (-1300.000000<$b and $b <= -1290) 
                 * struct{ red:219, green:0, blue:172 }  
                            …28 more summands like this… 
          +   (-126.5 < $b) 
                 * struct{ red:255, green:255, blue:255 } 
          ) 
          overlay $d1 
          overlay $d2 
          overlay $d3 
        ) [ x:"urn:ogc:def:crs:EPSG::4326"(x0:x1), 
            y:"urn:ogc:def:crs:EPSG::4326"(y0:y1) 
          ], 
        { x(0:299), y(0:299) }, 
        { } 
      ), 
      "jpeg" 
    ) 

The highest processing load comes from the ad-hoc depth classification into 31 colors altogether. 

Every line contains a predicate which filters out a particular depth interval. Whenever such a predicate 

fires on a pixel, then a resulting true value will be interpreted as 1, which, by way of multiplication, 

activates the RGB color value associated with it; a value of false will make the cell transparent. Some 

of the optimizations discussed in Section 2.2.4, like just-in-time compilation and GPU exploitation, are 

especially effective on such queries. The resulting color map is then overlaid with the three dive maps. 

These already consist of color images, hence no data type adjustment is necessary. Finally, the tile 

requested is cut out by indicating the bounding box and the CRS in which it is expressed; obviously, 

first thing an optimizer will do is to first perform the subsetting and then the pixel operations. The final 

image is encoded in JPEG and delivered to the client. 

 

3.3. Three- and Four-Dimensional Data 

 

3-D data often occur as either x/y/t time series, or as x/y/z earth tomograms, or as x/y/z ocean model 

data. In atmospheric and ocean modeling, 4-D data covering all spatio-temporal dimensions can be 

found frequently. To conveniently display these in a Web environment, where advanced visualization 

tools might not fit into the client architecture, they usually are sliced. This yields our next use case:  

 

3.3.1. Scenario 5 

 

From a 3-D x/y/t time series cube, we extract 2-D slices for all three directions (cf. Figure 4). From 

the three queries we present the one which delivers an x/z slice at x position x0. 
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for $t in ( TimeseriesCube ) 
return 
    encode( $t[ x:"urn:ogc:def:crs:EPSG::4326"(x0) ], "jpeg" ) 

 

3.3.2. Scenario 6 

 

Here we assume that a satellite image needs to be masked to separate land from sea areas. From 

some 3-D x/y/t time series cube, Clouds, the query extracts the slice corresponding to time T and 

overlay it with a 2-D x/y Boolean mask, Land Mask. This mask is assumed to contain true for dry and 

false for wet pixels. For some time T, the corresponding WCPS query reads as follows. 

Figure 4. WCPS queries attached to pictograms for slicing of a 3-D cube in EarthLook.  

 

Figure 5. Masking time series images to isolate land (left) and sea areas (right). 

    
for $cloud in ( Clouds ), 
    $mask  in ( LandMask ) 
return 
    encode( $cloud[ t(T) ] * $mask, "jpeg" ) 

 

Figure 5 shows left the clouds over land. In the right counterpart, $mask has been replaced by its 

negation not $mask, thereby effectively selecting all clouds over sea. 

 



Sensors 2009, 9                            
  

 

2941

4. Conclusions and Outlook 

 

The abundance of sensor data getting available calls for methods to structure the wealth of infor-

mation that is becoming accessible. In many important use cases, such as disaster mitigation and 

scientific serendipity, it is indispensable to enable ad-hoc search based on data-inherent criteria. In this 

respect, WCPS represents an important facet of OGC’s standards for open raster data access. With 

WCS, a simple service is available which can be implemented with modest effort; WCPS, on the other 

hand, is a “power service” with high flexibility and expressiveness which comes at an increased imple-

mentation effort. Moreover, standardizing a high-level, protocol-agnostic service component facilitates 

use in different environments. This has been demonstrated already with WCS and WPS; an embedding 

with SWE seems worthwhile to investigate, as the scenarios presented suggest. This goes hand in hand 

with the recently started harmonization of SWE with other OGC standards, including WCS. 

Considering the sensor data processing chain, WCS and WCPS have their particular place at its end, 

when consolidated sensor data repositories are made available to either human users or to automated 

processes. Generally speaking, however, we also see potential application in more upstream tasks 

where access needs to be based on open standards. 

A major innovation in this context is the formal definition of an OGC standard which provides the 

basis for a machine-readable language. While this may seem more of an academic exercise at first, it 

has a series of practical consequences: Services can be orchestrated in an unsupervised manner, 

thereby enabling dynamic, ad-hoc mashups. Inside a service node, a host of optimization techniques 

can be applied which have been proven to boost performance by orders of magnitude [19,20,21]. 

Altogether, this language concept is considered a substantial step forward towards a Semantic Web 

which does not only consider metadata, but also sensor data. 

After its adoption as a standard in 2008, work on WCPS is ongoing. First and foremost, applications 

are being sought – which can rely on the readily available open-source service stack – to exercise the 

raster language in as heterogeneous application scenarios as possible. In particular data centers are 

encouraged to contact the WCPS team which gladly gives support. To this end, the www.earthlook.org 

demonstration website will be extended further. 

Also, following down the road of SQL, we plan to extend WCPS with manipulation capabilities, 

similar to the well-known insert, update, and delete statements. This builds a bridge to WCS-T [22] 

which already allows one to insert, update, and partially update a coverage; the contribution of WCPS 

can be to allow for complex filter predicates and update processing. 

While the flexibility of WCPS is believed an asset it turns out that clients still need to be crafted 

individually for different communities. To make this work more efficient, a collaboration with GUI 

specialists has started investigating on a user interface toolkit allowing to quickly pick-and-place 

widget components while composing tailored WCPS clients. Among others, it will contain controls 

and display methods for result data of different dimensionality. 

Further topics of active research include: theoretical investigations on raster languages and their ex-

pressiveness; fully automated decomposition of incoming WCPS requests and their distributed pro-

cessing in a geo service cloud; extending the coverage model to allow not only regular grids, but 

general meshes for a WCPS; how to systematically derive quality of service parameters and con-

formance tests from a specification using state-of-the-art software engineering methods; conversely, 
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how to best structure a specification in a suitable way for conformance testing and orthogonal service 

unit descriptions. Optimization of processing will continue to be in our focus as the potential is by far 

not exhausted. In particular, this aspect gets vital when allocating services on board of autonomous 

units. Goal of this research is to use OGC conformant services as access interfaces to intelligent on-

board sensors with low-bandwidth ground connection, such as drones and submersibles. 
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