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Abstract: Selective attention is the strategy used by biological systems to cope with the in-
herent limits in their available computational resources, in order to efficiently process sensory
information. The same strategy can be used in artificial systems that have to process vast
amounts of sensory data with limited resources. In this paper we present a neuromorphic
VLSI device, the “Selective Attention Chip” (SAC), which can be used to implement these
models in multi-chip address-event systems. We also describe a real-time sensory-motor sys-
tem, which integrates the SAC with a dynamic vision sensor and a robotic actuator. We present
experimental results from each component in the system, and demonstrate how the complete
system implements a real-time stimulus-driven selective attention model.

Keywords: analog VLSI; subthreshold; selective attention; multi-chip system; Address-
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1. Introduction

Selective attention is one of the most powerful strategies used by biological systems, from which
robotics, and in general all artificial computation, can take advantage. In a biological sensory system,
selective attention acts as a dynamic filter to select the most salient regions of the input and sequen-
tially allocate computational resources so as to analyze them in detail. This serial strategy reduces the
computational load and optimizes the usage of the available computational resources.
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Here, we present a hardware multi-chip model of visual selective attention, based on a Selective
Attention Chip (SAC), which is implemented using neuromorphic analog/digital VLSI circuits. The
multi-chip system is composed of a Dynamic Vision Sensor (DVS) [1], the SAC, and a motorized
pan-tilt unit capable of orienting the DVS towards salient stimuli. The proposed system can be used
as a real-time tool for validating different theories of visual attention, and demonstrates how the SAC
can be considered as an attractive building block for implementing attention mechanisms in autonomous
robotic platforms and to actively explore the environment in real-time.

The computational primitives implemented in the VLSI multi-chip system use the principles inspired
by those of biological neural systems to process visual information. The rationale behind this approach
stems from the observation that biological systems and analog VLSI circuits share many similar physical
properties, and at the same time face similar constraints: both need to perform with limited resources and
cope with intrinsic inhomogeneities of substrate, failures of components or changes in the environment.

Neural systems developed energy-efficient solutions and computational codes [2] that cope with
variability and noise by dynamically changing the properties of single computational units [3]. This
property makes neural computation robust and fault tolerant, and naturally leads to systems that learn
and adapt to their environment [4]. By mapping onto silicon such types of computational principles, neu-
romorphic engineering aims to produce novel types of compact, low power and smart devices capable of
efficiently interacting with the real-world in real-time.

The main contribution of the proposed work is the realization of the first fully functional multi-chip
model of visual selective attention, which couples the SAC with an active vision system capable of
orienting its gaze towards the most salient object in its field of view. In the following sections we
describe the visual attention system’s overall architecture (Section 2), and the properties of its two main
components: the Dynamic Vision Sensor (Section 3) and the Selective Attention Chip (Section 4).

An additional important contribution of this work is the improvement of key
circuits used in the SAC and the introduction of specific neural computational primitives, such as short
time scale types of adaptation mechanisms, that enhance the plausibility and performance of the system.
A particular effort was made to thoroughly and quantitatively characterize each circuit in the SAC, when
it is embedded in the “behaving” active vision system.

In the following sections we highlight the computational primitives implemented by each of the cir-
cuits used in the system: we characterize them at the single chip level behavior (Sections 4.1-4.4), we
describe their effects at the system level behavior (Section 5) and we present their response properties in
specific application examples (Sections 5.1 and 5.2).

2. Visual Attention System

The multi-chip visual attention system implements a model of bottom-up selective attention based
on the concept of Saliency Map [5] - a topographic map where activity encodes for the salience of the
corresponding location in the input stimulus, irrespective of the feature that determined the saliency.
From the operative point of view, models based on the saliency map allow the read-out of a single
unambiguous region of the visual space, corresponding to the maximum of the saliency map, which can
be easily used to control actuators. A sequential scan-out of the saliency map, in the order of decreasing
salience, determines the shifts of the focus of attention (focus of attention scan-paths). In the case of
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ocular movements, these shifts determine the end points of saccades, which foveate the selected target
and allow for detailed processing of the stimulus.

Computational models of selective attention [6, 7, 8, 9] have focused on the stimulus driven
computation that generates the saliency map, and on the mechanisms for creating the attentional scan
path from the map itself. A winner-take-all (WTA) competition selects the most salient location in the
saliency map, guiding the center of the attentional spot-light. Once selected, a self-inhibitory mecha-
nism deselects the current winner to allow the selection of the second most salient region of the visual
field. The iteration of this selection-inhibition cycle induces scanning of the visual field in the order of
decreasing saliency, namely the scan-path of selective attention. The number of regions included in the
scan-path depends on the duration of the inhibition that prevents re-selection of the most salient stimuli,
a phenomenon observed in psycho-physical experiments [10] on visual search and named “inhibition of
return” (IOR).

In real world applications such as robot vision, video surveillance, etc., where one of the main re-
quirements is real-time processing and where it is important to reduce the computational load and com-
plexity, software simulations on desktops of such selective attention models are inadequate. Dedicated
approaches have been thus proposed with various degrees of flexibility, complexity and computational
load, starting from real-time SW implementations run on PC clusters [11] to less sophisticated SW
implementation [12] and mixed solutions with software running on dedicated digital hardware (HW)
platforms [13].

Another approach is to implement the model on dedicated analog VLSI hardware, that directly maps
the theoretical model on silicon. On one hand this approach has less flexibility, since the hardware can-
not be fully reprogrammed to implement different models. On the other hand it has the great advantage
of real-time and low power operation. Within the neuromorphic engineering approach there are two
main streams. One strategy is to implement, on a single chip, the sensors and post-processing that im-
plements a simplified selective attention model using a very small set of features, such as local stimulus
intensity [14, 15] or temporal derivative of contrast [16, 17], to compute the saliency map. The second
approach, adopted in this work, is to separate the sensory acquisition stage from the processing stage,
via the realization of multi-chip hierarchical systems which have the advantage of higher flexibility [18].

The DVS used in our multi-chip system is the one proposed by [1]. This vision sensor responds to
temporal variations of light intensity, intrinsically producing a saliency map that encodes for contrast
transients. Reference [19] demonstrates that “Motion and temporal change were stronger predictors
of human saccades”, as reasonably expected from the behavioural relevance of moving stimuli (prays
or predators), with respect to stationary stimuli. In particular, moving and changing stimuli are strong
psychophysical attractors of human bottom-up attention, while “static” feature maps (such as intensity,
orientation and color) have a very small contribution. Therefore, the DVS will produce a partial saliency
map that is nevertheless capable of capturing the most significative information for the orientation of
attention.

The sensory data produced by the DVS is transmitted to the SAC for further processing. Specifi-
cally, this neuromorphic chip processes the asynchronous events produced by the DVS in real-time, and
computes the coordinates of the most salient pixel. It integrates over a tunable time interval the activity
of each pixel and compares them, in order to select the pixel that responded to the highest temporal
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variation of contrast. Each SAC input locally adapts to constant pixel activity from the sensor, filtering
out stationary stimuli such as flickering lights often present in our everyday life experience. The SAC
implements also a form of self-inhibition that allows to deselect the current winner and move the focus
of attention to other stimuli.

The visual attention multi-chip system is realized with the DVS and the SAC by the address event
representation (AER) communication scheme [20].

AER is an asynchronous, event-driven, spike-based protocol. Each neuron of a chip transmits the
spikes it produces by writing its address on a common digital bus as the spike happens. Information
is encoded in the temporal pattern of the events; time is self-encoded and is not explicitly transmitted.
When the AER is used to connect two neuromorphic chips with the same communication latency, as in
the proposed visual system proposed, the sequence and the relative implicit timing structure of the events
are preserved. However, if the communication happens between a neuromorphic chip and a device with
intrinsically different information encoding (e.g., a computer), the AER interface can append an explicit
time stamp to the address of each event, in order to preserve the real-time information of the emitted
spikes.

The proposed visual attention system exploits the AER infrastructure to interface the DVS chip to
the SAC chip, and the SAC chip to a robotic pan-tilt unit which is driven by the result of the selective
attention competitive processing.

3. Dynamic Vision Sensor

The vision sensor used [21] generates asynchronous events that correspond to the temporal changes
in the logarithm of local image intensity. As the ratio d

dt
log I is equal to dI/dt

I
, where I is the pixel

illumination, the DVS encodes relative temporal changes in contrast (rather than absolute illumination,
encoded by standard image sensors). This property allows the sensor to respond to 20% contrast changes
over a dynamic range spanning over 5 decades. In addition, computation is performed independently by
each pixel (local gain control), allowing the DVS to optimally respond to scenes with non-homogeneous
illumination.

The DVS efficiently processes signals measured from real-world scenes in uncontrolled environments
with very wide dynamic range spans, such as outdoors, by exploiting the same elegant solutions used by
biological neural systems: local gain control, adaptation and relative rather than absolute computation.
These computational strategies are present at all levels of brain computation, from the photoreceptors in
the retina to the neurons in cortex [22, 23].

The event-driven nature of the DVS ensures that visual data are only transmitted when pixels sense
sufficient contract changes. This reduces redundancy and produces a sparse image coding, therefore
optimizes the use of the communication channel and the post-processing elaboration and storage
effort. The real-time asynchronous output nature of the DVS ensures precise timing information and
low latency [24] yet requires a much lower bandwidth used by frame-based image sensors of equivalent
time resolution [25].

Behaviorally, the DVS responds only to relative changes with respect to the static background. In
the visual attention system it has the essential role of transmitting information on local change of scene
reflectance, producing a saliency map based on moving or changing stimuli. Specifically, each pixel



Sensors 2009, 9 5080

of the retina responds to both positive and negative variations in contrast, transmitted as ON and OFF
events respectively. In the implementation of the visual selective attention two-chip system, ON/OFF
information is discarded and the events sent to the SAC indicate a variation of contrast, irrespective of
its polarity.

4. Selective Attention Chip

The post-processing chip computes the scan path of the focus of attention from input saliency maps
by using computational primitives analogous to those used by biological neural systems. It is the evolu-
tion of previously proposed selective attention chips (see [26] for a review). In addition to incremental
improvements to the circuits, the SAC includes short-term depression (STD) circuits [27] and spike fre-
quency adaptation ones [28], which play a crucial role in making the chip sensitive to changes in the
input stimuli, and in reducing the amount of information sent to the output bus.

The core of the chip comprises an array of 32 × 32 pixels. Each pixel is 90 × 45 µm2. The whole
chip with external interfacing circuits and pads occupies an area of 10 mm2.

Figure 1 shows the block diagram of a SAC pixel: each pixel in the array receives as input sequences
of spikes encoding for the saliency of the corresponding pixel in the visual stimulus; an input excitatory
synapse translates its input spikes into the current Iexc. A current-mode hysteretic WTA competitive cell
compares the input currents of each pixel: only the winning cell sources a constant current (independent
of the input current) to the corresponding output leaky Integrate and Fire (I&F) neuron [28]. The identity
of the spiking neuron signals which pixel is winning the competition for saliency. The output spikes of
the I&F neuron are also sent to a feedback inhibitory synapse, that produces a negative current (Iinh)
which is subtracted from the input node of the WTA cell. The net input current to the winner pixel
decreases, and a new pixel is eventually selected. This self-inhibition mechanism, IOR, allows the
network to select sequentially the most salient regions of input images, reproducing the attentional scan
path [29].

Figure 1. Block diagram of the SAC pixel. Each pixel receives sequences of spikes from
the AER bus and competes for saliency by means of lateral connections. The winning pixel
sends its address to the AER bus and self-inhibits via the inhibitory synapse.
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In the following, we describe each component of the SAC pixel from its circuit “low level” properties
to the functional role in the attentive system behavior.

4.1. Input Excitatory Synapse

The silicon synapse used to integrate the input spike trains [30] was designed to support the elaborate
dynamic mechanisms observed in selective attention systems. As shown in Figure 2(a), it comprises the
differential pair integrator (DPI) that reproduces the currents originated by presynaptic action potentials
across the postsynaptic neuron’s membrane, and the STD circuit, that modifies the efficacy of synaptic
transmission on the short time scale.

Figure 2. Input excitatory synapse: (a) Circuit diagram of the excitatory synapse, comprising
the DPI circuit and the STD circuit. (b) Mean and standard deviation (shaded areas) of the
input current of the WTA cell versus the input frequency, when the DPI is stimulated with a
spike train of constant frequency at 100 Hz, for different time constant and weight settings
and disabled STD.
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The DPI was explicitly designed to reproduce postsynaptic currents with realistic time course, which
can be modeled with exponential functions [31]. Such property is necessary to reproduce another char-
acteristic of synaptic transmission, which is linear summation. In turn, this guarantees that the mean
level of the output current of the DPI in response to a train of spikes is linearly proportional to the mean
spike frequency, f̄ :

< Isyn >=
IwIgain

Iτ

∆tf̄ , (1)

where Iw, Igain and Iτ are tunable currents that set the synaptic efficacy and time constant, and ∆t is the
spike duration.

This is a fundamental requirement for the SAC implementation: the mean frequency of input spike
trains encodes for pixel’s saliency, and it is translated into the mean output current produced by the DPI.
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The WTA competition therefore compares current levels that are directly proportional to the stimulus
saliency.

As WTA competition is instantaneous and continuous in time, it is crucial to produce smooth currents
that do not have large peaks in correspondence of the input spikes; otherwise the result of the competition
would depend on the relative timing of the input spikes, and be independent of their input frequency.

Figure 2(b) shows the mean output current versus the input frequency, when the synapse is stimulated
with spike trains of constant frequency. The shaded areas in the figure show the standard deviation of
the current (the standard deviation of the mean over time of the current is calculated with the standard
procedure for error propagation: if the derived measure is f(x, y, ...), where x, y, ... are the direct mea-
sures, its standard deviation is σ = ∂f

∂x
σx + ∂f

∂y
σy + ...): for long time constants (i.e. Vτ close to the

supply voltage) the output current is smoother and the mean current is directly proportional to the input
frequency for a wide range of input frequencies.

Short Term Depression

STD is a mechanism that modifies synaptic efficacy on a time scale of the order of hundreds of
milliseconds to seconds. It is induced by the recent history of the presynaptic firing rate and decreases
the efficacy of synaptic transmission for repetitive stimulation. The most evident property of STD is
the enhanced response to transients and the adaptation to sustained stimulations, therefore it plays an
important role for implementing selectivity to transient stimuli and contrast adaptation [32].

The implementation of this neural computational primitive on the SAC is crucial for enhancing sensi-
tivity to transients: In terms of bottom-up attention, the saliency of stimuli whose attributes never change
is decreased, and stimuli with one or more varying attributes become more salient, implementing a form
of visual adaptation [33].

4.2. Hysteretic Winner-Take-All

The computational core of the SAC is the circuit implementation of a classical functionality observed
in neural networks required forand model selective attention: the WTA circuit. In biological neural
networks, WTA competition is an emergent computational property of recurrently connected neurons,
which enhances the activity of neurons receiving the strongest input and suppresses the activity of neu-
rons receiving weaker input signals. It is one of the competitive-cooperative computational strategies
capable of extracting information from noisy and ambiguous data thanks to the evaluation of each stim-
ulus in its own context [34, 35, 36].

Figure 3 shows a bi-dimensional current-mode hysteretic WTA circuit [37] based on a functional
model rather than a network of spiking neurons. The proposed circuit is very compact and scalable and
operates at low power. Its most striking property is the simple connectivity among units, which allows
the realization of dense bi-dimensional arrays with many units on a single chip. In the original current-
mode WTA circuit, originally proposed in [38] (“WTA” in Figure 3), the pixels compete for a common
resource. The pixel receiving the highest input current can access the resource and output a constant
current, while suppressing all other pixels. The additional circuits proposed in this system implement
lateral facilitation, local competition and hysteresis. It has been shown that such circuits can significantly
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improve the performance of the original circuit by speeding up the winner selection, thus increase the
network resolution and reduce the effect of input mismatch [37]. In the next paragraphs we show the
properties of each circuit as well as the functional role that they have in the complex behaviour of the
WTA selection.

Figure 3. Current-mode hysteretic WTA circuit with diode-source degeneration “DS”, local
excitation “EXC”, local inhibition “INH” and positive feedback “HYST”.
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The positive feedback “HYST” block of Figure 3 was introduced to further increase the resolution of
the circuit and improve its speed [39]. This way, as soon as one cell begins to suppress the others and
its output current increases, its input current also increases and the dynamics of the selection speeds up.
The feedback current in the input node of the winning cell stabilizes the selection, and implements a
form of hysteresis (or short term memory): a new cell can win the competition only if its input current
exceeds the input current of the winner plus the positive feedback current Ihyst.

Figure 4 shows the effect of the positive feedback current on competition between two pixels of the
array (namely pixel 1 and pixel 2), quantifying the effect of the bias, Vhyst, that controls the magnitude of
the hysteretic current, when the input frequency of pixel 2 increases linearly from 10 Hz to 200 Hz and
back with a resolution of 1 Hz and the input to pixel 1 is kept constant at 100 Hz, as shown in Figure 4(a).

Without hysteretic current (Vhyst = Vdd), the WTA should switch from pixel 1 to pixel 2, when
pixel 2 receives an input frequency slightly higher than 100 Hz. The WTA should then switch back
to pixel 1 when the input frequency of pixel 2 decreases back to a value slightly lower than 100 Hz.
When the hysteretic current is enabled, the winning pixel receives an extra current in the input node,
this is equivalent to having an input spike train to the winner of frequency at (100 + ∆f) Hz, where ∆f

depends on the bias Vhyst. In such a case, pixel 2 can win the competition only if its input frequency
increases above (100 + ∆f) Hz. As pixel 2 is selected by the WTA, the hysteretic current is removed
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from pixel 1 and is injected in the input of pixel 2. For pixel 2 to be deselected, its input frequency has
to decrease below (100−∆f) Hz.

The hysteretic curves of Figure 4(b) are obtained by plotting the center of mass (CoM ) of the network
activity versus the input frequency of pixel 2, where CoM is defined as

CoM =

∑
i θifi∑
i fi

, (2)

where θi is the address of the ith pixel and fi is its output frequency. Depending on the resolution of the
WTA network, both pixels are selected as winners for a given range of similar input frequencies, and
the center of mass is in between the two stimulated pixels, otherwise the CoM corresponds to the pixel
selected by the WTA. When the hysteretic current is disabled (Vhyst = Vdd), the transition frequency
of the WTA, defined as the input frequency at which the WTA changes from one winning pixel to
another, depends on the mismatch between the input currents generated by the excitatory synapses of
the two pixels. In the shown experiment the transition point is around 125 Hz, and is the same for
increasing and decreasing values of the input frequency of pixel 2. The width of the hysteretic curve
obtained by enabling the positive feedback increases with increasing hysteretic current amplitude. This
experiment confirms also the circuital role of the positive feedback in increasing the WTA resolution:
when the hysteretic current is active, the transition between one winner and the other is sharper than in
the baseline, as there is typically only one point in the center of mass of the activity that corresponds to
the activation of both pixels. Figure 4(b) shows that the resolution of the WTA without positive feedback
is about 15 Hz: within this range the WTA cannot resolve between the two inputs, and both pixels are
active. The activation of the feedback current increases the resolution of the network up to 1 Hz.

Figure 4. Hysteresis measured by observing the output activity of the I&F neuron: (a)
Instantaneous input frequency of the spike train sent to pixel 1, and to pixel 2. (b) Center of
mass of the chip’s activity versus the input frequency of pixel 2 for different amplitudes of
the hysteretic current.
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Lateral Facilitation

In Figure 3, the transistors Mexc implement a diffusor network applied to the input node of the WTA,
diffusing the total input current to the cell [37] and comprising the hysteretic current. This modification
gives a competitive advantage to the pixels close to the winner and allows the network to select and
track moving stimuli. In addition to being useful for tracking, the diffusion of the input current imple-
ments spatial smoothing, giving a competitive advantage to regions of activity (which in vision typically
correspond to objects) compared with single pixels, and reducing the effect of mismatch between pixels.

To measure the spatial extent of the diffusion of input current for different values of the parameter
Vexc, we stimulated the central pixel of the array with a constant spike train at 100 Hz, and measured
the voltage Vnet of the surrounding pixels. Figure 5 shows the difference between the mean of Vnet,
obtained for a fixed value of Vexc, and its baseline, obtained when the lateral excitation is disabled
(Vexc = Gnd). Figure 5(a) shows the data of all recorded pixels, for Vexc = 200 mV. The first neighbors
of the stimulated pixel are brighter, then the amount of current received by more distant pixels decreases
sharply. Figure 5(b) shows mean and standard deviation of the same data, recorded from the pixels
belonging to the same row and column as the stimulated pixel, for a subset of values of Vexc. The value
of the central pixel is negative, since the lateral spread of its input current decreases the net current to the
pixel itself with respect to the baseline. For high values of lateral excitation the current spreads equally
to the limit of the array, and the input loses any information about the location of the stimulated pixel.

Figure 5. Lateral excitation. Spatial impulse response of the WTA resistive grid (see
”EXC” in Figure 3). The difference between the response for Vexc > 0 and the response for
Vexc = Gnd is plotted. (a) Example of the spatial response for Vexc = 200 mV, (b) Cross
section with mean and standard deviation of the data recorded from the pixels belonging to
the same row and column as the central pixel, for different values of the bias Vexc.
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The plots in Figure 6 show the functional role of lateral facilitation in the WTA competition. Similar to
the experiment used to characterize the hysteresis circuit, pixel 1 is stimulated with a constant frequency
at 100 Hz, while pixels belonging to an area of 3 × 3 centered around pixel 2, from now on referred to
as blob, are stimulated with spike trains with frequencies ranging from 10 Hz to 200 Hz with steps of
1 Hz and back (same frequency profile as shown in Figure 4(a)). Figure 6(a) shows the center of mass
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of the activity of the chip shifting between the single pixel and the blob for different values of the bias
Vexc, and without the hysteretic current. When the lateral excitation is enabled, the pixels belonging to
the same blob cooperate and the transition frequency of the WTA selection shifts toward lower values,
until the blob wins even when stimulated with a lower frequency than the pixel.

Thanks to the lateral facilitation, a contiguous region of activity (e.g. arising due to an object) has a
competitive advantage over a single pixel of activity.

The experiment of Figure 6 unveils an additional role of lateral facilitation, spatial smoothing, that
reduces the effect of mismatch between pixels. As pointed out in Figure 4, the transition frequency of
the network does not correspond exactly to the input frequency of pixel 1 (100 Hz), but shifts toward a
higher frequency because of mismatch between the input currents generated by the two synapses. One
way to reduce this effect is to use lateral excitation to smooth the input in space. Figures 6(b) and 6(c)
show the same experiment as in Figure 4, stimulating the two blobs centered around pixel 1 and 2.
The transition frequency of the WTA selection shifts toward the input frequency of pixel 1 (100 Hz),
showing a reduction of the effect of mismatch between the input currents to the WTA pixels. The width
of the hysteretic curve is smaller, since the hysteretic current spreads also to the neighbors. The slight
asymmetry in the hysteretic curves with respect to the baseline transition is probably due to mismatch
between the hysteretic currents.

Figure 6. Functional role of lateral excitation. (a) Center of mass of the activity of the array,
when stimulating a single pixel with a constant frequency and a blob, for different values of
the bias Vexc. The activity of all of the pixels belonging to the blob is added together, and
represented as a single pixel. (b) Center of mass of the chip activity, when two blobs are
stimulated. (c) Baseline activity without hysteresis, when either single pixels or blobs are
stimulated.
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These measures exhibit the functional role of lateral facilitation, showing that a region of activity has
a competitive advantage over a single pixel, furthermore, spatial smoothing of the input currents helps in
reducing the effect of mismatch in the input synapses.
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4.3. Output Integrate and Fire Neuron

The output current of each WTA cell is transformed into a train of pulses by a read-out I&F neuron in
order to exploit the AER communication system at the output of the chip. It is a convenient and robust
method for multiplexing the activity of large networks on a single bus, and necessary for including the
SAC in multi-chip systems where we can stack multiple instances of the SAC to build hierarchical models
of selective attention. In this scheme the address of the active neuron encodes the result of competition,
and in the case of visual selective attention, the position in the visual field at which to deploy attention.

The I&F neuron circuit adopted for the SAC is a phenomenological model of a spiking neuron, namely
the low-power leaky adaptive I&F neuron model [28], shown in Figure 7. It has tunable leak, refractory
period, spiking threshold and implements a mechanism of spike frequency adaptation. The adaptation
mechanism reduces the activity of the neurons in periods of prolonged activity. In the SAC application,
a constant output firing rate at steady state is not informative, and the adaptation mechanism helps to
decrease the number of events produced by each single neuron, which reduces the traffic on the AER bus
and thus reduces bandwidth use and power consumption.

Figure 7. I&F circuit diagram. It comprises a membrane capacitor, a constant leak “LK”, a
spike generating circuit “SPK” with a positive feedback “Na” mimicking the fast activation
of sodium channels and a reset and hyperpolarizing circuit that mimics the activation of late
potassium channels “K”. The “ADAP” circuit implements spike frequency adaptation by
calcium accumulation.
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In addition to being used for monitoring the activity of the neurons to follow the movement of
the focus of attention, the output spikes of each neuron are integrated by the corresponding local in-
hibitory synapse, which subtracts the current Iinh from the input of the WTA node and implements a
self-inhibition mechanism that allows the WTA network to deselect the current winner and select a new
one.
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4.4. Inhibition of Return

The inhibitory synapse provides a mechanism for the deselection of the winning neuron in favor of
stimulus exploration. Hardware systems based on the concept of selective attention and WTA com-
petition that lack such deselection mechanism have been specifically designed for tracking a selected
target [14, 40]. In such implementations, once a target is selected, the system is designed to lock on the
target, disregarding distracters and even new salient stimuli.

The SAC implementation comprises both hysteresis that favors tracking and a self inhibitory mecha-
nism that favors shifts of attention. The dynamic interplay of these two mechanisms creates a complex
behavior, mimicking the rich mixture of attentional tracking and shifts of natural scan paths. Similar sys-
tems have been proposed in the context of aVLSI implementation of visual selective attention [41, 42].

In the SAC, the inhibitory version of the DPI synapse integrates the spikes of the winning I&F neuron,
and generates an inhibitory current Iinh which is subtracted from the input current Iexc until the net input
current to the winner is lower than the input currents of the other pixels in the array (see Figure 1).
Another pixel can then be selected by the WTA network.

The time course of build-up and decay of inhibition can be tuned by changing the synaptic weights
Vwinh and Vthrinh, the synaptic time constant Vτinh, and by modulating the firing activity of the I&F
neuron.

The scan path of the network depends on the IOR settings, the relative magnitudes of the input cur-
rents, and the hysteretic current. The number of selected neurons in the scan path increases with the
duration of the inhibition decay. The higher the hysteretic current, the longer the duration of the active
period of each neuron.

Figure 8. Inhibition of return: typical traces of the internal variables Vnet (top trace),
Vmem (bottom trace), and Vior (black middle trace), recorded from one test pixel, for three
combinations of inhibition weight (Vwinh) and time constant (Vτinh). (a) Vwinh = 2.42 V,
Vτinh = 10 mV, (b) Vwinh = 2.58 V, Vτinh = 30 mV,(c) Vwinh = 2.44 V, Vτinh = 80 mV.
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The dynamics of IOR can be characterized by measuring the duration of the activation of the I&F
neuron and the duration of its suppression. A test pixel (0,31) was stimulated with a spike train of
constant frequency of 100 Hz, and the IOR dynamics were evaluated for different values of Vwinh and
Vτinh. Figure 8 shows the time course of the pixel’s internal variables: The lower trace shows the
membrane potential Vmem of the output I&F neuron (see Figure 7). Depending on the bias settings of
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the inhibitory synapse, one or more spikes are sufficient to inhibit the current winner. The upper trace
corresponds to the input node voltage of the WTA Vnet (see Figure 3), and shows the decrease of the input
current to the current winner due to the inhibitory current. The middle trace shows the gate voltage of the
output transistor of the inhibitory synapse. A linear decrease of this voltage results in an exponentially
decaying current subtracted from the input node of the corresponding WTA cell. Depending on the
time constant and on the weight of the synapse, the output inhibitory current pulse will last from a few
milliseconds up to two seconds.

Saliency Map

The effect of different IOR settings at functional level on the produced focus of attention (FOA) scan
path can be evaluated when stimulating the SAC with saliency maps generated by a software implemen-
tation of the algorithm proposed in [7], the Matlab Saliency Toolbox [43], and comparing the properties
of the SAC-generated scan path to the scan paths obtained by the software implementation.

The saliency maps were computed from color, intensity and orientation (at 0,45,90,135 degrees)
feature maps, weighted equally and summed.

The resulting saliency maps were transformed into an appropriate input for the SAC: for each pixel,
a constant spike train was produced whose frequency was proportional to the saliency value of the pixel
itself. To have an input range within the linearity region of the input synapses, the saliency values are
mapped to an interval between 0 Hz and 200 Hz.

Figure 9(b) shows the corresponding saliency map computed by the SaliencyToolbox with its default
parameters. The inhibition region is a disc centered around the FOA. Figure 9 shows the resulting scan
path for two different dimensions of the inhibition region. If the size is small (Figure 9(c)), the algorithm
chooses many points belonging to the same few objects with high saliency and avoids less salient targets.
If the size is bigger (Figure 9(d)) less salient locations are visited.

A similar behavior is also observed in the scan path generated by the SAC when stimulated with the
same saliency map. Figure 9(e) and 9(g) show the FOA scan path generated by the SAC superimposed on
the saliency map for two different sets of parameters, which differ in the time constant of inhibition. In
the SAC, the space constant of the lateral excitation also contributes to the lateral spread of the inhibitory
current, but the inhibition region decays exponentially within few pixels and depends on the amplitude
of the current itself. Therefore, it is not possible to set arbitrary sizes for the inhibition region. The
number of different pixels selected in the scan path, including lower saliency regions, increases if the
time constant of IOR is longer: the inhibitory current forces the input to the inhibited pixel to a low value,
the network does not select previous winners for a long time, and less salient pixels can be selected. The
SAC with global competition, lateral excitation, hysteresis, and IOR, qualitatively reproduces the scan
paths generated by the SaliencyToolbox, but selecting regions of higher saliency more often.

The experiments performed here show that we can use the SAC as a tool for implementing the fi-
nal decision stage of the saliency map model, and use it to explore the parametric space, in real-time.
Additionally, it can also be tuned to operate as a local WTA, without IOR, to implement the required
local competition and normalization in the feature map component of the saliency map model. Multiple
instances of the SAC tuned for different features can be used to build a hierarchical selective attention
multi-chip system.
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Figure 9. SaliencyToolbox: (a) Input image used for the following experiments (part of
the image database of the SaliencyToolbox). (b) Saliency map relative to the input image,
obtained from the SaliencyToolbox, with the default parameters. (c-d) FOA scan path gen-
erated by the SaliencyToolbox: The yellow circles are centered around each fixation point
belonging to the FOA scan path, the red lines connect consecutive fixations. The radius of
the yellow circles shows the size of the inhibition area. (c) Small inhibition area (d) Large
inhibition area. (e-h) FOA scan path generated by the SAC superimposed on the saliency
map for different settings of the IOR. (e-g): black dots show the fixation points, the grey
lines connect consecutive fixations; (f-h) histogram of the visited points in the saliency map.
(e-f) Slow IOR time constant. (g-h) Fast IOR time constant.
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5. System’s Behavior

In this section we describe the behavior of the saliency-map based selective attention two-chip system,
comprising the DVS as vision sensor, the SAC performing the attentional selection and an actuator that
orients the sensor towards the selected salient stimuli. This system is a test bed for evaluating the scan
paths generated with real stimuli, and the behavior of the system when it interacts with the real world. It
represents a proof of concepts for future miniaturization of the system that can be used in autonomous
robots applications for stimulus selection and real-time reaction to external events.

Figure 10 shows all of the components of the experimental setup. It comprises the DVS mounted on
a Pan-Tilt Unit (PTU), the SAC and a PCI-AER board connected to a Linux PC [44, 45]. The realization
of such a complex system was allowed by custom software [46] and hardware infrastructures [45, 47],
developed by different groups for AER-based neuromorphic chips. The PCI-AER interfacing board
routs the output events from the DVS to the SAC input; thanks to the software interface it can be used
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to monitor the activity of both chips on a desktop computer for off-line analysis as well as on-line for
controlling the PTU. A board comprising an array of digital to analog converters (DAC) is used to set
voltage biases and tune the chip’s behavior.

The DVS produces a proto-saliency map based on the information of local luminance changes in time
(see Section 3); it has an array of 64 × 64 pixels; its output spikes are routed to the SAC via the PCI-
AER mapper functionality: a look-up table implements a 4:1 mapping of the DVS addresses onto the
32 × 32 addresses of the SAC. The next physical location of the FOA is determined by a software
algorithm, based on the spiking activity of the SAC, acquired via the PCI-AER monitoring functionality.
The resulting coordinates of the FOA are transformed into a motor command, and sent to the PTU
connected to the PC via a serial port, to shift the central pixels of the retina to the coordinates of the new
FOA.

Figure 10. Visual selective attention AER multi-chip system comprising the DVS and the
SAC.

DVS SAC

PCI-AER 
(PCI) 

DACs
(USB)

Linux PC

PTU
(Serial)

AER aVLSI Chips

SW

HW Interface

In the first experiment the FOA scan path is recorded while maintaining the retina fixed at its initial
fixation point, reproducing what in psychophysics experiments is known as covert attention (Covert
attention is the term used in psychophysics experiments to indicate that the subject performs the task
while maintaining his/her eyes fixed, typically looking at a central fixation point. In such experiments
attention is measured from increase in performance at the attended location.).

In the last experiment the FOA is used to foveate the retina, reproducing overt attentional scan
paths [48].

5.1. Covert Attention with Short Term Depression - Distinguishing Motion from Repetitive Stimuli

As described in Section 4, the short term form of synaptic adaptation implemented in the input excita-
tory synapses renders the SAC sensitive to moving and changing stimuli, which are strong psychophys-
ical attractors of attention [19]. This mechanism might appear to be redundant when the input to the
SAC is provided from the transient silicon retina chip activity. Nevertheless, in many practical situations
there are stimuli that produce activity at a constant frequency, therefore eliciting a strong activity in the
DVS (for example flickering lights). However such stimuli are stationary because their frequency does
not change in time, therefore they should not be selected as strong attractors of attention.
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Figure 11. Selective attention multi-chip system: (a) Experimental setup: In front of the
DVS, over a white background, a LED (red circle) is flickering and a nut (red dashed arrow) is
let oscillating. (b-c) The raster plots show the activity of the SAC (black dots) superimposed
to the activity of the DVS (grey dots): Each dot corresponds to a spike emitted by the pixel
with address on y-axis at the time indicated on the x-axis. The spikes with addresses ranging
from about 1200 to 1500 correspond to the LED evoked activity, the spikes with addresses
belonging to the range from ca. 2800 to ca. 3500 correspond to the nut swing. On the
left the activity is plotted for 50 s. The right column corresponds to the time zoom over
three seconds right after the LED turning on. (b) Baseline experiment: competition, lateral
excitation, hysteresis, and IOR, are turned off. (c) WTA competition, IOR (Vτinh = 80 mV,
Vthrinh = 200 mV, Vwinh = 2.4 V) and STD (Vwstd = 280 mV). (d) WTA competition, IOR
turned off, STD (Vwstd = 280 mV).

PCI-AER
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One approach to overcome this problem is to remove activity corresponding to the stationary stimuli
by using a band pass filter [49] tuned to their frequency. Alternatively, the STD mechanism filters out
inputs at high constant frequency. Using the STD properties of its input synapses, the SAC can be used to
select the activity elicited by transient stimuli, and at the same time suppress the activity of the stationary
ones.

We reproduced a situation with one stationary stimulus and one transient stimulus, with the setup
shown in Figure 11(a): the LED flickering at a constant rate is used as a stationary stimulus, and the
oscillating nut represents the “transient” stimulus. The LED is driven by a function generator, at a
frequency of 200 Hz. During the experiment the LED is transiently turned off and, after a 10 s pause,
turned on again. Figure 11(b) shows the raster plots of the retina (in grey) superimposed on the SAC
activity (in black), for the baseline condition (i.e. without competition, lateral excitation, hysteresis, IOR
or STD). Each active pixel of the retina elicits spiking activity in the corresponding I&F output neuron.
Figure 11(c) shows the SAC response when WTA competition is enabled, as well as the IOR mechanism
active. If the STD mechanism is absent (Vwstd = 0 V, not shown), the WTA switches between the two
input stimuli, the LED and the nut. When STD is enabled, the LED is selected only for a short transient
and the SAC follows the nut movement.

Figure 11(d) shows the SAC response in the same configuration as above, but without IOR: the SAC
selects one pixel stimulated by the nut trajectory, the corresponding input frequency is not high enough to
elicit a significant depression of the synapse weight, and hysteresis contributes to maintain the selection
stable. When the LED is turned on the winner switches transiently, for as long as the weight of its input
synapse is not suppressed by the STD. When STD decreases the weight of the pixels stimulated by the
LED, the first selected winner is chosen again. Without the IOR mechanism, the SAC does not disengage
from the selected pixel, unless a stronger input is applied. This configuration is useful to evidence the
transient effect of the appearance of a strong stationary stimulus and highlight the essential role of IOR
in dynamic tasks.

The behavior of the system in this experiment shows the high level effect of the implementation of a
low-level feature such as STD: stationary inputs do not attract attention, but their transient activation is
capable of capturing attention for a short period. Therefore, the system is still sensitive to the appearance
of (potentially) behaviorally important stimuli.

The superposition of retina and SAC activity shows a short latency of the SAC response, due to the
dynamics of the interaction between IOR and hysteresis. When one pixel is selected, hysteresis keeps it
active until the IOR inhibits the pixel and the WTA selects a new winner. In the meantime, the stimulus
has moved away, and the SAC follows it with a short latency. The latency could be corrected by modeling
predictive attentional saccades [19]. For example, one could add to the address of the current winner an
offset based on the mean speed of the nut.

5.2. Overt Attention with Natural Moving Stimuli

The final experiment was performed with freely moving stimuli in front of the retina. At the beginning
of the experiment the retina is still, and a covert FOA scan path is produced. Subsequently the motor
movements are enabled, and the PTU is used to foveate the selected stimulus. In this behavioural con-
dition we implement a form of saccadic suppression, preventing the DVS output to reach the SAC input
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during saccade execution; this mechanism avoids unnecessary and probably disruptive computation of
FOA location during the fast movement of the sensor.

We tested the system with a person first waiving hands and then walking in the field of view of the
DVS.

During the covert attention period (not shown), the SAC output oscillates between the locations of
moving objects, in this case waiving hands. The SAC alternates between the two hands, while it selects
only rarely the arms that are moving as well. This behavior confirms once more that stimuli with a dense
and circumscribed region of activity, as the hands, have competitive advantage with respect to single
edges, thanks to the lateral excitation.

Figure 12 shows examples of sequences of target selection, saccade movement and landing, during
the overt attention period (The chip’s activity is grouped into frames and displayed as a movie by the
jAER - java AER - software tool designed by T. Delbrück. In the experiments shown in this section,
the frame duration has been arbitrarily chosen to be 80 ms.). The SAC selects pixels belonging to the
person’s contour and the system reliably follows the subject’s trajectory.

Figure 12. Overt attention with moving natural stimuli: two sequences of movement (yellow
arrow), target selection (red circle), saccade movement and landing (red arrow), when a
person is walking to the left (upper sequence) and to the right (lower sequence).

400ms 160ms 160ms

720ms 160ms 240ms

The speed of stimuli for which the system works is limited by the delays introduced by the software
algorithm, the communication between the software and the hardware components, and the fixed dura-
tion of the saccadic suppression mechanism. After the saccade, the system waits until the end of saccadic
suppression period to compute a new location for the next saccade. If the tracked stimulus moves too
fast, it can disappear from the retina’s field of view, before the system is ready to select the new saccade
target.
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6. Conclusions

The two-chip selective attention system described in this paper is the first realization of a full-custom
AER-based active-vision system, capable of sequentially selecting relevant regions of the input stimuli.
The SAC performs non-trivial processing on the output activity of a neuromorphic silicon sensor (the
DVS) and its output is used to drive a pan-tilt unit that orients the DVS toward the most salient region
in the sensor’s field of view. The system design incorporates biologically inspired computing principles.
The processing of sensory data is asynchronous and event-driven, implementing both efficient computa-
tion and communication. The specific computation performed by the SAC extracts relevant information
via a cooperative/competitive mechanism that takes into account the relative context of the input, rather
than the absolute value of each component (pixel). The implementation of adaptive mechanisms at
the SAC input synapses, which models the short-term depression phenomenon observed in biological
synapses, makes the system sensitive to transient stimuli and suppresses stationary stimuli.

The experiments described in this work demonstrate that the multi-chip system developed can reli-
ably implement visual attention behaviors. The realization of a system with an actuator that closes the
sensory-motor loop by orienting the sensor towards salient stimuli shows that the system can respond
with an appropriate action to the sensory input stimuli. The last experiment described in this paper shows
that the SAC output defines an unique winner, whose activity is stable for tens of milliseconds and can
be directly used to control the actuators. The analysis of the system behavior when confronted with
real world stimuli shows the effect of the dynamic interaction and the relative roles of its different com-
ponents. Specifically we highlighted the role of short-term depression in the SAC input synapses, and
showed that the SAC IOR mechanism is a crucial computational primitive required for proper system
operation.

The actuation system used in this work comprises a motorized pan-tilt unit and a desktop computer
running Matlab. At this “proof-of-principle” stage, the system’s set-up was not optimized for power
consumption or speed. But the results obtained clearly demonstrate that such an approach can lead to an
efficient and robust implementation of autonomous visual attention sensory-motor systems, for example
by using micro-controllers or dedicated field programmable gate-array (FPGA) devices and boards, to
replace the general purpose PCI-AER board and desktop.
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