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Abstract: Jerk monitoring, defined as the first derivative of acceleration, has become a 

major issue in computerized numeric controlled (CNC) machines. Several works highlight 

the necessity of measuring jerk in a reliable way for improving production processes. 

Nowadays, the computation of jerk is done by finite differences of the acceleration signal, 

computed at the Nyquist rate, which leads to low signal-to-quantization noise ratio (SQNR) 

during the estimation. The novelty of this work is the development of a smart sensor for jerk 

monitoring from a standard accelerometer, which has improved SQNR. The proposal is 

based on oversampling techniques that give a better estimation of jerk than that produced by 

a Nyquist-rate differentiator. Simulations and experimental results are presented to show the 

overall methodology performance. 
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1. Introduction 

 

Nowadays, jerk monitoring has become a major issue in computerized numeric controlled (CNC) 

machines. Jerk is defined as the first derivative of acceleration and it provides information related to 

sudden changes in vibration levels of machinery. There are several works aimed to generate jerk 

limited trajectories and motion profiles for CNC machines and robotics. For instance, Osornio-Rios et 

al. [1] presented the implementation of higher degree polynomial acceleration profiles for peak jerk 

reduction in servomotors, Erkorkmaz and Altintas [2] developed a jerk limited trajectory generation 

and quintic spline interpolation for high-speed CNC machines and Dong et al. [3] showed a feed-rate 

optimization with jerk constraints for generating minimum-time trajectories for robotics. Moreover, 

there are a number of proposals focused on improving the CNC machining processes by monitoring 

system dynamics (involving position, speed, acceleration and jerk on servomotor actuated axes) and 

limiting vibration levels to increase tool life and reduce overall costs. The desired characteristics that 

next generation CNC machines should include are reviewed by Mekid et al. [4], and Lorenzer et al. [5] 

presented the modeling and evaluation of reconfigurable machines where jerk monitoring is of major 

relevance. These works highlight the necessity of measuring jerk (among other dynamic related 

variables) in a reliable way for improving production processes. 

There are very few proposals for the development of a sensor that directly measures jerk like those 

reported by Nobuhiko et al. [6] and Fujiyoshi et al. [7], and there is also a lack of commercially 

available jerk sensors. In order to palliate this lack of jerk sensors two methodologies have been 

proposed: the sensorless and the accelerometer-based approaches. The sensorless approach reads the 

position information from an optical encoder, generally attached to all sevomotors in the axis control 

loop of the CNC machine, and then successively derivates the data to obtain an estimation of speed, 

acceleration, and jerk. This methodology has several disadvantages, as demonstrated by Chang and 

Chang [8], because derivatives are calculated using finite differences that corrupt information. By 

using wavelets, de Santiago-Perez et al. [9], and finite impulse response filters, Morales-Velazquez et 

al. [10], showed that it is possible to efficiently derivate the jerk signal from the optical encoder; 

nevertheless, the information provided by these researches is limited to the dynamics on the 

servomotor controlled axis and the methodology does not provide information on the induced 

vibrations due to the cutting process. On the other hand, accelerometer-based jerk monitoring takes 

into account the axis dynamics as well as the induced vibrations, but the derivation process to estimate 

the jerk from the acceleration leads to low signal-to-quantization noise ratio (SQNR) during the finite-

difference computation of jerk [7,11]. 

Smart sensors that include in their functionalities signal processing, communication, and integration 

capabilities have become widely used in countless applications. The term “smart sensor” is employed 

according to the functionality classification given in Rivera et al. [12], from the definitions of the 

Institute of Electrical and Electronics Engineers [13-14]. A few examples, among many available, on 

the development of smart sensors are: Hernández [11], presented a survey on optimal signal processing 

techniques applied to improve the performance of mechanical sensors in automotive applications, 

focusing on the signal processing capabilities of smart sensors; Rivera et al. [12] developed a 

progressive polynomial algorithm for self-adjustment and optimal response in intelligent sensors, 

focusing their work on non-linear signal processing and present a microcontroller-based 
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implementation; in another example described by Hernández [15], the response of several 

accelerometers in a car under performance tests is improved by using Kalman filtering, focusing the 

work in signal processing. These few samples highlight the relevance of smart-sensor development in 

recent times. 

The novelty of this work is the development of a smart sensor for jerk monitoring from a standard 

accelerometer, which has improved SQNR. The proposal is based on oversampling techniques that 

uniformly distribute the quantization noise throughout the extended bandwidth, then filter the 

frequency-band where the signal information is contained, and further decimate (undersample) the data 

stream to give a better estimation of jerk than that produced by a Nyquist-rate discrete differentiator. 

Simulations and experimental results are presented to show the overall methodology performance. 

 

2. Theoretical Framework 

 

Figure 1 shows the block diagram of the proposed smart sensor for jerk monitoring. The system 

uses a standard accelerometer as primary sensor to measure acceleration. Signal conditioning and anti-

alias filtering is then applied. Afterwards, the signal is converted to digital at an oversampling rate in 

the analog-to-digital converter (ADC). The quantized oversampled information is then filtered and 

differentiated to reduce the quantization noise. Finally, the resulting signal is decimated to give the 

estimation of jerk. 

 

Figure 1. Block diagram of the smart sensor for jerk monitoring. 

 
 

2.1. Derivative of a Quantized Signal 

 

As it has been shown by several authors [7-11], the direct derivation of a quantized signal gives a 

poor estimation of the derivative. This is because the derivation is done by finite differentiation of the 

quantized signal, as stated in Equation (1), where the discrete-time derivative j(k) is the finite 

difference Δ a(k) taken between two consecutive quantized samples a(k) and a(k-1): 

       1 kakakakj  (1) 

Being a(k) an n-bit quantized signal that takes values in the range: [–2n–1, 2n–1–1], the resolution of 

its finite difference is inversely dependent on the change rate of a(k). This means that the resolution of 

j(k) remains the same for a quick-changing a(k), but the resolution is decreased for a slow-changing 

a(k). To illustrate this effect consider Figure 2. Figure 2a shows a typical quadratic acceleration profile 

a(k) with quick-, medium-, and slow-changing piecewise segments. On the other hand, Figure 2b 

shows the theoretical and the finite-difference derivatives j(k). 
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Figure 2. (a) Piecewise quadratic acceleration profile. (b) Theoretical and finite-difference 

derivatives. 

 
 

 
 

From Figure 2b, it can be seen that theoretical and finite-difference derivatives are essentially the 

same for a quick-changing acceleration profile. For a medium-changing acceleration profile, the finite-

difference derivative resembles the theoretical derivative, but quantization noise starts to be 

significant. However, when the acceleration profile has a low-changing rate, the finite-difference 

derivative is highly corrupted with quantization noise, when compared against the theoretical 

derivative. Then, if finite difference is used as estimation for the derivative, it is necessary to improve 

the signal-to-quantization noise ratio of the process. 

 

2.2. Signal-to-Quantization Noise Ratio 

 
SQNR, in dB, for an n-bit quantized band-limited signal with bandwidth BW at a sampling rate sf  

is given by Equation (2): 
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BW

f
SQNR sn

dB 2
2log20 10  (2) 

 

This equation suggests that SQNR can be improved in two ways: by increasing resolution n, or by 

increasing sampling rate fs with further filtering. This improvement can be appreciated in Figure 3. 

Figure 3a shows the noiseless spectrum of a band-limited signal, Figure 3b shows the effect of the 

quantization noise over the n-bit resolution signal sampled at the Nyquist rate (absolute minimal 

sampling rate) fs = 2BW, Figure 3c shows the improvement when resolution is increased while 

maintaining the Nyquist sampling rate, and Figure 3d shows the improvement when maintaining 

resolution n with ν-times oversampling. 

 

Figure 3. Signal spectra. (a) Noiseless. (b) n-bit resolution at Nyquist rate. (c) Increased 

resolution at Nyquist rate. (d) v-times oversampled with n-bit resolution. 

 
 

To increase the system resolution for improving SQNR is not always possible in certain 

applications because the cost could increase beyond the economical restrictions. On the other hand, for 

low-frequency applications such as jerk monitoring in CNC machines [9,10] where sampling rates are 

in the order of few kHz, the resolution can be maintained while the improvement is given by 

oversampling; this is possible considering that there are plenty of low-cost, commercially-available, 

sampling ADC circuits that easily handle sampling rates in the order of 100 kHz. In order to take 

advantage of the SQNR by oversampling, further digital signal processing is necessary, but this can be 

achieved with low-cost field programmable gate arrays (FPGA) [1]. 

 

2.3. SQNR Improvement by Oversampling 

 

To take advantage on the SQNR improvement by oversampling, it is necessary to low-pass filter 

(LPF) the signal in order to recover the significant information while suppressing the quantization 

noise that has been distributed along the oversampled frequency band. The transfer characteristic of 

the LPF determine the suppression level to the excess of quantized noise; and because the ideal filter is 

unrealizable in practice, certain amount of quantization noise remains, making SQNR lower than the 
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stated value in Equation (2). Figure 4 shows the effect of real LPF acting on the oversampled signal. 

Figure 4a contains the original oversampled signal, Figure 4b presents the transfer characteristic of a 

real LPF, and Figure 4c shows the filtered signal. 

 

Figure 4. SQNR improvement with LPF. (a) Original oversampled signal. (b) Transfer 

characteristic of a real LPF. (c) Filtered signal. 

 
 

Once the oversampled signal is filtered, the derivation by finite differences can be applied for 

further decimation to give the estimation of the derivative with improved SQNR. 

 

3. Simulation Results 

 

In order to test the efficiency of the developed methodology, the simulation of a case study is 

presented. This study consists in processing a typical acceleration profile to derivate jerk at different 

oversampling rates. 

 

3.1. Signal Processing 

 

The digital processing of the signal consists of three stages: filtering, differentiation, and 

decimation. For this experiment, a 32nd order, Hamming window, finite-impulse response (FIR) LPF 

[16] is proposed. The cut-off frequency is set at the original signal bandwidth BW, giving this filter  

6 dB of attenuation at the cut-off frequency. Other filtering schemes can be utilized at this stage, 

having in mind the rejection characteristics on the oversampled band. Figure 5 shows the frequency 
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response of the FIR LPF magnitude, for the 4-times oversampling case at a sampling frequency  

fs = 6,000 Hz. This filter has an excess of 50 dB attenuation at the suppression band. 

 

Figure 5. Frequency response of the FIR LPF at 4-times oversampling. 

 
 

Once the oversampled signal is filtered, the next step is to obtain the derivative by finite differences 

as stated in Equation (3), being a(k) the oversampled acceleration signal, j(k) the estimated jerk, and v  

the oversampling rate: 

 
     vkakakj   (3) 

 

The decimation is done by directly undersampling the estimation from the finite difference stage, 

giving one sample at the output for each set of ν consecutive samples at the input and discarding the 

others [16]. 

 

3.2. Study Case  

 

As it was demonstrated in Section 2.1, the finite-difference effects for estimating the derivative of a 

signal are more severe when the signal has a slow-changing rate; therefore, a slow-changing quadratic 

acceleration profile is utilized for testing the proposed methodology, as shown in Figure 6. This profile 

was generated with a positive-only quadratic waveform at 12-bit resolution and spread along 4,096 

samples. Finite differences of this profile has an expected absolute quantized maximum of 2, when 

these differences are calculated directly, giving an effective resolution of around 2 bits for the 

estimation, which is highly corrupted with quantization noise. The methodology is applied to 

demonstrate its efficiency by improving the effective resolution of the estimation. 
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Figure 6. Typical slow-changing quadratic acceleration profile. 

 
 

Figure 7 shows the obtained results for jerk estimation from the acceleration profile. The theoretical 

jerk is shown in Figure 7a. Figure 7b shows the jerk as estimated by finite differentiation at the 

Nyquist sampling rate. Figures 7c-f contains the estimated jerk with the proposed methodology for 4-, 

8-, 16-, and 32-times oversampling, respectively. As expected, direct finite differentiation for jerk 

estimation gives a highly corrupted signal that takes quantized integer values in the range: [-2, 2]. Jerk 

estimation with the proposed methodology greatly improves resolution on results, even for the 4-times 

oversampling rate. 

 

Figure 7. Jerk estimation. (a) Theoretical. (b) Nyquist rate. (c) 4-times oversampling. (d) 

8-times oversampling. (e) 16-times oversampling. (f) 32-times oversampling. 
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Figure 7. Cont. 

 

 

 

 
 

The quantization error, calculated by subtracting the estimated jerk from the theoretical waveform, 

is shown in Figure 8. The quantization noise in the jerk estimation at Nyquist sampling rate (Figure 8a) 

is noticeable. Quantization noise presents significant reduction with the proposed methodology from  

4-times oversampling and up. Quantization noise is further reduced at higher oversampling rates, up to 
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a certain level, where the oversampling no longer improves the SQNR. For instance, SQNR is 

improved from 4-times up to 16-times oversampling, but the improvement is no longer evident at  

32-times oversampling. 

 

Figure 8. Quantization error of jerk estimation. (a) Nyquist rate. (b) 4-times oversampling. 

(c) 8-times oversampling. (d) 16-times oversampling. (e) 32-times oversampling. 
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Figure 8. Cont. 

 
 

On the other hand, the spectra of these quantization errors are shown in Figure 9. From this figure, 

it can be said that the spectral contents of quantization error at the Nyquist sampling rate is higher that 

the spectral contents with the oversampling approach. Then again, this improvement is present up to a 

certain level. Table 1 summarizes the SQNR improvement, in dB, for different oversampling rates in 

this case of study. 

 

Figure 9. Spectra of quantization error for jerk estimation. (a) Nyquist rate. (b) 4-times 

oversampling. (c) 8-times oversampling. (d) 16-times oversampling. (e) 32-times 

oversampling. 
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Figure 9. Cont. 

 
 

 
 

 
 

Table 1. SQNR improvement at different oversampling rates. 

Oversampling rate ( v ) 4 8 16 32 

SQNR improvement 

(dB) 

23.12 27.47 30.22 30.01 

 

4. Experimental Results 

 

This section presents the application of the proposed methodology to estimate jerk in a single axis 

of a CNC machine. The axis dynamics are controlled by a digital controller such as [1], to give a 

known acceleration profile and then experimental results are compared against the theoretical profile. 
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4.1. Instrumentation System 

 

The proposed methodology for jerk estimation can be applied to any accelerometer. In our case a  

3-axis LIS3L02AS4 accelerometer from STMicroelectronics [17] was used. The accelerometer has a 

user-selectable full scale of ± 2g/ ± 6g (g = 9.81 m/s2); a 5×10-4g resolution over a 100 Hz bandwidth; 

and a bandwidth of 1.5 kHz for all axes. The accelerometer is mounted in a PCB with the signal 

conditioning and anti-alias filtering, as recommended by the manufacturer. This PCB also contains a  

4-channel, 12-bit sampling ADC from Texas Instruments ADS7841 [18], with a 200 kHz maximum 

sampling rate for each channel. The communication between the instrumentation system and the 

FPGA signal processing unit is done with a MAX3243 transceiver. Figure 10 shows the top and 

bottom views of the instrumentation system PCB. 

 

Figure 10. Instrumentation system PCB. (a) Top view. (b) Bottom view. 

 

 
 

 
 

The operating parameters of the instrumentation system for the experiment are set as follows: 

acceleration range of ± 2g (± 19.62 m/s2); 12-bit resolution at the ADC; 0.66 V/g sensitivity; one 

acceleration axis monitoring; anti-alias filter tuned to give a signal bandwidth BW = 750 Hz; Nyquist 

sampling rate fs = 1500 Hz; and 4-, 8-, 16-, and 32-times oversampling rates. 

 

4.2. CNC Machine 

 

The instrumentation system with the accelerometer is encased in aluminum and mounted near the 

cutting tool of a retrofitted to CNC lathe. It is recommended to locate the accelerometer as close as 

possible to the cutting tool to properly sense chatter during the cutting process [19]. Figure 11a shows 
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the retrofitted CNC lathe, Figure 11b shows the encased instrumentation system, mounted near the 

cutting tool, and Figure 11c shows the FPGA-based signal processing unit. 

 

Figure 11. Experiment setup. (a) Retrofitted CNC lathe. (b) Instrumentation system 

mounting. (c) FPGA-based signal processing unit. 

 
 

4.3. Signal Processing Unit 

 

The signal processing unit is implemented into a 200,000-gate Xilinx Spartan-3 FPGA and the 

block diagram of the implementation can be found in Figure 12. The implementation has six stages: 

ADC driver, oversampling, LPF, finite difference, decimation, and interface. The ADC driver stage 

handles the data acquisition and conversion at the 32-times oversampling rate and passes the 

information to the following stage. The oversampling stage takes the incoming acceleration data at the 

following rates: Nyquist, 4-, 8-, 16-, and 32-times oversampling. The 32nd order FIR LPF, as defined in 

Section 3.1, are implemented in the filtering stage. The finite-difference stage computes the derivative 

estimation according to Equation (3). The decimation stage decimates the oversampled signals with 

two algorithms: direct decimation, and averaging decimation. The direct decimation algorithm takes a 

single datum from each incoming set of ν data points and discards the others. The averaging 

decimation algorithm computes the average of ν consecutive data points and gives a single result for 

every ν points. The interface stage sends results from acceleration, Nyquist-rate jerk estimation and 

oversampling rate estimations to a PC for storage and further analysis. 
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Figure 12. Block diagram of the FPGA-based signal processing unit. 

 
 

4.4. Acceleration Profile 

 

The acceleration/deceleration profile for experimentation is a biquadratic profile to produce a 

displacement of 0.5 m at the lathe Z-axis in a period of 2s, representing a typical movement for axis 

positioning in CNC machines. This profile produces an absolute peak acceleration of 0.355 m/s2. At a 

Nyquist sampling rate of fs = 1,500 Hz, the profile contains 3,000 samples for the movement. Figure 

13a shows the theoretical biquadratic acceleration profile. The measured acceleration at the Nyquist 

rate is shown in Figure 13b where it can be seen that it is slightly embedded with noise from the 

cutting process. The theoretical jerk can be found in Figure 13c, whereas the estimated jerk by finite 

differences at the Nyquist rate is shown in Figure 13d. From Figures 13c and 13d it is easily seen that 

the Nyquist-rate jerk estimation is highly corrupted, as expected. 

 

Figure 13. Profiles (a) Theoretical biquadratic acceleration profile. (b) Measured 

acceleration. (c) Theoretical jerk profile. (d) Jerk estimation at Nyquist sampling rate by 

finite differences. 
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Figure 13. Cont. 

 
 

 
 

 
 

4.5. Results 

 

Jerk estimation with the oversampling methodology for the experiment is shown in Figure 14 at 

different oversampling rates, using the direct decimation algorithm. The corresponding error spectra of 

these results, along with the spectrum of the Nyquist-rate estimation, are shown in Figure 15. On the 

other hand, Figure 16 contains the jerk estimation at different oversampling rates with the averaging 

decimation algorithm, and their corresponding error spectra are shown in Figure 17. 
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Figure 14. Jerk estimation with oversampling and direct decimation. (a) 4-times.  

(b) 8-times. (c) 16-times. (d) 32-times. 
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Figure 15. Direct decimation jerk error spectra. (a) Nyquist rate. (b) 4-times oversampling. 

(c) 8-times oversampling. (d) 16-times oversampling. (e) 32-times oversampling. 
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Figure 15. Cont. 

 

Figure 16. Jerk estimation with oversampling and averaging decimation. (a) 4-times.  

(b) 8-times. (c) 16-times. (d) 32-times. 

 

 

 

 

 
 



Sensors 2009, 9                            

 

 

3786

Figure 16. Cont. 

 

Figure 17. Averaging decimation jerk error spectra. (a) Nyquist rate. (b) 4-times 

oversampling. (c) 8-times oversampling. (d) 16-times oversampling. (e) 32-times 

oversampling. 
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Figure 17. Cont. 

 
 

 
 

Table 2 summarizes the SQNR improvement, in dB, for different oversampling rates in this 

experiment. 

 

Table 2. SQNR improvement at different oversampling rates. 

Oversampling rate ( v ) 4 8 16 32 

SQNR (dB) Direct decimation 33.83 44.09 49.26 50.53 

SQNR (dB) Averaging decimation 38.71 45.89 51.90 55.91 

 

4.6. Discussion 

 

Results in Figures 14 to 17 show that the oversampling methodology for derivative estimation gives 

better results than finite differences at Nyquist rate. The estimated jerk profile with oversampling 

greatly resembles the theoretical jerk profile. The presence of noise is unavoidable at real 

measurements and it affects results; yet, it is possible to obtain a good estimation of the jerk profile by 

oversampling, whereas it is not possible with the Nyquist-rate finite differences (Figure 13d compared 

with Figures 14 and 16). The decimation algorithm also plays a role in the quality of the estimation as 

is deduced from the SQNR data in Table 2, where decimation by averaging is slightly better than the 

direct decimation; this can be appreciated when comparing Figures 14 with 16 and Figures 15 with 17. 

The developed technique focuses on the SQNR improvement. The noise on the resulting jerk 

estimation in Figures 14 and 16 is due to the cutting process. The reduction of the noise due to the 
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cutting process is beyond the scope of this research; yet, noise-reduction techniques such as [9, 10] can 

be utilized to further improve the jerk estimation. 

 

5. Conclusions 

 

The development of a novel smart sensor for jerk estimation from acceleration with an 

oversampling technique for improving SQNR in CNC applications is presented. The primary sensor is 

a standard accelerometer and the jerk estimation is done through oversampling signal processing 

techniques. SQNR improvement is achieved by oversampling the acceleration signal, then 

successively applying low-pass filtering, finite differences, and decimation. Simulations and 

experimentation is done to test the methodology efficiency. Simulations show that SQNR 

improvement is over 23 dB when applying the proposed methodology and compared against the 

Nyquist-rate finite differences. Experimentation over a typical acceleration/deceleration profile in 

CNC machines shows that the standard Nyquist-rate finite differences, as reported by literature [6-10], 

for estimating jerk from acceleration are not suitable for this purpose because the resulting jerk profile 

is highly corrupted by quantization and measuring noise. On the other hand, the developed technique 

shows its efficiency in producing a recognizable jerk estimation that greatly resembles with theoretical 

jerk, under real CNC machine operation. 

Another contribution of this work is the FPGA-based implementation of the signal processing unit 

in hardware for low-cost and real-time processing at the smart jerk sensor. This implementation also 

shows that FPGA are a suitable solution for embedded signal processing in developing smart sensors. 

The developed technique can be applied for derivation of jerk from a standard accelerometer, in an 

efficient way, and also to estimate the derivative from other kinds of sensors. Further research can be 

done to reduce measuring noise in jerk estimation and also to mount a low-power FPGA on the smart 

sensor PCB for on-board hardware signal processing. 
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