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Abstract: Recently, 3D image fusion reconstruction using a FDK algorithm along three-
orthogonal circular isocentric orbits has been proposed. On the other hand, we know that 3D
image reconstruction based on three-orthogonal circular isocentric orbits is sufficient in the
sense of Tuy data sufficiency condition. Therefore the datum obtained from three-orthogonal
circular isocentric orbits can derive an exact reconstruction algorithm. In this paper, an exact
weighted-FBP algorithm with three-orthogonal circular isocentric orbits is derived by means
of Katsevich’s equations of filtering lines based on a circle trajectory and a modified weighted
form of Tuy’s reconstruction scheme.
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1. Introduction

The cone-beam scanning configuration with a circular trajectory remains one of the most popular
scanning configuration and has been widely employed for data acquisition in 3-D X-ray computed to-
mography (CT), because it allows for operating at a high rotating speed due to its symmetry, avoiding
the need to axially translate the patient, such as in helical or step-and-shoot CT [1, 2]. Unfortunately, a
circular trajectory does not satisfy Tuy’s data sufficiency condition [3] which requires every plane that
passes through the reconstruction region (ROI) must also cut the trajectory at least once and therefore
only approximate reconstructions are possible. In the pursuit of the data sufficiency condition, various
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scanning trajectories have been proposed, such as circle and line [4, 5], circle plus arc [6, 7], double
orthogonal circles [8, 9] and dual ellipses [10].

Recently, the FDK algorithm [11] has been implemented for a cone-beam vertex trajectory consisting
of three-orthogonal isocentric circles [12]. On the other hand, we know that 3D image reconstruction
based on three-orthogonal circular isocentric orbits is sufficient in the sense of Tuy data sufficiency
condition. Therefore the datum obtained from three-orthogonal circular isocentric orbits can derive
an exact reconstruction algorithm. In this paper, another theoretically exact and general inversion for-
mula which was proposed in Katsevich [13] will be implemented for three-orthogonal circular isocentric
orbits. Compared with the aforementioned algorithms, the distinctive features of Katsevich’s algorithm
can be summarized as the choice of a more general weight and a novel way to dealing with discontinuous
in weight. Furthermore, Katsevich’s algorithm has been implemented for various scanning trajectories,
such as circle and line [14, 15], circle plus arc [16], several circular segment [17], two orthogonal circles
[13] and helix [18, 19].

In contrast to a singular circular trajectory, there are several advantages in using weighted reconstruc-
tion with the three-orthogonal-circular trajectory. First, for the reconstruction noise due to the algorithm
is ’trajectory’ dependent. Using three-orthogonal geometry with weighting function, the noise is sup-
pressed. Second, the three-orthogonal setting yields better image quality in comparison with classical
scheme for larger cone-angles. Last, the scan method for three-orthogonal geometry can be implemented
with minimal requirements and can provide a better 3D reconstruction for small animals or objects. At
the same time, compared to the two-circular trajectory, artifacts of the boundaries of the ROI where
artifacts are likely to appear are suppressed by the additional filtering lines and according weighting
functions.

In our implementation, a new weighting scheme is developed so that all measurements are used
by accurately averaging over multiply measured projections of the three-orthogonal-circular scanning.
Moreover, this new weighted reconstruction is differs from the weighted FDK [11] reconstruction with
the three-orthogonal-circular trajectory [12] considerably, in that it is a theoretically exact formulation of
a general shift invariant filtered back-projection (FBP) reconstruction framework. In this paper, we show
the derivation of our cone-beam FBP reconstruction algorithm starting with Tuy’s inversion formula. In
other words, we discuss how to derive a FBP cone-beam reconstruction formula from the Tuy’s classical
inversion formula. To construct the reconstruction formula, several operators are needed. First, using
some properties of the cone-beam transform, the classical Tuy’s inversion formula can be written as (the
first-order derivative of the Radon transform in R3) Grangeat’s inversion formula [20] in a weighted
form. Then, using the methodology in[13], we can get the final inversion formula. The features of our
inversion formula can be summarized as follow: using some properties of the cone-beam transform to
derive the inversion formula, a proper choice of the weighting function, deriving equations of the filtering
lines and describing geometric properties of filtering lines in the planar detector plane.

The organization of this paper is as follows. In Section 2, we derive Katsevich’s inversion formulation
by Tuy’s weighted form. In Section 3, we derive equations of the filtering planes and filtering lines. In
Section 4, we show the geometric properties of filtering lines in the planar detector plane and according
weighting functions.
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2. Weighting Function for Tuy’s Formula

Let a trajectory C be a differentiable curve inR3 described by y(s), s ∈ R. The object density function
is f(x), where x is a vector in the (y1, y2, y3) coordinate system, and f(x) is an infinitely differentiable
real integrable function with a compact support Ω ⊂ R3\C. The modified cone-beam projection of f(x)

along the direction of α/‖α‖ at the focal point location y(s) is defined as:

Df(y(s), α) =

∫ ∞

0

f(y + tα)dt =
1

‖α‖Df(y(s),
α

‖α‖), (y(s), α) ∈ C × S2. (1)

Then, let Df be extended from C × S2 to R3 × R3 as:

Dyf(z) = Df(y, z), y, z ∈ R3. (2)

First consider the three-dimensional Fourier transform of Dyf(z) for a fixed f(x) as:

D̃yf(σ) =

∫

R3

Df(y, z)e−2πiz·σdz. (3)

It can be easily verified that:

D̃yf(tσ) =
1

t2
D̃yf(σ), for t > 0. (4)

In the following, we will show how to derive a new reconstruction formula from Tuy’s reconstruction
scheme in a weighted form.

Theorem 1. [Tuy’s weighted form] Let C be a curve inR3 parameterized by a piecewise differentiable
function y(s), s ∈ R. For a fixed x ∈ Ω, we suppose that there exists a weighting function nx(s, σ) :

R× S2 → R such that nx(s, σ) is integrable with respect to the second variable σ ∈ S2 for each s ∈ R,
and the set:

R(x, σ) = {s ∈ R |x · σ = y(s) · σ, y′(s) · σ 6= 0} (5)

is non-empty and finite for almost all σ ∈ S2. Then:

f(x) =

∫

S2

∑

s∈R(x,σ)

nx(s, σ)

2πiy′(s) · σ
∂

∂q
D̃y(q)f(σ)|q=sdσ (6)

provided that nx(s, σ) fulfilled the completeness condition:

∑

s∈R(x,σ)

nx(s, σ) = 1, a.e.inσ ∈ S2. (7)

This inversion formula also tells us Tuy’s data sufficiency conditions for an accurate reconstruction
of a ROI from cone-beam projections. These conditions are: σ · y(s) = σ · x and σ · y′(s) 6= 0. In the
following, we will show how to derive a FBP reconstruction formula from Tuy’s formula and show how
Tuy’s data sufficiency and nonended condition can be relaxed. In a first step we try to use Equation (1)
to simplify Equation (4) as follows:
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iD̃yf(σ) = i

∫

R3

Df(y(q), z)e−2πiz·σdz = i

∫

S2

∫ ∞

0

1

r
Df(y(q), θ)e−2πiz·σr2drdθ, (8)

where r is the spherical radical coordinate, θ is a three dimensional unit vector such that z = rθ and
‖θ‖ = 1. Next we introduce the quantity:

iD̃yf(σ) =
1

2

∫

S2

Df(y(q), θ)dθ

∫ ∞

−∞
ire−2πirθ·σdr +

1

2

∫

S2

Df(y(q), θ)dθ

∫ ∞

−∞
i |r| e−2πirθ·σdr. (9)

In Equation (7) the first term is real and add, and the second term is imaginary and even if we take
into account the fact that the factor y′(s) · σ in the inversion formula is also odd in σ, we conclude that
only the first term contributes in Tuy’s inversion formula. The second term will vanish when we perform
the integration over σ. Thus we have:

iD̃yf(σ) =
−1

4π

∫

S2
Df(y(q), θ)δ′(θ · σ)dθ. (10)

Thus, we rederived the weighted form of Tuy’s inversion formula as follows:

f(x) =
1

8π2

∫

S2

∑

s∈R(x,σ)

nx(s, σ)

y′(s) · σ
∫

S2

∂

∂q
Df(y(q), θ)|q=sδ

′(θ · σ)dθdσ. (11)

Therefore, there is a derivative of delta function in the integration over θ. We can perform integration
by part for the integration over θ in Equation (10). We thus obtain the directional derivative along the
direction σ of cone-beam data D̃f(y(q), θ) with respect to unit vector θ. Therefore Equation (10) can be
written as follows:

f(x) = − 1

8π2

∫

S2

∑

s∈R(x,σ)

nx(s, σ)

y′(s) · σ
∂

∂q

{∫

S2
∇θ,σDf(y(q), θ)δ(θ · σ)

}
|q=sdθdσ. (12)

Using Grangeat’s formula and change of variables ρ → q defined by ρ = y(q) · σ, we obtain:

1

y′(s) · σ
∂

∂q

{∫

S2

∇θ,σDf(y(q), θ)dθ

}
|q=s =

∂2

∂ρ2
f̂(ρ, σ)|ρ=y(s)·σ=x·σ, (13)

where f̂(ρ, σ) is the 3D Radon transform of f . Modifications from Tuy’s original inversion (6) to Equa-
tion(12) with change of variables have been important progress. Accounting for the numerical imple-
mentation of formula Equation (11) is still complicated. We can change the two integrals over the unit
vector θ = (− sin γ cos ϕ, sin γ cos ϕ, cos γ) and σ = (cos ϕ, sin ϕ, 0) into three single integrals over
parameters s, ϕ and γ. Using the methodology in [13], we get:

f(x) = − 1
8π2

∫
I

ds
|x−y(s)|

∫ 2π

0
∂

∂ϕ
{sgn(y′(s) · σ)nx(s, σ)}dϕ

× ∫ 2π

0
∂
∂q

Df(y(q), cos γβ(s, x) + sin γex(s, ϕ))|q=s
dγ

sin γ

(14)

where β(s, x) = (x− y(s))/‖x− y(s)‖ = (0, 0, 1),ex(s, ϕ) = β(s, x)× σx(s, ϕ), denote

κx(s, ϕ) = sgn(y′(s) · σ)nx(s, ϕ)

wm(s, x) = lim
ε→0

(kx(s, ϕm + ε)− kx(s, ϕm − ε)).
(15)
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The values of wm(s, x) are determined by the definition of the weighting function and signum function
near the discontinuous points ϕm’s. Furthermore, in the FBP reconstruction scheme, the unit vector
σx(s, ϕm) is the normal vector of filtering plane and the vector ex(s, ϕm) denotes the direction of filtering
lines which pass through the object point x and the source point y(s). After substituting Equation (14)
into formula Equation (13), we obtain:

f(x) := − 1

8π2

∫

I

∑
m

wm(s, x)

|x− y(s)| ×
∫ 2π

0

∂

∂q
Df (y(q), cos rβ(s, x) + sin rex(s, ϕm))|q=s

dr

sin r
ds. (16)

The final inversion formula is independent of the specific geometrical shape of the image object.
Rather, it is determined by the scanning geometry. Thus, we need study the specific features of filtering
lines and weighting functions. In the following, the inversion formula will be implemented for a cone-
beam vertex trajectory consisting of three-orthogonal to each other circular. Furthermore, the filtering
lines and the weighting functions will be given in detail.

3. Equation of Filtering Lines for the Three-Orthogonal Circular Scanning

We propose the use of three independent, orthogonal to each other, circular isocentic scan-paths for
X-ray projection acquisitions. Let a trajectory C = C1 ∪ C2 ∪ C3, as shown in Figure 1.

Figure 1. Geometries for three-orthogonal circular trajectory and the planar-detector plane.

where:

C1 = {y(s) ∈ R3 : y1(s) = R cos s, y2(s) = R sin s, y3(s) = 0, s ∈ [0, 2π]}; (17)

C2 = {y(s) ∈ R3 : y1(s) = R cos s, y2(s) = 0, y3(s) = R sin s, s ∈ (2π, 4π]}; (18)

C3 = {y(s) ∈ R3 : y1(s) = 0, y2(s) = R cos s, y3(s) = R sin s, s ∈ (4π, 6π]}. (19)

Let f(x) is the density function to be constructed. Assume that the function is smooth and vanishes
outside the ball:

Ω = {x = (y1, y2, y3)|y2
1 + y2

2 + y2
3 ≤ r}, 0 < r < R, (20)



Sensors 2009, 9 4611

where r is the radius of the subject ball and R is the radius of the scanning circular. We assume that the
physical detector is a planar-detector, which is denoted as DP (s), where s is the parameter of source
point. Furthermore, let the planar-detector is at distance 2R from the source, as shown in Figure 1.
Denote by (u, v) the horizontal and vertical coordinates of the planar-detector plane, where u is parallel
to the tangent vector of source, v is the normal vector of scanning trajectory and the origin is at the
projection of the source point y(s) onto the detector plane.

Therefore, in the (y1, y2, y3) coordinate system, any point on the detector plane can be characterized
completely by use of (u, v). It can be shown that:

y1 = u sin s−R cos s, y2 = −u cos s−R sin s, y3 = v, s ∈ [0, 2π]; (21)

y1 = u sin s−R cos s, y2 = v, y3 = −u cos s−R sin s, s ∈ (2π, 4π]; (22)

y1 = v, y2 = u sin s−R cos s, y3 = −u cos s−R sin s, s ∈ (4π, 6π]. (23)

Figure 2. The filtering plane is shown, which is tangent to one of circular trajectories and is
perpendicular to σx.

Figure 2 shows a filtering plane R(x, σ)through the y(s) and is tangent to other trajectory at point
y(λ). Without loss of generality we consider the source y(s) ∈ C1 (the case y(s) ∈ C2,3 is treated
in a similar fashion). The point of tangency is given by either y(λ) = (R cos λ, 0, R sin λ) or y(λ) =

(0, R cos λ,R sin λ). In the first case, the normal vector to the tangent plane is given by:

σx = (sin s cos λ, 1− cos s cos λ, sin s sin λ). (24)

The equation of tangent plane, which is a filter plane, is given by:

R(x, σ) = {x |(x− y(s)) · σ = 0} . (25)
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Filtering lines on the detector are obtained by intersecting the detector plane and filtering planes.
Substituting Equation (20) and Equation (23) into Equation (24) and solving for v, we obtain the equation
of the filtering line on the planar-detector:

v(u : s, λ) =
u(cos s− cos λ)

sin s sin λ
+

2R

sin λ
. (26)

In the second case, the normal vector to the tangent plane is given by:

e = (1− cos s cos λ, cos s cos λ, cos s sin λ). (27)

The equation of the filtering line on the planar-detector is given by:

v(u : s, λ) =
u(cos λ− sin s)

sin λ cos s
+

2R

sin λ
. (28)

4. Weighting Functions of Filtering Lines

In the following, we define adequate filtering lines for the three-orthogonal scanning case. In order
to define the different filtering lines, which are necessary to perform the three-orthogonal circular re-
construction, we first, introduce certain curves, which separate the planar-detector into different regions.
As an example consider the X-ray source moving on the trajectory C1. We project stereographically the
trajectories C2 and C3 onto the detector plane as shown in Figure 3. Let PC2 and PC3 denote these
projections. The line PC1 is the projection of trajectory C1. Supp f(x) is supposed to be inside a ball
centered as the origin and with sufficiently small radius r < R, so that the projection of ROI has a circu-
lar shape, as shown by the shaded region in figure 3. The curves PC2 and PC3 split the entire ROI into
three sub-ROIs: PRm,m = 1, 2, 3. The object point x is projected into the area PRm,m = 1, 2, 3. Let
x̂ denotes this projection.

If x̂ ∈ PR1, L(ϕ) is the projection of the plane through x with normal σx(s, ϕ). As ϕ increase,
σx(s, ϕ) ∈ β⊥(s, x) rotates in the clockwise direction on DP (s). From definition of kx(s, ϕ) with
equation (14), k is discontinuous if L(ϕ) is parallel to y′(s) or is tangent to C2. In the first case, such
a plane has six points of intersection with C = C1 ∪ C2 ∪ C3, so k = 1/6 on the side of the jump,
where y′(s) · σ > 0 and k = −1/6 on the other side. The filtering line is parallel to y′(s), which is
denoted as L1(see the dot-dashed lines in Figure 3). The corresponding weighting function of filtering
line L1 is wx(s, ϕ1) = 1/3. In the second case, the number of intersection changes form four to six .
So the filtering line is tangent to C2, which is denoted as L2 ( see the dot-dashed lines in Figure 3). For
the signum function in Equation (14) is unchagened, the corresponding weighting function of filtering
line L2 is wx(s, ϕ2) = 1/12. If x̂ ∈ PR2, k is discontinuous only L(ϕ) is parallel to y′(s). So the
filtering line L1is parallel to y′(s). The corresponding weight function is wx(s, ϕ1) = 1/3. If x̂ ∈ PR3,
k is discontinuous if L(ϕ) is parallel to y′(s) or is tangent to C3. In the first case, such a plane has
six points of intersection with trajectory, so k = 1/6 on the side of the jump, where y′(s) · e > 0 and
k = −1/6 on the other side. The filter line is parallel to y′(s), which is denoted as L1 (as shown in
Figure 3).The corresponding weighting function of filtering line L1is wx(s, ϕ1) = 1/3. In the second
case, the number of intersection changes form four to six. So the filtering line is tangent to C3, which is
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denoted as L3( see the dot-dashed lines in Figure 3). The corresponding weighting function of filtering
line L3 is wx(s, ϕ3) = 1/12. Figure 3 summarizes the above information.

Figure 3. Detector plane with various filtering lines covering projection of ROI shown.

5. Conclusions

An exact shift invariant filtered back-projection (FBP) reconstruction algorithm for a cone-beam ver-
tex trajectory consisting of three-orthogonal to each other circular was derived from Tuy’s inversion
formula. There are several major modifications to Tuy’s formula. The first modification is not using the
Fourier transform with the projection function to deduce the specific inversion formula, but instead using
the inversion Radon transform. Second, we started with a Tuy-like inversion scheme. Weighting the re-
dundant data and rewriting the weighted summation into an integral along the source trajectory resulted
in a shift-invariant FBP reconstruction formula. Last, the “nontangential” condition in Tuy’s original
data sufficiency conditions is relaxed and the nonended condition is further relaxed. In implementing
of the inversion formula for a cone-beam vertex trajectory consisting of three-orthogonal to each other
circular, the concrete forms of the filtering lines and according weighting function are the most important
and difficult segments. In this paper, we obtained above two segments base on analysis about the geo-
metric properties of projections with the three-orthogonal circular trajectory and the radon planes which
pass through the reconstruction point.
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