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Abstract: Camera calibration is a crucial prerequisite for the retrieval of metric information
from images. The problem of camera calibration is the computation of camera intrinsic pa-
rameters (i.e., coefficients of geometric distortions, principle distance and principle point)
and extrinsic parameters (i.e., 3D spatial orientations: ω, φ, κ, and 3D spatial translations:
tx, ty, tz). The intrinsic camera calibration (i.e., interior orientation) models the imaging sys-
tem of camera optics, while the extrinsic camera calibration (i.e., exterior orientation) indi-
cates the translation and the orientation of the camera with respect to the global coordinate
system. Traditional camera calibration techniques require a predefined mathematical-camera
model and they use prior knowledge of many parameters. Definition of a realistic camera
model is quite difficult and computation of camera calibration parameters are error-prone. In
this paper, a novel implicit camera calibration method based on Radial Basis Functions Neu-
ral Networks is proposed. The proposed method requires neither an exactly defined camera
model nor any prior knowledge about the imaging-setup or classical camera calibration pa-
rameters. The proposed method uses a calibration grid-pattern rotated around a static-fixed
axis. The rotations of the calibration grid-pattern have been acquired by using an Xsens MTi-9
inertial sensor and in order to evaluate the success of the proposed method, 3D reconstruction
performance of the proposed method has been compared with the performance of a traditional
camera calibration method, Modified Direct Linear Transformation (MDLT). Extensive simu-
lation results show that the proposed method achieves a better performance than MDLT aspect
of 3D reconstruction.
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1. Introduction

Camera calibration is a major issue in computer vision since it is related to many vision problems
such as neurovision, remote sensing, photogrammetry, visual odometry, medical imaging, and shape
from motion/silhouette/shading/stereo. Metric information within images can be supplied only by the
calibrated cameras [1, 2]. The 3D computer vision problem is mathematically determined only if the
optical parameters (i.e., parameters of intrinsic orientation) and geometrical parameters (i.e., parame-
ters of extrinsic orientation) of the camera system are precisely known. The camera calibration methods
can be classified according to the determination methods of optical and geometrical parameters of the
imaging system [1]. The number of camera calibration parameters (i.e., rotation angles, translations,
coordinates of principal points, scale factors, skewness between image axes, radial lens distortion coef-
ficients, affine-image parameters, and lens-decentering parameters) depends on the mathematical model
of the camera used [2].

In the literature, many camera calibration methods have been introduced. A self-calibration method to
estimate the optic and geometric parameters of a camera from vertical line segments of the same height
is examined in [3]. Extrinsic calibration of multiple cameras is very important for 3D metric information
extraction from images. Computation of relative orientation parameters between multiple photo/video
cameras is still one of the active research fields in the computational vision [4, 5]. Using geometric
constraints within the images, such as lines and angles, enables performing 3D scene reconstruction
tasks with fewer images [6].

Plane-based camera calibration is an active area in computational vision because of its
flexibility [7]. A planar calibration grid-pattern has some important advantages with respect to 3D cal-
ibration objects such as simple design, simple structure, easy scaling and easy construction. Therefore,
planar calibration objects are preferred in computer vision applications [8]. Planar calibration objects
and projective constraints can be used for calibration of parametric and nonparametric distortions of
a camera system [9]. The camera calibration problem for planar robotic manipulators through visual
servoing under a fixed-camera configuration has been investigated in [10].

Dual images of spheres and the dual image of the absolute conic have been used for solving the
problem of camera calibration from spheres in [11]. The mirror-symmetric objects have been used for
camera calibration in [12]. An accurate calibration procedure has been introduced for fish-eye lenses
in [13]. The calibration of a projector-camera system by estimating the homography has been investi-
gated in [14]. Online calibration methods have been used in virtual reality applications in [15]. A dy-
namic calibration method for multiple cameras has been investigated in [16]. Due to the noise-influenced
image coordinates, most of the existing camera calibration techniques are unsuccessful aspects of robust-
ness and accuracy.

The artificial neural networks (ANNs) can mimic the transformation between the image plane and
the global coordinate system. By using ANNs, it becomes unnecessary to know both the physical pa-
rameters and the geometrical parameters of the imaging systems for 3D perception of objects from
their 2D images. ANNs have been intensively used for camera calibration in some recently introduced
methods [17, 18, 19]. A planar pattern has been observed at different rotations for setting training and
test data sets of the ANN used. The rotation value of the planar pattern has been acquired by using an
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Xsens MTi-9 inertial sensor [20, 21]. With the proposed method, the 3D global coordinates of object
points have been predicted from their 2D corresponding image coordinates.

The Xsens MTi-9 sensor is a miniaturized, gyro-based Attitude and Heading Reference System whose
internal signal processor provides drift-error free 3D acceleration, 3D orientation, and 3D earth-magnetic
field data. The drift-error growing nature of inertial systems limits the accuracy of inertial measurement
devices. Inertial sensors can supply reliable measurements only for small time intervals. The inertial sen-
sors have been used in some recent research for stabilization and control of digital cameras, calibration
patterns and other equipment [22, 23].

The Modified Direct Linear Transformation (MDLT) is one of the commonly used camera calibration
methods in computational vision applications for 2D and 3D object reconstruction [24]. The success
of the proposed method has been evaluated by comparing the test results of the proposed method and
MDLT method.

The camera calibration methods have been classified into two main classes in the literature: explicit
and implicit camera calibration methods. The explicit camera calibration means the process of com-
puting the physical parameters of a camera. The proposed method is classified as an implicit camera
calibration method and implicit camera calibration methods do not require physical parameters of cam-
eras for back-projection.

The rest of the paper is organized as follows: Artificial Neural Networks are explained in Section 2.
Proposed Method and Experiments are given in Section 3 and Section 4, respectively. Finally, Results
and Discussion are given in Section 5.

2. Artificial Neural Networks (ANNs)

An ANN is a network of neurons, which mimics a biological information processing system [25].
ANNs have been used to solve some of the complex problems in the fields of multicamera calibration,
modeling of geometric distortions of image-sensors, stereo-vision, image denoising, image enhance-
ment, and image restoration. In this paper, ANNs are applied to nonlinear problem of multicamera
calibration for 3D information extraction from images. Camera calibration is an unavoidable-step for
extraction of precise 3D metric information from images. In recent years some hybrid camera calibra-
tion techniques based on ANNs have been proposed for back-projection or 3D reconstruction without
using a predefined camera model [17, 18, 19].

In this paper, a Radial Basis Function Based Artificial Neural Network (RBF) [26] is used to calibrate
a multicamera system. A four-input and three-output architecture of RBF has been adopted to transform
the image coordinates to their corresponding 3D spatial coordinates.

2.1. Training of Radial Basis Function Neural Networks

RBF has been successfully applied to many scientific research areas including image enhancement,
surface reconstruction, classification, and computational vision. In order to use an RBF, the training
functions of the hidden-layer and output-layer, the number of neurons in the related layers, and a per-
formance measure for modeling the quality of learning phase must be specified. The computation phase
of the RBF weights is called network training. In the last decade several methods were introduced in
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the literature for training RBFs [27, 28]. RBF has a three-layered ANN architecture: An input layer, a
hidden layer and an output layer.

The RBF with Gaussian functions is defined as in [27];

δi(λ) =
N∑

ε=1

wi,εe
− ‖λ−cε‖2

2σ2
ε , i = 1, 2, 3, ..., I (1)

where
‖...‖ : Euclidean norm,
cε : The center,
σε : The width of the εth neuron in the hidden layer,
wi,ε : The weights in the output layer,
N : The number of Gaussian neurons in the hidden layer,
λ : Input pattern of RBF,
δ : Output pattern of RBF,
I : The number of neurons in the output layer.

The Root-Mean-Squared-Error (RMS), Mean-Squared-Error (MSE), Sum-Squared-Error (SSE), and
Mean-Absolute-Error (MAE) functions have been examined as fitness functions. The influence of fitness
function on the architectural structure of RBF has been analyzed and the results have been tabulated in
Table 1.

Table 1. Influence of several fitness functions on RBF structure.

Fitness Function Equation Test Error N of Equation 1

RMS

√
1

Nt

Nt∑
n=1

(pn − yn)2 0.017 24

MSE 1
Nt

Nt∑
n=1

(pn − yn)2 0.019 25

SSE
Nt∑

n=1
(pn − yn)2 0.021 25

MAE 1
Nt

Nt∑
n=1

|pn − yn| 0.033 28

In this paper, the RMS has been used as fitness function and it is formulated as;

RMS =

√√√√ 1

Nt

Nt∑
n=1

(pn − yn)2 (2)

where pn and yn denote the desired output and the network output for pattern n, respectively. Nt is the
number of training patterns.

The value of N is very important since it affects the generalizing ability, architectural structure and
computational-burden of the RBF. Insufficient value of N leads to a poor learning performance. Infinite
number of basis functions reduce the value of fitness function to zero but this causes overlearning [25],
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therefore the predefined rule of N ≤ 50 has been used as a condition of minimizing the fitness function.
Design of the RBF requires the detection of optimum values of N ,wi,ε, σε and cε. The training phase has
been stopped when the value of fitnessfunction ≤ 0.01 has been reached.

In this paper, the RBF has been trained by using Differential Evolution algorithm (DE). DE [29] is
a class of genetic-algorithm based search technique, which has robust search ability and it can be used
to train ANNs including RBF. The main advantages of DE can be summarized as; easy implementation,
fast convergence, limited number of control parameters, and finding the global minimum regardless of
the high-quality values of initial parameters.

3. Proposed Method

In this paper, a stereo vision system has been calibrated by using the proposed method. The proposed
method uses a 2D planar grid-pattern object (Figure 1), in order to perform the calibration process. The
application steps of the proposed method are explained below.

Figure 1. Experimental Setup and Rotating-Calibration Pattern.

1. Training Data Arrangement for RBF: In this step, the calibration grid-pattern has been arbitrarily
rotated towards the cameras around the static-fixed axis in five approximately equal steps and the
stereo images have been captured with two static cameras at the end of each rotation. There are
219 grid-corners on the calibration pattern and totally 1,095 grid-corners have been observed. The
number of randomly selected observations of grid-corners have been used as 795 (which is the
value of Nt in Equation 2) for the training set of RBF and the remaining 300 observations of
grid-corners have been used for the generalization test set of RBF.

In the case of rotating the calibration plane arbitrarily without a fixed axis in calibration space,
both the spatial translations and spatial rotations must be observed, in order to compute the ex-
act position of 3D grid corners on calibration pattern in 3D space. In order to avoid additional
observation parameters (i.e., spatial translations), a fixed axis has been used in this paper.

The rotation matrix of calibration grid-pattern has been acquired at 100 Hz by using an Xsens
MTi-9 sensor attached to calibration pattern. The object reset function of the SDK of Xsens aims
to facilitate aligning the MTi-9 sensor coordinate frame with the 3D global coordinate frame of the
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calibration grid-pattern to which the sensor is attached. Therefore, the object reset function has
been applied to Xsens MTi-9 sensor by using the related SDK in Matlab before each measurement
in order to control the drift-error of the related sensor.

The calibration pattern is assumed to be vertical at its initial position. Since an object reset function
has been applied to Xsens MTi-9 sensor at initial position of the calibration pattern, the values of
initial rotations of the calibration pattern are equal to zero.

The global coordinates of the corners of calibration grid-pattern at its initial position have been
manually detected according to the global origin illustrated in Figure 1. The global origin is static
in each image and the checkerboard points are fixed relative to the static global origin. The sizes
of the grids on the calibration pattern are equal to 30-by-30 mm. The corners of the calibration
grid-pattern have the value of Y = 0 at the initial position of the calibration grid-pattern. The
corresponding global coordinates (X,Y, Z) of (uleft, vleft, uright, vright) have been computed by
multiplying the related spatial coordinates of corners with the related rotation matrix.

Xsens MTi-9 is affected by excessive shocks, violent handling, magnetic fields and thermal-effects.
Therefore, all the sensor measurements have been realized by using the default Kalman filter of
SDK of the related sensor, in order to suppress the effects of the mentioned noise sources over
measurements.

The Harris Corner Detection operator [30] has been used to extract the image coordinates of the
corners of calibration grid-pattern as Harris-points. The feature correspondence problem has been
solved by computing the homography of stereo images (Figure 2) using the related Harris-points
(Figure 2 a,b) and Ransac algorithm [31]. Since the stereo matching problem could be solved
efficiently, epipolar lines have been extracted successfully before image-matching operations (as
in Figure 2 c,d). The normalized cross correlation operator has been applied to stereo images, in
order to obtain image coordinates of corners (uleft, vleft, uright, vright) of calibration grid-pattern,
where (uleft, vleft), (uright, vright) denotes the image coordinates of the related corners in the left
and right stereo images, respectively.

Figure 2. Experiments using the author’s face: (a)-(b)Harris points on stereo images, (c)-
(d)The stereo images with an epipolar line, (e) 3D solid mesh model of the author’s face.

2. Training of RBF: The proposed method uses a 3-layered RBF neural network in order to map 2-
by-2D image coordinates to 3D global coordinates. The input layer of RBF has four-inputs for the
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left and right image coordinates (uleft, vleft, uright, vright) of the observed point; and the output
layer of RBF has three-neurons that correspond to the global coordinates of the related point. The
RBF has been trained as explained in Section 2.1. The test error of RMS-fitness function is 0.017
and has been computed as seen in Table 1.

3. 3D Reconstruction of Test Object: In this step, a predefined texture pattern has been projected
onto the test object (i.e., The face of Author) located inside the motion-volume of rotating-plane
by using a DLP data projector. The stereo image coordinates of the projected texture pattern have
been acquired from the rectified images by using normalized cross correlation. The obtained stereo
image coordinates have been applied to the trained-RBF, in order to compute the corresponding
global coordinates, [X Y Z]test.

The noises within the computed global coordinates, which are affected from image-matching er-
rors, have been eliminated by using the FastRBF toolbox [32].

Surface meshing and mesh smoothing have been intensively used in 3D visualization applications.
The FastRBF toolbox offers several techniques for fitting radial based functions to measured data
including error-bar fitting, spline smoothing and linear filtering. In this paper, the linear filtering
technique of RBF has been used. FastRBFs implicit surface meshing and mesh smoothing tools
are particularly useful for reconstructing surfaces from point cloud range data. Therefore, the
FastRBF tools have been used in mesh generation and smoothing of the author’s face, illustrated
in Figure 2(e).

3.1. Modified Direct Linear Transformation

The Direct Linear Transformation (DLT) [24] has been commonly used for 3D data acquisition in
computer vision. The DLT and its derivatives are perhaps the mostly used camera calibration techniques
in the computer vision literature. Therefore, the MDLT has been employed as a comparison method in
this paper.

The DLT method uses a set of precalibrated-control points whose 3D global and 2D image coordinates
are already known. The control points have been fixed to a physical object, known as the calibration
object. The DLT equations consist of 11 parameters even though the system has only 10 independent
unknown factors since the principal distance and the scale factors are mutually dependent. Therefore, a
non-linear constraint has been added to DLT by MDLT.

The MDLT is defined as;

u =
L1X + L2Y + L3Z + L4

L9X + L10Y + L11Z + 1
(3)

v =
L5X + L6Y + L7Z + L8

L9X + L10Y + L11Z + 1
(4)

where (u,v) and Li (i = 1, 2, 3, ..., 11) denote the image coordinates and the coefficients of DLT, respec-
tively. The non-linear constraint of the MDLT is defined as,

L1L5 + L2L6 + L3L7

L1L9 + L2L10 + L3L11

=
L5L9 + L6L10 + L7L11

L2
9 + L2

10 + L2
11

(5)
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The geometrical distortions of image coordinates have been eliminated by using the related camera
parameters, which has been explained in the next subsection, in order to increase the success of the
MDLT. In this paper, a manually calibrated 3D object has been used in order to calibrate the MDLT. The
well-known iterative least square solution of the MDLT has been realized in Matlab. Readers interested
in the details of MDLT may refer to an excellent study on this subject [24].

3.2. The Camera Model

The cameras used in this paper have been calibrated by using the camera calibration toolbox given
in [2]. The camera calibration parameters of the test cameras are given at Table 2. Since RBF heuris-
tically models the geometrical mapping from 2D-to-3D, the proposed method uses only the observed
image coordinates and it does not require making any correction on the observed image coordinates.
The image coordinates have been geometrically corrected for MDLT by using the related camera cali-
bration parameters given at Table 2.

Table 2. The camera calibration parameters of the test cameras.

Parameter Camera #1 Camera #2
fx

fy

1649.149
1655.941

1650.865
1658.082

x0

y0

789.515
582.668

794.803
581.167

Sx 0.000 0.000
k1

k2

k3

k4

k5

-0.210
0.175
-0.001
0.000
0.000

-0.211
0.186
-0.002
0.000
0.000

Let the distorted image coordinates, (xi, yi), with radial and tangential lens distortions be defined as;

xu = x0 − fx

[
m11(X−X0)+m12(Y −Y0)+m13(Z−Z0)
m31(X−X0)+m32(Y −Y0)+m33(Z−Z0)

]
yu = y0 − fy

[
m21(X−X0)+m22(Y −Y0)+m23(Z−Z0)
m31(X−X0)+m32(Y −Y0)+m33(Z−Z0)

] (6)

where
(xu, yu) : lens-distorted image coordinates
(x0, y0) : image coordinates of principal point
(fx, fy) : focal lengths
(m11,m12, ...,m33) : elements of rotation matrix
(X0, Y0, Z0) : global coordinates of projection center
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The elements of rotation matrix are defined as:

m11 = cos φ cos κ

m12 = sin ω sin φ cos κ + cos ω sin κ

m13 = − cos ω sin φ cos κ + sin ω sin κ

m21 = − cos φ sin κ

m22 = − sin ω sin φ sin κ + cos ω sin κ

m23 = cos ω sin φ sin κ + sin ω cos κ

m31 = sin φ

m32 = − sin ω cos φ

m33 = cos ω cos φ

(7)

where (ω, φ, κ) denote the rotation angles. The normalized point coordinates, (xi, yi), are defined as,

xi = (1 + k1r
2 + k2r

4 + k5r
6)xu + 2k3xuyu + k4(r

2 + 2x2
u)

yi = (1 + k1r
2 + k2r

4 + k5r
6)yu + k3(r

2 + 2y2
u) + 2k4xuyu

r = x2
u + y2

u

(8)

where (k1, k2, k3, ..., k5) denote the distortion coefficients (radial and tangential distortions). Thus, the
final pixel coordinates, (ximj , yimj), on the image plane are defined as;

ximj = fx(xi + Sxyi) + x0

yimj = fyyi + y0

(9)

where Sx denotes skew coefficient defining the angle between the axes of the pixel [2]. The Equations
6-9 explain the mathematical model of the image acquisition system.

3.3. Xsens MTi-9 Inertial Sensor

Because the camera systems suffer from several noise sources, the rotation matrix of the rotated
calibration pattern has been acquired by using an MTi-9 inertial sensor. The MTi-9 is a miniature, gyro-
enhanced Attitude and Heading Reference System [20, 21]. The internal processor of the MTi-9 provides
error-drift free 3D orientation, 3D acceleration, 3D rate-of-turn and 3D earth-magnetic field values at
100Hz. The MTi-9 is an excellent measurement unit for stabilization and control of cameras, calibration
patterns and other equipment in computer vision [20]. The small size and low weight (35 g) of the MTi-9
makes it well-suited for capturing orientation of rotating calibration pattern. With the Xsens Software
Development Kit (SDK) of MTi-9, users can integrate MTi-9 sensor in any system or application. The
rotation matrix of the rotated calibration pattern has been captured by using Xsens Kalman Filter (XKF)
for 3 degrees of freedom orientation. XKF uses signals of the MTi-9 for the computation of dynamic
movements with no drift.

4. Experiments

In this paper, a set of real images have been used in the experiments. The proposed method has been
implemented by using the image processing toolbox of Matlab, and SDK of Canon Camera Control.



Sensors 2009, 9 4581

The images of calibration pattern have been captured by using two static, computer-controlled and syn-
chronized Canon SX110IS 9MP cameras. Therefore, the neural structure used in the proposed method
has only four inputs. All the captured images were 1,600 × 1,200 pixels sized and 24 bits/pixel. One
precalibrated 3D object has been used for computing the parameters of MDLT. The interior parameters
(including distortion coefficients) of the test cameras have been computed by using the camera calibra-
tion toolbox given in [2]. Before performing the MDLT, geometric distortion corrections have been
applied to the image coordinates, in order to increase the success of the MDLT. On the other hand, no
distortion corrections have been applied to the image coordinates for the proposed method.

The performance of the proposed method has been examined by scanning both a 2D test object, a
3D test object and the face of the author. The experimental results of the proposed method have been
compared with the experimental results of MDLT. All the measurements have been denoised by using
the FastRBF toolbox [32] before performance analysis of backprojection of 2D and 3D test objects, in
order to analyze effectiveness of smoothing of FastRBF.

Planimetric and depth reconstruction accuracies of the mentioned methods have been evaluated in
Mean-Squared-Error (MSE) as seen at Table 3.

Table 3. The MSE values of backprojection of the 2D test object.

Method
MSE

X (cm) Y (cm) Z (cm)
Proposed (with original measurements) 0.07104 0.25692 0.09343
MDLT (with original measurements) 0.08193 0.34160 0.11131
Proposed (with denoised measurements) 0.00085 0.00495 0.00109
MDLT (with denoised measurements) 0.00193 0.01028 0.00277

The experimental results verify the success of the proposed method and MDLT. All of the errors have
been measured with respect to checkerboard-test object. The test points have been marked at the corners
of the test object. The checkerboard-test pattern has been designed in Matlab and printed with a 9,600
DPI professional plotter and attached onto a flat board. Since 373 points/mm have been defined on test
pattern for 9,600 DPI, 0.002mm (1/373mm) has been accepted as the ground truth of test object.

Totally 1,127 3D points have been captured over the 2D test pattern and totally 1,460 3D points
have been captured over the author’s face. All of the measurements in the global coordinates have been
performed in centimeters. The solid model of the author’s face obtained by using the proposed method
has been illustrated in Figure 2(e). Extensive simulations show that the results of the proposed method
are close to MDLT for 2D test object but they are better in both planimetric and depth perception.

The 3D backprojection tests have been realized on a 3D test object, which is illustrated in Figure 3.
The FastRBF toolbox based denoising phase has not been employed in 3D backprojection tests of 3D
object. The related 3D test object has been located inside of the calibration volume, and its images were
captured by using the cameras. The distances of 686 backprojected 3D points to the computed-planes
(Figure 3) have been analyzed. The mean (µ) and standard deviation (σ) values of related distances
have been computed. For the MDLT, µ = 2.487 mm and σ = 0.868 mm have been computed. For the
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proposed method, µ = 2.128 mm and σ = 0.793 mm have been computed. The edge lengths, illustrated
in the Figure 3, have been computed by using the mentioned methods and results have been compared
with the mean of the manually measured values. The manual measurements have been realized by using
a vernier-caliper at the resolution of 0.01 mm. All the manual measurements of vernier-caliper have
been repeated 20 times, in order to avoid reading errors of user. In Table 4, the test results on the 3D test
object have been given.

Figure 3. The Test Object used for performance measurement of the mentioned methods.

Table 4. Results on the 3D test object.

Reference Measurements MDLT Proposed Method
Plane No Edge #1 Edge #2 Edge #1 Edge #2 Edge #1 Edge #2

1 40.03 32.93 39.9336 32.9682 40.0277 32.9519
2 40.05 32.95 40.0378 32.9208 40.0239 32.9591
3 35.30 32.92 35.3193 32.9670 35.2859 32.9557

5. Results and Discussion

In this paper, an Xsens MTi-9 inertial sensor and an RBF have been used together for 3D informa-
tion recovery from images. The obtained results have been compared with the results obtained from a
traditional camera calibration method, MDLT.

The main advantages of the proposed method are as follows: It does not require the knowledge of
complex mathematical models of view-geometry and an initial estimation of camera calibration, it can
be used with various cameras by producing correct outputs, and it can be used in dynamical systems to
recognize the position of the camera after training the ANN structure. Therefore, the proposed method
is more flexible and straightforward than many of the methods introduced in the literature.
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The advantages of the proposed method may be summarized as follows:

• The proposed method introduces a novel implicit camera calibration method based on inertial
sensors (Implicit camera calibration techniques are not interested in the physical parameters of the
cameras).

• The results of the proposed method are close to MDLT but they are better, therefore it can be used
in robotic vision as MDLT.

• The computational-burden of the proposed method is less than MDLT.

• The required time for preparation and scaling of the 2D calibration object of the proposed method
is less than the time of preparation and scaling of the 3D calibration object of MDLT.

• It offers high accuracy both in planimetric (x,y) and in depth (z).

• It is simple to apply and fast after training.

• The image distortion and the physical parameters of the cameras have been covered by the neural
network model of the proposed method.

• No image distortion model is required.

• It does not use physical parameters of cameras.

• An approximated solution for initial step of camera calibration is not employed.

• Optimization algorithms are not employed during 3D reconstruction in contrary to some of the
well-known 3D acquisition methods.
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