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Abstract: Magnetic data consists of a sequence of collected points with spatial coordinates 

and magnetic information. The spatial location of these points needs to be as exact as 

possible in order to develop a precise interpretation of magnetic anomalies. GPS is a 

valuable tool for accomplishing this objective, especially if the RTK approach is used. In 

this paper the VRS (Virtual Reference Station) technique is introduced as a new approach 

for real-time positioning of magnetic sensors. The main advantages of the VRS approach 

are, firstly, that only a single GPS receiver is needed (no base station is necessary), 

reducing field work and equipment costs. Secondly, VRS can operate at distances 

separated 50-70 km from the reference stations without degrading accuracy. A compact 

integration of a GSM-19 magnetometer sensor with a geodetic GPS antenna is presented; 

this integration does not diminish the operational flexibility of the original magnetometer 

and can work with the VRS approach. The coupled devices were tested in marshlands 

around Gandia, a city located approximately 100 km South of Valencia (Spain), thought to 

be the site of a Roman cemetery. The results obtained show adequate geometry and high-

precision positioning for the structures to be studied (a comparison with the original low 

precision GPS of the magnetometer is presented). Finally, the results of the magnetic 

survey are of great interest for archaeological purposes. 
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1. Introduction  

 

Magnetometry is one of the most common tools used in geophysical research for prospecting and 

archaeology due to the rapidity of data collection and the general applicability of the technique to 

shallow research [1]. 

Different kinds of magnetometers can be found [1-3]; fluxgate magnetometers can be used to 

measure any component of the geomagnetic field and currently, depending on the sensor alignment, 

most of them achieve a sensitivity of 0.1 nT and can measure the field continuously. Proton-precession 

magnetometers measure the Earth’s total field; their advantage over fluxgate magnetometers is that 

sensor alignment is not critical. However, the measurements with this tool cannot be continuous, as the  

proton-precession magnetometer requires several seconds due to the polarizing and relaxing time 

needed by the protons, and currently most of them achieve a sensitivity of 0.1 nT. Proton-precession 

magnetometers with Overhauser-effect (such as the GSM-19 instrument used in this work) can achieve 

two measurements per second with 0.2 nT absolute accuracy over its full temperature range. Alkali-

vapor magnetometers, usually used for airborne gradiometers, measure the Earth’s total field. The 

orientation of this instrument is not critical as they have a high sensitivity, on the order of 0.01 nT. 

The majority of magnetometer surveys require high-density data and accurate positioning. The most 

common procedure is to divide the survey area (which is usually small) into data grids. This procedure 

requires the physical placement of these grids in the field, which increases the work time.  

If precise data location could be collected simultaneously with magnetometer data collection, the 

additional time required for grid implementation could be avoided because no grid materializations 

should be needed. The most appropriate tool to carry that out is GPS. The use of GPS for navigation 

and location is a common theme in many prospecting applications, for example as described in [5]. 

Currently, it is easy to find magnetometers with GPS of different precisions and prices [4]. Stand 

alone options can obtain accuracies of approximately five meters and stand alone can combine 

WAAS/EGNOS augmentations, achieving precisions of better than one meter, [6]. The best precision 

(better than 0.1 m) can be obtained with a DGPS-RTK system, but this system requires another GPS 

device working in the area, and this implies both an increase in time needed and a significant larger 

budget. Recently, real-time kinematic (RTK) technology has been used in magnetic surveys, [7,8]. 

Following this procedure, the integration of magnetic data with GPS using a VRS (Virtual Reference 

Station) instead of RTK technology is presented. VRS technology requires less equipment, time 

dedication and information than RTK, because differential corrections are sent by the GNSS reference 

network control centre using the Internet. That means that no master station located on known 

coordinates is needed near the prospection area. In terms of accuracy, RTK and VRS offer the same 

results [9]. 

 

2. VRS concept 

 

The VRS concept, [10-13] is a derivative of the multiple reference station approach, [14,15]. The 

main difference is that the surrounding reference GPS stations are used to determine “synthetic” dual-

frequency code and carrier-phase GPS at a virtual base station that is located close to the user’s 

receiver. These GPS reference stations are strategically located in an extensive geographical area and 
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are connected to a network control centre. This centre receives information from the GPS stations in 

real-time and, using an NTRIP protocol, creates the differential corrections to be applied anywhere 

inside the geographical area where the GPS network is located. 

A user connected to this network will receive the differential corrections and a virtual reference 

station is created near the rover position. This virtual reference station acts as the master station in 

RTK positioning. 

The main benefit of the VRS approach is that it does not require a physical reference station close 

to the user (usually with known coordinates in the reference frame in which the survey will take 

place). However, it does require a reference GPS station infrastructure and a control centre.  

The VRS approach is also more flexible in terms of permitting users to use their current receivers 

and software without involving any special software or communications equipment (if used in post-

processed mode) and the number of instruments needed for field operations is greatly reduced. 

Finally, with VRS, users within the network can operate at greater distances than with the 

conventional RTK GPS model without degrading accuracy. Under ideal conditions, the VRS approach 

can deliver single-point coordinate accuracies of a 3-5 centimetres for a rover separated 50-70 km 

from the reference stations. 

 

3. Compact magnetometer and GPS integration 

 

Figure 1 shows the compact integration of the GSM-19 magnetometer and the geodetic high 

precision GPS antenna. Only a screw to connect the staff with the antenna is needed.  

 

Figure 1. Magnetometer and geodetic GPS integration. 
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No magnetic signal distortion is observed in any of the observations carried out with these coupled 

devices. That is, measurement time and signal amplitude numbers were under optimal conditions in the 

observation data files. 

GSM-19 is equipped with a low precision GPS antenna. The static and kinematic precision of this 

antenna can be seen in Table 1, where static observations on control points (absolute error) and 

kinematic comparison with VRS results are presented. These control points can be seen in Figure 3. 

As can be seen in Table 1, the magnetometer GPS does not guarantee high levels of accuracy, the 

quadratic component of absolute error introduces an error of 1.84 meters and the quadratic component 

of kinematic error of 0.86 meters (these are the expected results for this kind of GPS device). The data 

collected by the magnetometer is taken in Universal Coordinated Time (UTC) if the GPS option is 

activated on the control unit of the magnetometer. In this respect, correlation with the precise 

coordinates obtained with the geodetic antenna and VRS approach is made easier in post-process (the 

magnetic data and precise GPS coordinates share the same reference time system). 

 

Table 1. Absolute and kinematic error of the GSM-19 GPS antenna instrument. 

 Absolute error (m) Kinematic error (m) 

X Y X Y 

Mean 1.110 1.467 -0.528 -0.317 

σ 1.070 1.505 0.570 0.645 

 

4. Field test 

 

A magnetic survey was carried out in the Gandia marsh, near Gandia, a city located about 100 km 

south of Valencia (Spain). A Roman cemetery is thought to be buried in the survey area. The area is 

divided in two sectors due to grove layout. The sectors are small, approximately 10 by 5 meters 

(Figure 2). 

 

Figure 2. Survey area with the two prospected sectors. Image from Cartographical 

Institute of Valencia, image centre coordinates are 38º59’27” N, 0º10’45” W. 

 

 

 

 

 

 

 

 

 

 

 

 

MARSH OF GANDIA

SECTOR 1 

SECTOR 2 



Sensors 2009, 9                            

 

 

2948

One second was the time interval selected for data collection at 0.1-0.2 m/s walk speed, so the 

sample interval was about 0.25 m. The Active Geodetic GPS/GNSS network for the Valencia region 

[16,17] was used for VRS kinematic positioning. The data were collected walking in the same 

direction for every sector, so the orientation of the antenna is always the same. 

Magnetic data were reduced for diurnal correction, magnetic anomalies were calculated by 

subtracting the mean magnetic value from the data and reduction to the pole was achieved. Kriging 

interpolation was used in order to display the magnetic anomalies in a 0.25 m x 0.25 m grid. 

Comparison of coordinate accuracy can be seen in Figure 3. Some control points located in sector 1 

have been observed with the high precision GPS VRS antenna (black points) and with the low 

precision GPS magnetometer antenna (red points). Taking the path through the area of reference, the 

low accuracy survey presents data points inside the path, but in the survey the limit of the path was 

never crossed. Based on this example, it can be concluded that the limits and forms of the magnetic 

anomalies can vary substantially depending on the precision of the coordinates of the observed points, 

which can lead to mistakes in their interpretation. 

 

Figure 3. Control points located in the first sector. Brown line corresponds to the path. 

Black points are high precision GPS VRS antenna and red points are low precision 

magnetometer GPS antenna. The dimensions are 2.75 x 1.25 meters. 

 

 

 

 

 

 

 

 

 

Figures 4 and 5 are the final plot of the magnetic survey for the first and second sector with high 

position accuracy. Original UTM coordinates have been translated and rotated only for a better plot 

representation. 

 

Figure 4. Magnetic anomalies in the first sector with precise geometry. Units in nT. 
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Figure 5. Magnetic anomalies in the second sector with precise geometry. Units in nT. 

 

 

 

 

 

 

 

 

 

 

 

 

In the first sector a marked magnetic anomaly is presented in the form of 11 by 1 meter corridor 

crossing the area horizontally. In the second sector some corridors can be seen crossing the plot 

vertically; these corridors have a mean width of approximately 1 meter .  

 

5. Conclusions 

 

The VRS GNSS technology is introduced as a very interesting approach not only for collection of 

magnetic data, but also for high-precision real-time data acquisition for positioning that can be 

extended to any geophysical research. It presents great advantages in terms of operational flexibility 

and cost-effectiveness. VRS requires only a single GPS receiver because no base station is necessary, 

reducing labor and equipment costs. It simplifies the operational logistics of field work and can 

operate at distances separated 50-70 kms from the reference stations without degrading accuracy. The 

results obtained in the magnetic survey with the compact integration of GSM-19 magnetic sensor with 

VRS GNSS technology are of great interest for archaeological purposes. 
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