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Abstract: DNA microarrays are an important tool with a variety of applications in gene 
expression studies, genotyping, pharmacogenomics, pathogen classification, drug 
discovery, sequencing and molecular diagnostics. They are having a strong impact in 
medical diagnostics for cancer, toxicology and infectious disease applications. A series of 
papers have been published describing DNA biochips as alternative to conventional 
microarray platforms to facilitate and ameliorate the signal readout. In this review, we will 
consider the different methods proposed for biochip construction, focusing on 
electrochemical detection of DNA. We also introduce a novel single-stranded DNA 
platform performing high-throughput SNP detection and gene expression profiling. 
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1. Introduction  
 
DNA microarrays are the forefathers of DNA biosensors. They were born in response to the 

completion of a number of whole genome sequences to investigate the resulting large numbers of 
characterized genes. The power of this technology was demonstrated primarily by the work of 
Affymetrix [1-5] and Stanford University groups of Davis and Brown [6-12]. DNA microarrays are 
used to measure mRNA or miRNA expression [13-19], to characterize single nucleotide 
polymorphisms (SNPs) [19-23], to identify in vivo Transcription Factor (TF) binding sites [24-26] and 
as a diagnostic tool to determine chromosome deletion or amplification [27,28]. However, the size of 
samples and numerous preparative steps limit microarray studies in tissue-specific or cell-specific 
responses [19,29], or prevent them from delivering results in real-time. In spite of these limitations 
there are different approaches to study gene expression with very scarce sample sources derived, for 
example, from laser capture micro dissection approach [30-32]. These methods are based on RNA 
amplification [33,34], or signal amplification of detected fluorescence using tools such as dendrimers 
that, thanks to their chemical structure, allow the accumulation of many fluorescent molecules into the 
target[35], or enzymes that catalyze serial depositions of fluorophores after target-probe binding 
(tyramide signal amplification (TSA) method) [36].  

DNA biosensors have the potential to overcome the limits of DNA microarrays by offering rapid 
and high sensitive analytical tools for genetic detection [37]. The most important challenges are: i) the 
integration of microelectronics to microchip-based nucleic acid technologies in a high scalable 
process; ii) the automation of the detection step and iii) the ability to perform direct signal transduction 
avoiding the images processing and statistical analysis, necessary in canonical DNA microarray 
workflow [38]. Potential applications of DNA biosensors include molecular diagnostics [39,40], 
pharmacogenomics [41,42], drug screening [43-45], medical diagnosis [46,47], food analysis [48-50], 
bioterrorism [51] and pollution [52-54] or environmental [55] monitoring. Recently, new generations 
of chips that can perform DNA sequencing have been developed accelerating biological and 
biomedical research in the genetic field [56]. These new technologies are based on cyclic-array 
sequencing and include the following commercial products: the 454 Genome Sequencer (Roche 
Applied Science), the Solexa (Illumina), the SOLiD platform (Applied Biosystems), the Polonator 
(Dover/Harvard) and the HeliScope Single Molecule Sequencer (Helicos). Array-based sequencing 
enables a much higher degree of parallelism than conventional capillary-based sequencing, but 
presents problems with long sequencing runs and accurate data fidelity [57]. 

In spite of the potential of biosensors and their wide application in research, only some chips have 
entered the clinical market. Among these are the glucose sensors that were leading the market until a 
few years ago: 6% of the Western world population is, in fact, affected by diabetes and would benefit 
from the availability of rapid, accurate and simple biosensor for glucose. Nowadays, however, there is 
a great demand for monitoring other molecules such us cholesterol, lactate, urea, creatine, that are very 
important markers for health care. The reason for this limited adoption of biosensors in the market is 
that many critical parameters, such as quality control and selection of testing parameters and control 
need to be improved. Moreover, new projected biosensors have to meet the need that were not 
accomplished by the existing analyzers and have to provide some distinct advantage, for example 
improved ease of use, faster response time and portability.  
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In this review we introduce the DNA microarray technique as a benchmark to compare DNA 
biosensors. We will discuss DNA biochips as an alternative to conventional microarray technology, 
considering different approaches that have been proposed to facilitate and ameliorate the signal readout 
and focusing on the electrochemical DNA signal hybridization detection. This approach is very useful 
for the biosensing of sequence-specific binding of DNA because of the high sensitivity and the rapid 
response. In the last part of this work we introduce a new single-stranded DNA microarray sensor, 
developed by CombiMatrix, capable of detecting the presence and measuring the abundance of 
thousands of different genes. 

 
2. Conventional Microarrays 
 

Conventional microarrays fall into the category of biosensors only in a general sense, but they 
represent a benchmark for DNA biosensor comparison. Molecular recognition events are based on 
nucleic acid hybridization events that are transduced into a detectable signal; usually fluorescence 
[58,59]. The hybridization is a peculiarity of single-stranded nucleic acid (DNA or RNA) thanks to the 
hydrogen bonds formed between adenine (A) and thymine (T), or guanine (G) and cytosine (C) bases 
in DNA, while in RNA, thymine is replaced by uracil (U). DNA microarrays are characterized by 
high-density probes (100 - 1 million DNA probes can be attached to a surface of 1 cm by 1 cm) linked 
to a solid surface to which labeled target hybridizes [19,60,61]. Probes could be PCR products (> 500 
mer; cDNA microarrays) [7,8,62] or oligonucleotides (20 – 70 mer) [3,13] that are deposited onto the 
solid surface or directly synthesized onto the surface [63] (Table 1). Synthesized oligonucleotide 
sequences are a function of the knowledge of the genome of the studied organism. Today the 
sequencing of a complete genome is becoming an easier task thanks to the availability of new cyclic-
array sequencers [57]. This second generation of sequencer uses a high degree of parallelism, spatially 
arraying DNA fragments to be sequenced, resulting in lower cost protocols. Today, multiple 
investigators are working on technologies for ultra-fast DNA sequencing. These are based on nanopore 
sequencing [64,65] or real-time monitoring of DNA polymerase activity [66,67]. In the first case 
nucleic acids are driven through a nanopore modulating the ionic current through the nanopore and 
allowing to the nanopore itself to work as a biosensor [64]; in the second case a zero-mode waveguides 
permit to detect the nucleotide incorporation during DNA polymerization in a zeptoliter-scale volume 
[66]. The cost reduction of DNA sequencing by massive sequence parallelization, is democratizing the 
knowledge of genomic information of different organisms (e.g. economically important like Vitis 
vinifera [68]) and opening the door to functional genomics studies by DNA microarrays to any 
organism or biological condition. 

Different companies have developed different strategies to produce their DNA microarray using 
phosphoramidite chemistry and reactive protective groups in the last added nucleotide of the growing 
DNA oligonucleotide. Protective groups prevent unwanted side reactions and force the formation of 
the desired oligonucleotide sequence during synthesis. Affymetrix, Nimblegen (Roche) and Febit 
platforms use the light to activate particular chip sites but extend the oligonucleotide length with 
photolithography masks in the first case [5], or micromirrors in the second and third cases [69-71]. The 
Agilent technology uses ink-jet technology to spot the amidites and employs a flooded chemical 
deprotection [72] while CombiMatrix uses an addressable electrode array for the production of acid at 
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sufficient concentration to allow deprotection process and to permit the oligonucleotide synthesis [73]. 
Nanogen, a company that has been on the market since 1997, developed a microelectronic array used 
to influence DNA transport, concentration and hybridization changing physical parameters like DC 
current, voltage, solution conductivity and buffer species (APEX technology) [74] (Table 1). Illumina 
and Motorola have developed novel 3D microarrays. Illumina combines the association of microbeads 
linked to specific probes and an array of microwells that could accommodate one bead per well, 
allowing the organization of an ordered array [75-77] while Motorola has developed a three-
dimensional matrix that enables the attachment of biomolecules to the slides.  

Detection of the hybridized targets in microarrays is related to the labeling process of the target 
itself. It could be coupled to RNA linear amplification [33,34], depending on the quantity of the 
starting material, or used as a direct or indirect method to incorporate the fluorescence in the 
synthesized target[78] (Figure 1). Nowadays microarray sensitivity ranges from 50 fM to 10 pM of 
mRNA target that is present in the solution. The differences are expressed in a relative (ratio-based) 
mode [19], but recently Carter [79] developed a method based on spike-in and on the generation of 
dose/signal graphs to obtain absolute expression measurements (proportional to transcript copy 
number). 

 
Figure 1. Description of the RNA amount utilized in the different microarray labeling 
techniques. The RNA amount is related to the cells number or tissue weight with a 
detection limit of 1000 cells. Direct incorporation of fluorescent nucleotides into the cDNA 
can be used to examine expression of samples with 10 μg of total RNA while indirect 
incorporation of fluorescent nucleotides is used with samples presenting total RNA 
concentration between 10 μg to 50 ng. Described detection limits do not preclude the use 
of the microarray to perform genome wide studies of biopsies or histological samples. 
Image reproduced from Duggan et al.[29]. 
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Table 1. Types of oligonucleotide and cDNA microarrays. 

Company 
name 

Spotting 
method 

Probe 
synthesis 

Probe 
characteristics 

Printing 
technique 

Uptake 
volume 
(μL) 

Dispense 
volume/ 
Probe 
length 

Spot 
diameter 
(μm) 

Affymetrix Non contact In situ 

synthesis 

Oligonucleotide 

 

Photolitography NA NA/20 - 25 

mer 

6.3 

Nimblegen Non contact In situ 

synthesis 

Oligonucleotide 

 

Micromirror 

 

NA NA/50 - 75 

mer 

16 

Febit Non contact In situ 

synthesis 

Oligonucleotide 

 

Micromirror 

 

NA NA/30 - 60 

mer 

24 - 72 

Agilent 

technologies 

Non contact In situ 

synthesis 

Oligonucleotide 

 

Ink-jet NA NA/60 mer 60 

CombiMatrix Non contact In situ 

synthesis 

Oligonucleotide 

 

Addressable  

electrode 

NA NA/35 -50 

mer 

25 

Nanogen Non contact In vitro 

synthesis 

and 

electronic 

delivery 

Oligonucleotide 

 

Addressable  

electrode 

NA NA/Not 

specific length 

80 

Illumina Non contact NA Oligonucleotide 

 

Micro-beads NA NA/NA 3 

"ArrayIt" 

TeleChem 

International 

Inc. 

Contact In vitro 

synthesis 

and spotting 

Oligonucleotide 

 

Printing tips 0.25 0.6 nL/NA 60 - 360 

Eppendrof Contact In vitro 

synthesis 

and spotting 

NA Printing tips 0.25 0.6 nL/NA 60 – 360 

Ocimum 

Biosolutions 

Contact In vitro 

synthesis 

and spotting 

Oligonucleotide Printing tips 0.25 0.6 nL/NA 60 – 360 

Greiner Bio-

One 

Contact In vitro 

synthesis 

and spotting 

NA Printing tips 0.25 0.6 nL/NA 60 - 360 

SurModics 

(CodeLink 

array) 

Non contact In vitro 

synthesis 

and spotting 

Oligonucleotide NA 5 - 10 100 pL/ 30 

mer 

45 - 160 

Academic/ 

Universities 

Contact/ 

Non contact 

In vitro 

synthesis 

and spotting 

Oligonucleotide/ 

cDNA 

Printing tips/  

syringe solenoid  

or ink-jet 

0.25/ 5 - 10 0.6 nl/ 100 pL 

35 - 70 mer/ > 

500 mer 

60 - 360/ 

120 - 500 

NA: not available 
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3. DNA Biosensors 
 

Biosensors are devices that combine a biological component with a detector component. Biosensors 
consist of three parts: i) the sensitive elements (biologically-derived material), ii) the transducer or 
detector element that transforms the detected signal in a readable and quantified output and iii) the 
signal processor, that display the transformed signal in a user-friendly way (Figure 2A). In DNA 
biosensors the sensitive element is generally composed by single stranded DNA (ssDNA) molecules 
that allow the hybridization of complementary single-stranded molecules [63,80-91]. Different 
methods can be used to transduce these hybridization signals including: a) optical transducers that are 
based on fiber optics [77,92], reflection interference contrast microscopy (RICM)[90], surface plasmon 
resonance (SPR) [93,94] or Raman spectroscopy [95-97], b) electrochemical transduction [80-84, 
86,88,89,98] or electrical transduction (e.g. integrated-circuit (IC) biochip [99] in association with  
molecular beacon (MB) [100]), and c) piezoelectric transduction (measurement of changes in mass) 
[85,101-106] (Table 2). 

Optical methods are the most frequently used in the detection of analytes because of their simple 
and straightforward use [59,61]. A variety of optical methods are based on target labeling with 
radioisotopes, fluorophores and UV-absorbing molecules. Fluorescence is an event occurring to 
molecules like polyaromatic hydrocarbons or heterocycles when they absorb light. They change their 
energy level if excited by light and decay from the excited energy level by emitting fluorescent light. 
Although the fluorescent approach based on fluorescence is simple, it is influenced by the environment 
(solvents, pH and conjugation to nucleic acids). Moreover fluorescent dyes could be toxic molecules 
for the user. For example, UV-absorbing compounds like ethidium bromide, a standard fluorescent dye 
for staining DNA, is known to be mutagenic and carcinogenic. Further disadvantages of the 
fluorescence–based approaches are also the instrumentations used for signal reading that are not easily 
transportable and generally expensive. Different optical approaches were developed to overcome the 
limits of fluorescence and to avoid target tagging (i.e. labeling of the DNA). These methods are based 
on Raman spectroscopy [95,96], RICM [90] or SPR [93,94]. The first method provides femtomolar 
sensitivity and multiplexed detection of DNA and RNA targets with single nucleotide polymorphisms 
[97]. The method is based on photons scattering when incident light encounters a molecule. Also in 
this detection process is necessary to label the target with the Raman-active dyes. Only RICM and SPR 
are genuine label-free optical methods. In the first case the association of negatively charged 
microbeads with the reflection interference contrast microscopy (RICM) produces an image of the 
hybridized or not hybridized targets to the respective probes (Figure 2B). The limit of this technique is 
not diffraction, but the particle position resolution and the concentration of the particle in the solution. 
Clack and collaborators, using 30-mer capturing sequence, described a detection limit of the RICM 
method as 50 pM, but similar limits as seen with fluorescence detection (1 – 5 pM) may be anticipated, 
using electrostatic readout in optimal substrate and hybridization conditions [90]. To scan the surface 
potential Sinensky and Belcher [107] evidenced the advantages of Kelvin probe force microscopy 
(KPFM). KPFM is a non-contact variant of atomic force microscopy (AFM) based on the 
measurement of the electrostatic forces between the small AFM tip and the sample. Since DNA strands 
are negatively charged, it is possible to measure the presence of a specific bound target on a DNA 
modified surface avoiding the labeling step (Figure 2C). Sienencky and Belcher demonstrated a 
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sensitivity of 50 nM, that is lower than the sensitivity of the RICM technique, and a resolution of < 10 
nm [107]. 

 
Figure 2. A). Scheme of a biosensor. The three main components of a biosensor are 
evidenced: the sensitive element (white box), the transducer with a list of different 
transduction methods (orange box) and the signal processor (yellow triangle) that displays 
the transformed signal in a user-friendly way. B). RICM method description. A suspension 
of negatively charged silica microspheres is gravitationally sedimented over a microarray 
surface allowing the electrostatic readout of microarray. The positions and motions of a 
population of microspheres are used to image the surface charge of the microarray and 
detect hybridization. This is caused by the higher negative charge of the areas displaying 
double-stranded DNA in comparison to those displaying ssDNA, and both contrast with 
the positively charged background. Image reproduced from Clack et al. [90] C). Schematic 
view of DNA probe in single (1) and double stranded (2) conformation (hybridized to 
target molecules) scanned by the KPFM method. Bottom image represents a typical KPFM 
response in which electrostatic potential is plotted against surface position. Point 1 and 2 
evidence the different responses of the surface potential according to the absence (1) or 
presence (2) of hybridization with target. D). EC-SPR scheme. The combination of SPR 
and electrochemical techniques allows obtaining new insight in the interfacial recognition 
process. The cyclic voltammetry and the simultaneous measure of the SPR angle show a 
sigmoidal change between the oxidized and the reduced state of the analyte. The cyclic 
voltammogram and SPR response in the absence of the analyte are shown, for comparison. 
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SPR is an optical-electrical phenomenon arising from the interaction of light with a metal surface, 
making the detection of the presence of a biopolymer on chemically modified gold surface possible. 
The basic principle involved is the change in the local index of refraction upon adsorption of light. The 
optical phenomenon is linearly related with the mass concentration adsorbed onto the metal film. The 
BIAcore 3000 instrument integrates SPR technology with a microfluidics system to monitor molecular 
interactions at real-time molecular interactions at concentrations ranging from pM to mM. The 
BIAcore instrument was used in virology applications to detect HIV-1 genomic sequences [108] 
demonstrating the possibility to use it in an automated diagnostic system. The SPR technique is a label 
free, high throughput and scalable method in array format. It was used by Goodrich and collaborators 
to detect multiple DNA targets at a concentration of 10 fM on a single chip [93].  
 

Table 2. Types of DNA biosensors. 

Type Transducer Advantage/Disadvantages Description 
Optical fiber Fiber Optics Sensitivity of optical approaches/ 

Costly equipment and not portable 

Fluorescence from labeled target is 

collected from the fibre waveguide 

[77,92] 

Optical apparatus/ 

Surface potential 

microscopy 

Reflection interference contrast 

microscopy (RICM) 

High sensitivity below water, 

dynamic image processing, rapid 

measurements/ Instrument required, 

not portable 

RICM: a microinterferometric technique 

to measure absolute optical distances 

between transparent planar substrates 

and hard or soft surfaces such as 

colloidal beads or artificial and 

biological membranes, which hover 

over the substrate [90] 

KPFM/ 

Surface potential 

microscopy 

Cantilever of AFM instrument Accuracy of the measurement/ 

scanning speed 

Measure local variance in the surface 

potential [107] 

Resonant minor 

(BIAcore) 

Surface plasmon resonance 

(SPR)/ EC-SPR 

High sensitive/ Susceptibility to 

interference 

Changes in the refractivity index 

[93,94,108] or associated with 

electrochemistry (EC-SPR) [109,110] 

SERG probes Raman spectroscopy Spectra can be collected from a very 

small volume/ sensitive and highly 

optimized instrumentation 

Plasmonics-based spectroscopic 

technique [95-97] 

Diamond nanowires Diamond Fast/ High cost, buffered solution 

may interfere 

Electrons from diamond substrate can 

flow along the DNA. Conductivity 

changes with ssDNA or ds DNA [89] 

Active electrode/ 

transistor surface/ 

nano-structures 

Electrodes/ Transistors/ 

Nano-structures 

Fast, relatively low cost/ Buffered 

solution may interfere 

Analytes are involved in the reaction on 

the active electrode surface. The charge 

produced create a measured potential 

[80-84,86,88,98,112-139] 

Opto-electronic 

photodiode 

IC biochip in association with 

molecular beacon (MB) 

Fast/ Dependent on fluorescence 

(bleaching) 

Fluorescence of hybridized MB is 

collected and detected in miniaturized 

detection biochip[100] 
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Table 2. Cont. 
Current across the 

channel 

Ion channel High-troughput/ Not well studied, 

buffered solution may interfere 

Transmembrane voltage permit to draw 

DNA or RNA molecules through the 

open ion channel [64,65] 

Quartz crystals/ 

cantilever 

Piezoelectric transducer High sensitive, fast/ Sensitivity up to 

one cell has not been demonstrated 

Changing in frequency of quartz 

crystals oscillation or cantilever 

deformation [85,101-106] 

 
SPR could be used in association with electrochemistry (EC-SPR) where the thin metal film on the 

substrate is used not only to excite surface plasmons, but also acts as a working electrode for 
electrochemical detection or control [109,110]. With the EC-SPR configuration is possible to 
simultaneously obtain information about the electrochemical and optical properties of films with 
thicknesses in the nanometer range (Figure 2D). Georgiadis et al. and Heaton et al. monitored the in 
situ hybridization of DNA in the presence of different electrochemical fields [109,110].  

The mass of the absorbed molecules is the measured parameter also in the piezoelectric sensors. 
The method used is based on the change in oscillating frequency resulting from the increase in mass on 
the crystal surface, which accompanies the hybridization. A quartz crystal microbalance affinity 
biosensor was used by Mannelli and collaborators to detect genetically modified organisms [105] and 
recently chemically modified piezoelectrodes were utilized to develop a biosensor for the 
determination of genetically modified soybean [106]. This approach is used for the identification of 
genetically modified organisms (GMOs) because the production of GM crops is increasing and there is 
a growing requirement for methodologies that allow the accurate and easy determination of the content 
of GMOs [111].  
 
4. Electrochemical/Electrical DNA Biosensors 
 

In order to reduce the size of the instrumentation needed in the DNA detection and the costs 
incurred for this purpose, DNA chips that can perform target detection with an electrical signal have 
been proposed [61,140,141]. In fact, the miniaturization of electrochemical devices and technology 
improvements make them excellent tools for DNA diagnosis.  

The immobilization of the ssDNA onto the transducer surface plays an important role in the 
performance of the biosensors because the surface modification technique must be compatible with the 
related sensing methodology [91]. Various methods have been developed to attach the DNA probe to 
the solid surface of biosensors: the self assembling monolayer (SAM) on gold electrodes [142-144], 
biotinylated DNA probes attached through biotin-avidin interaction on electrode surface [145] or 
electro polymerization that produces probes of different length [73]. A new challenge is the 
development of dynamic surfaces with the ability of tuning their biochemical functionality. Moore et 
al. [146] have proposed a thiol-functionalized surface to which molecules or probes could be attached 
by a disulphide bridge that, after the detection process, could be chemically or electrically renewed and 
reused. 
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Electrical detection mode was developed for detection of both label-free and labeled DNA targets. 
The first method allows a direct transduction translating the recognition behavior in a readable signal 
in real time mode performing kinetic measures [81]. In contrast, labeling approaches involve the 
detection of a marker, associated with the duplex formation. The labeling step enhances the sensitivity 
and the selectivity, but also increases the time, complexity and cost of measurement. 

 
4.1. Nano-Objects for the Electrochemical Biosensors 
 

Nanomaterials have facilited the development of ultrasensitive electrochemical biosensors because 
of their high surface area, favorable electronic properties and electrocatalytic activity [147]. Moreover, 
they show good biocompatibility due to their nanometer size and specific physicochemical 
characteristics. Nanoscale materials include nanoparticles, nanowires, nanoneedles, nanosheets, 
nanotubes, nanorods, nanobelts, etc. The use of magnetic micorbeads has also gained popularity. They 
are used to fish targets that are homologous to the probes linked to the bead surface and to concentrate 
the hybridized target by bead precipitation. This strategy was utilized by Lermo and co-workers [128] 
for the electrochemical detection of pathogens in food allowing the detection of DNA at femtomolar 
level (Figure 3A). Gold nanoparticles was used by Park et al. [112] in a typical sandwich approach to 
close the electrical connection between two flanking microelectrodes demonstrating a sensitivity of  
≅ 5 × 10-13 M in target DNA. In this technique DNA probes have been deposited between separated 
microelectrodes to discriminate between positive and negative hybridization signals, basing the circuit 
resistance among the electrodes. Resistance is modulated by the presence of the gold nanoparticles that 
detect the presence of hybridized target.  

Gold nanoparticles are also used in the pencil graphite electrode DNA sensor onto which probe 
strands are immobilized. Hybridization is detected electrochemically with the appearance of a 
characteristic gold-oxidation signal with a detection limit of 0.8 femtomoles of DNA, thanks to the 
large electrode surface and the high number of oxidizable gold atoms in each nanoparticle [129]. 
Nanoparticles are also suitable for the photochemical detection of DNA hybridization. Willner et al. 
[130] used CdS nanoparticles in DNA hybrid system associated with an electrode relying on the 
exposure of the CdS nanoparticles to visible blue light which gave rise to a photochemical current 
between the nanoparticle and gold electrode (Figure 3B).  

Nowadays other nano-objects such as nanowires [131] and carbon nanotubes [132,133] have 
received increasing attention. Nanowires represent a class of inorganic materials that are surface-
passivated by thin oxide layer and serves as electrodes or can interconnect between micro- and 
nanoelectronic devices. Carbon nanotubes exhibit properties such as robustness, enormous specific 
surface area and large-scale arrayability, but the extreme sensitivity of nanowires and nanotubes field-
effect sensors (Figure 3C) is balanced by their sensitivity to impurities and other ionic species in 
analyte solution. As a result, low ionic strength buffer is quite often necessary, and studies on sensing 
mechanism have been proven to be difficult [134]. 
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Figure 3. A). Schematic representation of the electrochemical strategy used for the 
detection of food pathogens by Lermo et al. [128]. Biotinilated probe is immobilized onto 
magnetic beads and hybridized with the target. Enzymatic labeling, magnetic capture of 
the modified magnetic beads by the magneto electrode and chronoamperometric 
determination are common steps for this strategy. B). Photochemical detection of DNA 
hybridization. The exposure of the CdS nanoparticles to visible blue light gives rise to a 
directionally electroswitchable photochemical current (1 and 2) between the nanoparticle 
and gold electrode. (3) Photocurrent action spectra generated in the CdS nanoparticles 
DNA system: in the absence (a) and in the presence (b) of methylene blue. (4) 
Electrochemically switched anodic and cathodic photocurrents generated in the Cd 
nanoparticles DNA in the presence of methylene blue generated at 0 and -0.4V. 
Photocurrents were generated upon irradiation at λ = 420 nm. Image reproduced from 
Willner et al. [130]. C). Carbon nanotubes field effect transistor. (1) A NTFET device 
composed of an isolated single-walled carbon nanotubes (SWNT) between source (S) and 
drain (D) electrodes on top of a SiO2 substrate with an underlying Si gate electrode. (2) An 
atomic force microscope (AFM) image of the NTFET device illustrated in part 1. (3) A 
liquid gated NTFET, where the electrochemical potential of the solution is controlled with 
a gate electrode. (4) NTFET transistor characteristic showing the source–drain 
conductance versus gate voltage (G–VG) curve obtained by sweeping the gate voltage from 
+10 to −10 V at a constant S–D bias voltage (VSD) of 0.05 V using a NTFET with a 
random network of SWNTs between interdigitated Ti/Au electrodes on a SiO2 insulated Si 
back gate. Image reproduced from Kauffman et al. [118]. 
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4.2. Label-Free Electrochemical DNA Detection 
 

As mentioned earlier, label-free DNA detection involves the measurement of physiochemical 
changes occurring on the surface of the transducer device due to the DNA hybridization. Comparing 
with label-free optical and physical transduction (SPR, quartz crystal microbalance, KPFM and RICM) 
electrical transduction is cheaper, portable, independent of sample turbidity, easily miniaturizable and 
more compatible with nanotechnology. The earliest label-free approach was based on the intrinsic 
electroactivity of DNA purine bases. 50 years ago Palecek et al. [148] developed methods to 
discriminate ssDNA versus dsDNA through direct DNA reduction. The direct oxidation of DNA 
requires relatively high potentials causing significant background currents. To improve signal-to-noise 
ratio a two-step strategy was proposed for, first, capturing target and then detecting the oxidation 
process [135]. According to this process, hybridized target to probes linked to magnetic beads is 
purified using the beads itself and then is analyzed using adsorption stripping voltammetry after the 
depurinization. 40 femtomoles of substrate have been detected by this assay. Electrochemical assay 
sensitivity is therefore comparable to SPR [109,110] as described in the DNA biosensors paragraph. 

Starting from the idea of Aviram and Ratner [149], who used organic molecules as electronic 
components, different strategies have been developed to detect DNA hybridization in transistor devices 
in a label-free mode. In 2004 Kim et al. [113] fabricated a field effect transistor (FET)-type DNA 
charge sensor based on standard complementary metal oxide semiconductor (CMOS) technology 
which can detect the DNA probe immobilization. Detection occurs by sensing the variation of drain 
current due to the change in charge distribution at the interface induced by DNA binding. A FET-type 
charge sensor is a semiconductor sensor that measures the change of the oxide/electrolyte interface 
potential caused by DNA probe immobilization and target detection on the gate metal, based on the 
field effect mechanism of MOSFET [88,116]. This structure was utilized by Bandiera et al. [81] to 
make a fully electronic sensor for the measurement of the DNA molecules kinetic hybridization since 
with this sensor configuration it is possible to measure the charge variation on the detector dynamically 
during time. They demonstrated that long DNA strands have slower hybridization kinetics than short 
DNA strands. This is probably related to different movement ability and steric constraints of DNA in 
solution. FET devices are attractive structures in association with nanomaterials such as carbon 
nanotubes, described in the previous paragraph. About ten years ago unique devices based on carbon 
nanotube field-effect transistor (NTFET) technology appeared [117,136] with the conduction channel 
formed by carbon nanotubes. The small diameter and relatively long length (µm) of single-walled 
carbon nanotubes (SWNTs) allow them to probe molecular systems on a local scale by directly 
connecting to individual or small assemblies of molecules. These characteristics of SWNT based 
NTFETs create unique platforms for studying molecular systems with unsurpassed sensitivity  
(≅500 pg/mL of target DNA) [115,118] (Figure 3C). The measure of potential surface by FET devices 
is very attractive because the transduction device integrates the sensing element and because of the 
possibility of system miniaturization. However, performance remains a function of solution 
characteristics, the probe immobilization techniques and the thickness of the insulator oxide.  

Capacitive measurements were used in the work of Stagni and collaborators [114] who 
demonstrated the ability of a CMOS DNA based chip to detect the hybridization in a label-free DNA 
detection. The CMOS chip with 128 sites is shown in Figure 4. This work is based on circuits that 
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measure the electrodes’ interface electrochemical impendance. From the electrical perspective, the 
interface between the electrodes and the solution is characterized by capacitive and resistive 
parameters sensitive to the electrode surface state. The presence of single strand or double strand 
(hybridized) DNA affects the interface electrical parameters. Hybridization decreases the interface 
capacitance of the gold electrodes covered with the specific probe [119]. Guiducci et al. [86] 
demonstrated the possibility a) to detect DNA hybridization in a two-gold-electrode system without 
using a reference electrode and b) to integrate the technology in an integrated silicon chip of gold 
microelectrodes on a 2 × 103 μm2 surface [120]. The ability to use this technique with two-gold-
electrode system instead of three electrodes setup make it possible to develop a cost-effective fully 
integrated design. In fact, the reference electrodes are problematic, being subjected to aging and 
requiring specific storage and regeneration procedures. 
 

Figure 4. Microphotograph of a fully digital 16 × 8 sensor array (source: Infineon 
Technologies AG [150]). The chip is 4.15 mm × 5.65 mm; sensor pitch is 250 microns. 
Each site is an interdigitated gold electrode couple exposed to the solution. 

 
 

4.3. Indirect Electrochemical DNA Detection 
 

Even if label-free DNA detection simplifies the readout and reduces time and costs of analysis, it 
does not reach the same sensitivity of the label (indirect) DNA detection. The indirect method permits 
sensitivity at the atomole level in term of concentration of the DNA target [121]. Indirect methods also 
require mediators that facilitate electron transfer between them and the electrode. Redox mediators are 
small size compounds that enable the reversible exchange of electrons with the electrode. The most 
used electron mediators are ferrocene, K3Fe[(CN)]6

3-/4-, Ru(bpy)3
3+/2+, Os(bpy)3

3+/2+ and Methylene 
Blue. As mentioned in the previous paragraph, nanomaterials could also be used as indirect 
electrochemical sensors. For example, metal nanoparticles represent a large redox reservoir [129].  
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The electron mediators are used: i) in reactions to oxidize directly DNA, ii) to avoid the 
modification of the target strand, and iii) in reactions modulated by enzymes linked to the target strand. 
In the first case for example, Yang and Thorp [122], using electrocatalysis by Ru(bpy)3

3+/2+ and the 
oxidation of the immobilized guanines, were able to discriminate the genomic expansion of the triplet 
repeat sequences 5'-(CTG)n and 5'-(CGG). These expansions are responsible for the myotonic 
dystrophy and fragile X syndrome respectively. To avoid the target modification Umek et al. [123] 
performed a three-component sandwich assay, in which the redox label was attached to a synthetic 
sequence specifically designed to bind an overhang portion of the probe target complex.  

Target enzyme markers are an attractive, well documented strategy for the time-controlled 
production of redox species. For instance, alkaline phosphatase (AIP) [124,125], glucose oxidase 
(GOx) [126] and horseradish peroxidase (HRP) [98,127] have been used for the fabrication of 
electrochemical sensors. Today, an ideal biosensor is required to be not only miniaturized and cost-
effective, but also capable of simultaneous detection of multiple analytes. To this purpose the 
CombiMatrix company developed a DNA sensor chip detecting 90K with fluorescence method and 
12K in both fluorescence and electrochemical method.  

 
4.4. CombiMatrix Chip: A High Throughput DNA Sensor 
 

The CombiMatrix 12K ElectraSense® microarray is a silicon chip with complementary metal oxide 
semiconductor (CMOS) circuitry (Figure 5). This circuitry is addressed through pogo pin connectors to 
thirteen metal pads at the side of electrode field. On-chip logic and Windows® software control the 
circuitry to address each of 12,544 electrodes individually or in predefined groups. The microarray 
becomes a highly multiplexed transducer where electrical signals drive chemical reactions or chemical 
reactions create electrical signals at each electrode.  

As a multiplex sensor, the specificity of the ElectraSense microarray is dictated by the capture 
molecules on each electrode. Maurer et al. [73] described the use of electrochemistry to generate 
specific DNA probes on each electrode to create a custom array for genomic testing. Asai and 
collaborators first reported on using an early version of the ElectraSense microarray for selecting and 
mutating aptamer sequences to improve binding to resorufin [151,152]. More recently, Knight et al. 
applied a sophisticated in silico modeling approach for creating high binding aptamers to 
allophycocyanin [153]. Both groups of investigators used the customizable feature of the microarray to 
iteratively change (mutate) a few nucleic acids on the aptamers to determine the strongest binding 
sequences. Based on the electrochemical synthesis of unique DNA sequences at each electrode, the 
ElectraSense microarray can serve as detector for specific oligonucleotide binding and binding by 
other molecules as well. 

Detection of molecular binding on the microarray can be measured using fluorescence or 
electrochemical detection (ECD). For measuring oligonucleotide binding using ECD, commercially 
available reagents that are used for ELISA assays perform very well, including avidin-HRP, 
tetramethylbenzidine and hydrogen peroxide. Ghindilis et al. [127] compared the efficiencies of 
fluorescence detection and ECD using a spike-in experiment and determined that ECD had a lower 
limit of detection of 0.75 pM while fluorescence had a lower limit of 1.5 pM. The average correlation 
coefficient between fluorescence and ECD in these studies was 0.94. 
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Figure 5. A. ElectraSense reader. B. Enlargement of the chip housing. C. Enlargement of 
the silicon chip with complementary metal oxide semiconductor (CMOS) circuitry. The 
central detection area shows 12k electrodes. Diameter of each electrode is 44 μm. 

 
 

Given these indices of performance, fluorescence detection and ECD on CombiMatrix 12K 
microarrays are comparable; however, the instrumentation for ECD is considerably less complex and 
far more rugged. The 12K ElectraSense microarray can be read in less than 15 seconds using a single 9 
cm by 6 cm electronics board that is powered through a PC USB 2.0 port (Figure 5). This reduction in 
size and complexity allows the array to be integrated into fluidic cartridges without concern for optical 
paths and instrument stability. By modifications to the electronics board, a potentiostat can be 
connected to individual electrodes or groups of electrodes for cyclic voltammetry and impedance 
spectroscopy. Redox molecules, such as ferrocene, Methylene Blue and ferri/ferrocyanide can be used 
for making these measurements on the ElectroSense microarray. Using a potentiostat to measure 
molecular interactions on the array reduces the capacity of the microarray to multiplex; however, this 
loss is traded against reducing the number of reagents required for detection. Using different 
approaches to detection on a single platform provides orthogonal assay validation and allows the 
investigator to quantify and compare performance against expenditure of resources. 
 
4.5. Charge Transport by DNA 

 
An alternative approach for the electrochemical DNA detection is based on DNA-mediated charge 

transport. Redox-active reporter molecules, non-covalently associated with double helix, have been 
successfully used for electrochemically based DNA analysis. Milan and Mikkelsen [137] demonstrated 
the use of electroactive hybridization indicators in a reusable sequence-selective biosensor for DNA. 
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Steel et al. [138] in 1998 developed and measured the surface density of DNA on gold electrode. The 
number of nucleotide phosphate residues was calculated from the amount of cationic redox marker 
measured at the electrode surface. 

A different approach was based on intercalating redox probe molecules into the double-strand DNA 
structure. These intercalated molecules can monitor perturbations in base stacking[154] and thus 
discriminate between perfect and imperfect hybridized target. This assay is well suited for mutational 
analysis [139]. Briefly, after the formation of DNA duplex on gold surface and the treatment with a 
redox active intercalator a reporter molecule could be electrochemically reduced by DNA-mediated 
charge transport. The detection of mismatches does not depend on the thermodynamic destabilization, 
but by the ability of the electrons to flow along the double-strand DNA. 

 
5. Conclusions 
 

The development of biochips has a long history, starting with the first portable glass pH electrode 
(1922) [155], and is continuing today. DNA biosensors and microarrays are of considerable recent 
interest due to their tremendous promise for obtaining sequence-specific information in a faster, 
simpler and cheaper manner compared to traditional hybridization assays based on RNA radiolabeling 
[156]. From the first description of the structure of the double strand DNA, by Watson and Crick 
(1953), few scientific areas have witnessed dramatic changes of the magnitude observed recently in 
DNA diagnostics [157]. The rapid technological advances of the biochemistry and semiconductor 
fields in the 1980s led to the large-scale development of biochips in the 1990s. In fact biosensors are 
becoming one of the most popular scientific areas at the intersection of the biological and the 
engineering sciences [158]. The traditional separation between transducers and bioreceptors is being 
replaced by an integrative approach. e.g. STMicroelectronics, a silicon chip company has developed a 
silicon chip integrating microfluidic handling, a miniaturized PCR reactor connected to a custom 
microarray [159].  

This work reviewed the forefathers of DNA biosensors that are used in laboratories worldwide to 
detect differentially expressed genes in atherosclerosis [13], leukemia [160], skeletal muscle 
dystrophies [161,162] and in many other pathologies [163,164]. Apart their diffusion DNA 
microarrays are difficult to use, require specialized operators and complex bioinformatics analysis 
[19]. As such they are not classical biosensors. Researchers have utilized several approaches, herein 
described, to respond to the demand for user-friendly, portable, sensitive, miniaturized and low cost 
DNA sensors to support or substitute DNA microarrays.  

All of the detection methods described in this review have caveats, but those based on 
electrochemistry are particularly interesting because their sensitivity (fM in association with 
nanoparticles [129]), and the opportunity to miniaturize the technology. Nano-objects play an 
important role in the development of electrochemical DNA sensors. Their nanometer size makes them 
highly reactive and represents the ultimate miniaturization level for DNA sensors.  

The attractive properties of electrochemical devices are extremely promising for improving the 
efficiency of diagnostic testing and therapy monitoring even more today with the construction of very 
large multiplexed array: the CombiMatrix sensor. Future biosensors will require the development of 
new reliable devices or the improvement of the existing ones for use by non-specialized personnel 



Sensors 2009, 9                             
 

3138

without compromising accuracy and reliability. Compact and portable devices will constitute another 
future area of multidisciplinary research on sensors. 
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