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Abstract: A technique for intrinsic and extrinsic calibration of a laser triangulation sensor 

(LTS) integrated in an articulated arm coordinate measuring machine (AACMM) is 

presented in this paper. After applying a novel approach to the AACMM kinematic 

parameter identification problem, by means of a single calibration gauge object, a one-step 

calibration method to obtain both intrinsic―laser plane, CCD sensor and camera 

geometry―and extrinsic parameters related to the AACMM main frame has been developed. 

This allows the integration of LTS and AACMM mathematical models without the need of 

additional optimization methods after the prior sensor calibration, usually done in a 

coordinate measuring machine (CMM) before the assembly of the sensor in the arm. The 

experimental tests results for accuracy and repeatability show the suitable performance of 

this technique, resulting in a reliable, quick and friendly calibration method for the 

AACMM final user. The presented method is also valid for sensor integration in robot arms 

and CMMs. 

Keywords: laser triangulation sensor; articulated arm coordinate measuring machine; 

extrinsic and intrinsic calibration; non contact measurement; digitalization 
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1. Introduction  

The progressive spread of reverse engineering and digitalization in metrology and quality control 

tasks has increased sensor integration needs in instruments traditionally used for dimensional 

metrology. The latest improvements in equipment accuracy have resulted in metrology instruments 

capable of obtaining quick and accurate measurements approaching those of conventional coordinate 

measuring machines under certain circumstances. LTSs, able to obtain 3D coordinates from the 

projection of a laser line onto the surface to be measured, are based on the triangulation principle and 

are mainly composed of a camera (CCD or APS and lens) and a laser diode with a cylindrical lens 

capable of projecting a plane. This way, it is possible to reconstruct X,Y,Z coordinates corresponding to 

the laser line points by combining information provided by the laser plane intersection with the surface 

to be measured and the camera perspective transformation matrix obtained during the  

sensor calibration.  

The rapid integration of this type of 3D sensor in metrology equipment over recent years has been 

accompanied by a lack of standardization regarding their calibration procedures. For this reason 

different manufacturers have developed their own calibration procedures. However, these procedures 

do not reliably guarantee the accuracy of structured light optical measurement systems because they do 

not establish general evaluation procedures for the complete systems, due to the large number of 

parameters influencing the final system error. In particular, LTSs are nowadays the most commonly 

used non-contact sensors in traditional dimensional metrology equipment such as CMMs or AACMMs. 

This is due to their versatility and the fact that they are one of the most accurate structured light 

contactless measurement sensors, providing suitable accuracy values for most reverse engineering 

applications although, in general, these are not sufficient for metrological inspection tasks. AACMM 

applications with integrated laser sensors are, nowadays, mainly focused on the automotive, 

aeronautics and moulds sectors, and applications related to heritage conservation and general 

measurements of industrial components [1]. 

The difficulty of mathematically characterizing the influence of these parameters on the error in a 

general way for any LTS has traditionally prevented the development of calibration and later 

correction methods. Previous works [2] have tried to characterize the error mechanisms for a 

commercial LTS evidencing that, under optimal measurement conditions, the repeatability obtained for 

characteristic parameters measured from certain geometric primitives is better than 10 µm. On the 

other hand, the accuracy obtained with a CMM-mounted LST (capable of obtaining 60,000 pts/sec) 

when measuring gauge objects or compared with those of a CMM, ranges from tens of micrometers up 

to 0.5 mm. According to the above-mentioned studies, low values of repeatability indicate that it is 

necessary to establish effective error correction models to take advantage of the metrological 

characteristics of these kinds of devices. In recent years a substantial bibliography has appeared in the 

field of sensors based on image capture and structured light projection. In particular, concerning LTSs, 

the great majority of studies [3–6] have been focused on the proposal of mathematical models and 

calibration procedures for different types of sensor configuration and independent digitalization 

systems, analyzing in some cases in detail the influence on the final accuracy of specific error 

mechanisms [7,8]. Once the implemented mathematical models have been validated, based on the 

developments made in this field in the 1980s, the geometric configuration parameters of sensors are of 
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extreme importance, as much as the digitalization conditions. The fact of not implementing error 

correction methods for each of the geometry and capture characteristic parameters error mechanisms 

makes it very difficult to increase sensor accuracy through mathematical models. At present, it is usual 

for commercial digitalization equipments to implement error correction mechanisms depending on the 

color of the piece to be digitalized. In addition, error correction methods based on lighting conditions 

and combinations of lens wavelength and electronic filters are used depending on the application. 

Another conclusion reached by several authors [9] is that the main influence on the error of a LTS 

is the procedure establishing the relationship between the sensor frame and the its global support frame. 

Alternatively, the LTS-AACMM system calibration is different from the calibration of the sensor itself. 

This calibration, called intrinsic calibration, aims in this case to obtain the laser plane equation and to 

define the sensor reference frame, as well as to fix the relationship between screen coordinates u,v and 

X,Y,Z coordinates in the sensor frame. In addition, depending on the calibration model chosen, it is 

possible to describe the influence of other parameters, such as lens distortion. On the other hand, 

extrinsic calibration obtains the relationship between the sensor frame, defined during its intrinsic 

calibration, and the global reference frame of the sensor support for digitalization (CMM, AACMM, 

Robot,…), in which the digitized points will be obtained. As mentioned above, previous works have 

studied the intrinsic calibration of these types of sensors and the influence of the calibration process on 

the final error, as well as the development of optimization procedures for intrinsic parameters. 

Moreover, several authors have studied ways to solve the intrinsic and extrinsic calibration 

simultaneously [10] by means of techniques difficult to apply outside the laboratory. 

Several possible assembly configurations using LTSs can be found nowadays in industry. Some use 

a CMM, a robot or an AACMM and others are assembled on specific high precision positioning 

systems or static structures under which the geometries to be digitized are displaced. The way to 

determine the relationship between the fixed frame (LTS or support) and the moving one will be of 

great influence on the final accuracy of the system.  

Sensor manufacturers usually carry out the extrinsic calibration using a reference system on the 

sensor itself, making it necessary to subsequently transfer this extrinsic calibration to the LTS support. 

Several works have tried to solve this problem by scanning reference spheres in multiple spatial 

positions or by scanning the same sphere from three different sensor scanning paths in the same axis 

with a predefined offset between scans. Recent studies [9,11–13] have successfully solved the extrinsic 

calibration problem of LTS mounted in CMMs or machine-tools (MT) by establishing conjugated 

point pairs in both reference systems, taking advantage of the CMM or MT ability to move 

alternatively on a single axis, or simultaneously calibrating intrinsic and extrinsic parameters. 

When the sensor is mounted on a manually operated AACMM, it is very difficult to apply these 

procedures without the aid of expensive instruments, because it is not possible to move the sensor only 

on a single axis of its reference system during the digitalization of points to obtain the conjugated pairs. 

Hence, it is necessary to find an alternative method of extrinsic calibration. This is the reason why LTS 

manufacturers carry out LTS or LTS-contact probe sets intrinsic and extrinsic calibration prior to 

mounting the sensor on a CMM. After that, if the set is calibrated, the extrinsic calibration is reduced 

to obtain, by the above-mentioned procedures, the geometric relationship between the LTS reference 

system and the contact probe reference system. Later, the complete set is mounted in an AACMM, 

integrating the sensor in its mathematical model through its well-known relation with the contact probe. 
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If only the LTS has been calibrated, the usual technique for further integration of LTSs in AACMMs 

consists of mounting the sensor and digitizing a reference geometric primitive, usually a plane, from 

some spatial orientations. Later, a contact measurement of the same primitive is carried out with the 

AACMM (Figure 1). This way, it is possible to approximate initial values of the extrinsic parameters, 

involving rotation and translation, and to obtain the initial matrix that transforms coordinates in the 

sensor reference system to the last reference system of the arm. With this initial matrix and the 

nominal values of the contact measured primitive, it is possible to establish an optimization procedure 

that minimizes the digitized points error in the global coordinate system of the arm, varying 

successively the value of the extrinsic parameters. Finally, after the optimization procedure, the matrix 

that minimizes the digitalization error at the chosen capture positions is obtained. 

This method is common in combined AACMM-LTS commercial systems in which the 

manufacturer of the LTS performs the intrinsic calibration of the sensor and defines, by means of local 

extrinsic calibration, its reference system. The later integration of the sensor in the AACMM is carried 

out by the previously described approximate determination procedure of the above-mentioned matrix. 

During this procedure, the capture of points of the digitized primitive requires manual displacements 

of the measurement arm that gather the influence of errors due to kinematic parameters and of dynamic 

errors, which are generally dependant on the position of the joints at the moment of digitalization. 

These errors are later reduced by the optimization procedure to obtain the final extrinsic parameters 

that will transform coordinates in the sensor coordinate system to the global arm coordinate system for 

any arm position and orientation. Therefore, a transformation matrix is obtained that is highly 

dependant on the digitized zone of the gauge primitive and only suitable for digitalization trajectories 

similar to those used during the data capture. 

 

Figure 1. Contact and non contact measurement of a gauge plane to obtain an estimation of 

position and orientation of LTS coordinate system in AACMM last frame by optimization. 

 

 

In this work, the mathematical modelling of a commercial LTS is presented first, followed by the 

complete procedure of sensor intrinsic and extrinsic calibration with the LTS already mounted in the 

AACMM. This method circumvents the use of approximated methods to determine extrinsic 

parameters, such as the digitalization of gauge objects prior to extrinsic calibration of the sensor, thus 

also avoiding the introduction of possible digitalization errors during scanning paths for extrinsic 

calibration. Moreover, the transformation matrix is obtained analytically in a single step. This is 

necessary in order to obtain 3D coordinates in the AACMM global coordinate system from the laser 
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line points image coordinates in any capture position. Therefore, the time and the cost necessary to 

calibrate the whole equipment with current methods are reduced. 

2. AACMM Kinematic Modelling and Parameter Identification 

The kinematic model of the arm, the parameters considered, and the identification process used [14] 

are briefly explained here as the initial step in the sensor integration technique described here. 

2.1. Kinematic Modelling 

In the present work, the AACMM used is a six degrees-of-freedom (dof) Sterling series FARO arm 

with a typical 2-2-2 configuration and a-b-c-d-e-f deg rotation, in accordance with ASME B89.4.22-

2004. Each of the six joints is characterized by the four geometrical parameters (distances di, ai and 

angles i, i) defined in the basic Denavit-Hartenberg (D-H) model [15] used for the AACMM studied. 

The D-H model uses these parameters to calculate the transformation of coordinates between 

successive reference systems linked to the arm joints. The homogeneous transformation matrix 

between frame i and i-1 depends on these four parameters: 
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 (1)  

In Equation (1), the joint variable θi of the model is related to the rotation reading provided by the 

encoder through Equation (2), where θ0i must also be identified from its nominal value defined for the 

initial position chosen for the model. This way, the arm model depends on a total number of  

27 parameters to be identified. The AACMM used and its initial position for the model are shown in 

Figure 2. 

0i iEnc i     (2)  

Figure 2. Model definition posture of FARO AACMM with D-H convention [14]. 
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By means of successive transformations of the coordinates, by pre-multiplying successively the 

transformation matrix for a given position between a frame and the previous one, it is possible to 

obtain the global transformation matrix of the arm, which gives the coordinates of the centre of the 

probe sphere with regards to the base of the AACMM. 

0 0 1 2 3 4 5 0

6 1 2 3 4 5 6 6AACMM ProbeT A A A A A A X T X   (3)  

In this manner, considering 0 as the global fixed reference system of the base and 6 as the reference 

system moving with the rotation of the last joint (Figure 2), the desired homogeneous transformation 

and coordinates can be obtained by way of Equation (3). 

2.2. Data Capture and Non-Linear Least Squares Identification Scheme 

All the calibration procedures, both for robotic arms and AACMMs, are based on the establishment 

of a system which materialises coordinates or nominal distances in the workspace, in order to capture 

points which allow the error to be evaluated and minimized. The number of identification and data 

capture methods for robotic arms contrasts with the scant bibliographical resources regarding capture 

methods for parameter identification in measurement arms, currently identical to those used in robot 

parameter identification techniques. The different nature of robot arms and AACMMs requires the 

development of strategies to obtain the results desired in each case. A continuous data capture method 

has been implemented [14], allowing the massive and quick capture of arm positions corresponding to 

several points of the workspace. To this end, a ball-bar gauge 1.5 m long was placed in seven positions 

within the workspace of the arm in order to cover the maximum number of possible AACMM 

positions, in order to subsequently extrapolate the results obtained throughout the volume to 

measurement positions not used in the identification process. The ball-bar comprises a carbon fibre 

profile and 15 ceramic spheres of 22 mm in diameter. Thus, calibrated distances are available between 

the centres with an uncertainty, in accordance with its calibration certificate, of (1 + 0.001∙L) µm, with 

L in mm. A specific probe was designed capable of directly probing the centre of the gauge spheres 

instead of having to probe their surface points. Figure 3 shows the balls and distances considered, and 

also the self-centring passive probe. 

Figure 3. Balls measured and distances between sphere centres calculated [14]. 

 

 

Therefore, apart from characterising and optimising the behaviour of the arm with regard to error in 

distances, its capacity to repeat measurements of a same point is also tested and subsequently 
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optimized. Hence, automatic arm position capture software has been developed, probing each 

considered sphere of the gauge and replicating the arm behaviour in the ASME B89.4.22-2004  

single-point articulation performance test, but in this case including the positions captured in the 

optimization from the point of view of this repeatability. The objective function used in the Levenberg-

Marquardt [16,17] based identification algorithm, presented in Equation (4), shows the influence of the 

arm behaviour with regard to volumetric accuracy and point repeatability, minimizing simultaneously 

the errors corresponding to both parameters: 

       
2 2 2 2

0

1 , 1

2 2 2
jk

r s

i jk Xij Yij Zij

i j k

D D   
 

     
  

  (4)  

Where 
jkiD  represents the Euclidean distance between sphere j and sphere k of the gauge i location, 

with coordinates corresponding to the mean of the points captured for sphere j and sphere k, 0 jkD  the 

nominal distance materialized by the gauge and σXij the standard deviation in the x coordinate of the 

points captured for the sphere j in position i of the gauge. Analogous for y and z coordinates. In 

Equation (4), r = seven positions of the ball bar and s = four spheres (1, 6, 10 and 14) per bar position 

are considered. From the initial values of the parameters, obtained from their nominal value in the 

model definition position, Table 1 shows the AACMM kinematic model parameters finally identified. 

The error values obtained for the identified set of parameters and data captured are shown in Table 2. 

These contact measurement maximum error values have to be considered in the subsequent evaluation 

of the whole system. 

Table 1. Identified values for the model parameters by L-M algorithm [14]. 

Joint ia (mm) i  (º) id  (mm) 0i  (º) 

1 0.036962 −90.052249 −0.000002 −0.126434 

2 0.102485 90.044751 47.891183 14.942165 

3 0.097868 −90.020699 645.780523 −88.99688 

4 −0.133079 90.068899 54.240741 −3.636896 

5 0.057606 90.011014 615.242600 89.770488 

6 0.367275 −0.522698 0.150712 −0.878373 

 Xprobe (mm) Yprobe (mm) Zprobe (mm)  

 0.367276 139.450887 54.657060  

Table 2. Quality indicators for the identified set of model parameters over seven ball bar 

locations (10780 AACMM positions) [14]. 

Distance Error (mm) 2 by Sphere (mm) 

Max. 0.144258 Max. 0.249325 

Causing Pos. POS2 Causing Pos. POS 1 

Causing Dist. D1 Causing Sph. B1 

Min. 0.005550 Causing Coord. Z 

Causing Pos. POS1 Min. 0.035286 

Causing Dist. D2 Causing Pos. POS4 

Med. 0.066202 Causing Sph. B6 

  Causing Coord. Y 

  Med. 0.104355 
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3. Sensor Modelling 

LTS modelling must establish the geometric relations necessary to obtain 3D coordinates, in the 

global coordinate system, of the points from the 2D CCD image corresponding to the line formed by 

the intersection of the laser plane and the surface to be digitized. The parameters to consider and to 

calibrate subsequently by means of the implemented method include intrinsic and extrinsic parameters 

of the camera and the laser plane equation.  

3.1. Camera Modelling 

The basic camera model, based on the perspective projection principle, obtains u coordinates of an 

image point as a non-linear function of the point in the 3D global coordinate system and the extrinsic 

and intrinsic parameters: 

 ,u P X   (5)  

where u = (u,v)
T
 are the point coordinates in the 2D image coordinate system, X = (x,y,z)

T
 the point 

coordinates in the sensor global coordinate system, and θ = (θint,θext)
T
 a vector with the intrinsic and 

extrinsic camera parameters. Although there are diverse approaches to the consideration of these 

parameters, the basic intrinsic parameters make reference firstly to the geometry and optics of the 

camera, involving: (1) focal length f, (2) u0 and v0 coordinates of the principal point in pixels, (3) ki 

distortion parameters according to the distortion model chosen, and secondly to the CCD sensor 

geometry, involving the aspect ratio which determines the length ku and width kv in mm. of the sensor 

pixels. The extrinsic parameters determine the position and orientation of the camera in the LTS global 

coordinate system, expressed in any one of the possible formulations of transformations between 

coordinates systems. The perspective projection principle for camera modelling is shown in Figure 4. 

Figure 4. Perspective projection of pin-hole camera model without distortion [11]. 

 

 

From Figure 4, and assuming a virtual image plane at distance f in the positive Zc axis, the 

coordinates of an image point may be expressed by means of Equation (6). 
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 (6)  

From Equation (6), and operating with the relations in the pin-hole model, it is possible to obtain 

the well known expression shown in Equation (7), where PTM, known as the perspective 

transformation matrix, is a matrix whose terms are a linear combination of the considered intrinsic and 

extrinsic parameters, as shown in Equation (8): 

1

W

W

W

X
su

Y
sv PTM

Z
s

 
   
   
   
    

 

 (7)  

11 0 31 12 0 32 13 0 33 0
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    
 
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 (8)  

Equation (7) allows us to obtain the 2D screen coordinates that correspond to a 3D point, the 

coordinates of which are known in the sensor global coordinate system. In this case, with the camera 

model proposed, the aim is to obtain global coordinates from the extracted information of the images 

and, therefore, from the screen coordinates. The PTM is a noninvertible matrix, which is why it is 

necessary to find resolution methods that do not imply the inversion of this matrix. Thus, it is possible 

to express Equation (7) in terms of unknown coefficients in order to subsequently propose the 

resolution algorithm that will determine the coefficients of the perspective transformation matrix, 

shown in Equation (9): 

11 12 13 14

21 22 23 24

31 32 33 34
1

W

W

W

X
su m m m m

Y
sv m m m m

Z
s m m m m

 
     
     
     
        

 

 (9)  

Expressing Equation (9) in explicit form: 

11 12 13 14w w ws u m X m Y m Z m         (10)  

21 22 23 24w w ws v m X m Y m Z m         (11)  

31 32 33 34w w ws m X m Y m Z m        (12)  

Only two of the three equations obtained are linearly independent. Thus, operating with these 

equations, it is possible to extract the linearly independent equations from (10)–(12)u and (11)–(12)v, 

obtaining the expressions in Equation (13):  
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11 12 13 31 32 33 34 14

21 22 23 31 32 33 34 24

0
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m X m Y m Z m u X m v Y m v Z v m m
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 

                  

 (13)  

Equation (13) represents the equation of a straight line in the space which connects the point in the 

3D global reference system with the point in the image. In this manner, if a point in the global 

reference system is known, its corresponding screen coordinates can be reconstructed. Since the 

ultimate purpose of sensor modelling and calibration is to achieve the mechanism to obtain 3D 

coordinates from information of points in known image coordinates, Equation (13) defines a system of 

two equations with three variables. This is the reason why more information is necessary to obtain the 

required coordinates. Once the camera is modelled, its later calibration will provide the values of the 

mij coefficients of the perspective transformation matrix. 

3.2. Laser Plane Modelling 

The aim of the LTS is to obtain the coordinates expressed in the 3D global coordinate system of the 

points identified in an image belonging to the laser plane, through its projection onto the piece to be 

digitized. Therefore, a point M identified in the image belonging to the intersection line with the 

surface to be digitized will have to fulfil the camera model equations. Besides, this point also belongs 

to the laser plane. Thus, the laser plane is modelled by the general equation of a plane expressed in the 

global coordinate system: 

  0w w wcAX cBY cCZ cD     (14)  

The laser plane contributes with the additional information necessary to complete the equation of 

the straight line of the camera model and to achieve a system of three equations with three variables 

for each identified point, so that their 3D global coordinates can be extracted from their 2D screen 

coordinates u, v (Figure 5). 

Figure 5. The global coordinates of a point M in the laser line image are computed from 

camera model and laser plane equation [11]. 
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4. Calibration Method 

AACMM-LTS integration demands the determination of the geometric relationships between the 

LTS frame and the AACMM last joint frame or, in other words, the extrinsic parameters of the sensor 

once integrated in the arm. Thus, the extrinsic calibration procedure of a LTS mounted on an AACMM 

consists of determining the sensor frame origin coordinates and its direction related to the AACMM 

last joint frame, linking both mathematical models. Once these extrinsic parameters are determined, 

the laser line point coordinates are obtained in the LTS frame and, therefore, also with respect to the 

AACMM global frame in any arm pose.  

Traditional integration methods are based on digitalization of gauge geometric primitives, generally 

planes or spheres. These methods start with the sensor already calibrated. Then, they perform multiple 

scanning paths over the gauge primitive without knowing the geometric relationship between the LTS 

frame and the last joint frame of the AACMM. By comparing the contact measurement of the gauge 

primitive, taken as nominal, and the least-squares one reconstructed from digitized points, it is possible 

to define a measurement error. The matrix that links the mathematical model of the sensor with the 

mathematical model of the AACMM is then obtained by an optimization procedure that minimizes the 

error mentioned changing the terms of such unknown matrix starting from an approximate initial value. 

Thus, the obtained matrix allows to subsequently expressing the coordinates of the digitized points in 

the AACMM global frame. The optimization methods used in these techniques are commonly based 

on the gradient method, so the success of the optimization procedure and its speed of convergence 

depend on the initial value considered for the matrix terms. 

The calibration method presented in this section performs the intrinsic and extrinsic calibration of 

the sensor in a single step, so it is not necessary to have the LTS previously calibrated. Furthermore, it 

is based on the capture of an image of a gauge object in a single AACMM position, so the error 

influence of the arm due to the error made during the scan paths is avoided, absorbing only the 

measurement error in the contact measurement procedure of the gauge object and the error in the 

AACMM capture position of the image for calibration. Finally we obtain the transformation matrix 

between the LTS reference system and the last joint frame of the arm following an analytical scheme, 

thus avoiding optimization procedures. The result of these optimization procedures depends on the 

type and number of scanning paths because it adjusts the matrix terms to minimize the error with the 

captured data in each case. With the proposed method explained in this section, the digitization of a 

geometric primitive is also avoided. 

On the other hand, there are many influences over the final accuracy of a LTS. The digitization of a 

geometric primitive using a manually operated instrument like an AACMM implies that it is not 

possible to maintain constant neither the distance from the sensor to the scanned surface nor the 

perpendicular orientation of the laser to the surface of the gauge primitive, affecting also the manual 

operation to the digitalization conditions such as scanning speed. The use of scanning paths in the 

traditional methods implies that the digitized points will be affected by these error sources. Thus, these 

errors will be subsequently absorbed by the least squares based calculation of the gauge geometric 

primitive with the captured points, and by the optimization procedure of the link matrix, affecting the 

final accuracy depending on the data and scans considered. 
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This section presents the required steps to perform the calibration method presented, which avoids 

data-dependent optimization procedures and the consideration of an initial value for the matrix terms, 

and also influences of the mentioned error mechanisms. 

4.1. Calibration Points Location in AACMM Measurement Volume 

The target object used in this work is shown in Figure 6. It is a high precision gauge object that 

materializes points of well-known nominal coordinates in its local coordinate system, located in its 

upper left corner. It has points distributed in different planes that will allow the later calibration of the 

LTS camera and laser plane. The gauge object has a maximum flatness error of 0.003 mm and an 

average dot diameter of 0.799 mm, providing nominal coordinates of the points. 

Figure 6. Gauge object with calibration points [11]. 

 

 

The first step of the implemented integration procedure consists of the alignment of the AACMM 

reference system with the gauge object coordinate system. Once placed in a position accessible to the 

arm, the gauge object is measured by contact with the AACMM to align a reference frame attached to 

the calibration object and calculate a transformation matrix 
AACMM

MCAL to know the calibration object 

points in the AACMM global frame (Figure 7). The accuracy obtained in the calculation of the points 

coordinates of the gauge object in the AACMM global reference system depends on the correct 

alignment of both reference systems during the contact measurement. Nine points are probed in each 

of the three planes that form the upper left corner of the gauge object, where its nominal reference 

system is located. Thus, it is possible to reconstruct the reference frame where the nominal coordinates 

of the points are expressed, taking the normal vector to the upper plane as the Z axis, the intersection 

of the upper and the longitudinal plane as X axis and the cross product as Y axis. From the coordinates 

of the vectors of the reference system it is possible to know the components of the homogeneous 

transformation matrix between the reference system reproduced on the gauge object and the global 

reference system of the AACMM. The accuracy of the final link matrix between the LTS and the last 

joint frame of the arm depends on the suitable alignment of these reference systems, so that AACMM 

repeatability and kinematic parameters induced errors in this contact measurement will be propagated 

to the final matrix obtained. 

The 
AACMM

MCAL is a 4 × 4 homogenous transformation matrix that transforms gauge object 

coordinates into AACMM global frame coordinates as shown in Equation (15): 
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   
   
   
   
   
   

 (15)  

Figure 7. Gauge object contact measurement. Alignment of AACMM and calibration 

object coordinate systems. 

 

4.2. LTS Calibration 

In the current integration procedures based on error optimization over digitalized data, once the 

LTS intrinsic calibration has been done on a CMM, due to the point reconstruction process nature used 

in the LTS model, only points belonging to the captured laser line are known in the LTS frame when 

the LTS is linked to the arm. Thus, the coordinates of these points in the AACMM global frame cannot 

be obtained in this situation. In order to avoid approximate optimization procedures so as to determine 

the sensor position and orientation in AACMM coordinate system, it is necessary to do the LTS 

intrinsic calibration once it is already mounted onto the AACMM, when the camera gauge object point 

coordinates can be known in the LTS frame. LTS calibration implies the determination of the intrinsic 

and extrinsic parameters of the camera, and therefore the terms of the perspective transformation 

matrix of Equation (13) expressed in its coordinate system. The terms of the laser plane equation in 

this coordinate system, shown in Equation (14), are also obtained during LTS calibration. 

Once the calibration object point coordinates in the AACMM global reference frame are known by 

means of Equation (15), an image of the calibration object is captured with the LTS in a single 

AACMM posture. This image, as can be appreciated in Figure 8, must contain the points of the gauge 

object and the laser line corresponding to the intersection of the LTS plane with the object. 

From the captured image it is possible to determine the image coordinates u, v in pixels, 

corresponding to the centre of each one of the object points by means of centroid calculation. Since the 

perspective transformation matrix of Equation (9) has 12 unknown components and for each identified 

point there are two equations, Equation (13), at least six points of the gauge will be necessary to 

perform the sensor calibration.  
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Figure 8. Image capture for LTS intrinsic calibration in AACMM calibration position. 

 

The perspective transformation matrix being homogenous, the solution is modified by a scale factor, 

reason why the condition m34 = 1 is imposed, considering that this term is not null since tz contains the 

term corresponding to the camera coordinate system translation to the LTS global coordinate system. It 

is possible to obtain the subsequent scale factor to be applied on the obtained matrix forcing the vector 

formed by the three first components of the last row of the matrix to be unitary. This scale factor will 

match with the translation tz. In these conditions it is possible to write in matrix form the equations 

obtained according to Equation (13) for each considered calibration point, obtaining a system of 

equations in the form of Equation (16): 

0Am   (16)  

where, 

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
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0 0 0 0 1
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(17)  

and 

 11 12 13 14 21 22 23 24 31 32 33 34

T
m m m m m m m m m m m m m  (18)  

Knowing the coordinate pairs u, v and XW, YW, ZW corresponding to n = 42 calibration points in the 

captured image, it is possible to obtain the perspective transformation matrix. To do this, it is 

necessary to rearrange the system in Equation (16) and to write it in a non-homogenous form: 
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' 'A m b  (19)  

where A’ is the matrix formed by the 11 first columns of A, b the column vector with the 12th column 

of A and m’ a vector that contains all the elements of the perspective transformation matrix except m34. 

In these conditions it is possible to propose a least squares resolution scheme based on the 

pseudoinverse matrix, in the form of Equation (20), that will obtain the estimated values for the 

perspective transformation matrix coefficients included in the m’ vector: 

 
1

' ' ' 'T Tm A A A b


  (20)  

LTS calibration, in addition to giving the camera intrinsic parameters, defines the position and 

orientation of the sensor global coordinate system. In this way, by means of this calibration, the sensor 

global coordinate system is defined coincident with the gauge object local coordinate system  

(Figure 6), in which are known the 3D point coordinates.  

On the other hand it is necessary to identify the screen coordinates of the laser line points in order 

to determine the equation that defines the laser plane in the coordinate system considered. The 

captured laser line has a greater width than a single pixel in the image, which is the reason why the 

identification of the laser line point is carried out by means of a gray level centroid estimation 

algorithm for each cross section of the line [18]. As much the width as the marking uniformity of the 

line have a direct influence on the final accuracy of the digitized points. This technique produces  

sub-pixel detection in the determination of u, v coordinates for the laser line points. The aim of using a 

crenellated gauge object is to have non coplanar calibration points that cover the complete final LTS 

measurement range in the camera optical axis direction, 10 mm in this particular case. 

Once the laser line points screen coordinates have been detected, and considering that the ZW 

coordinate of the gauge object planes and therefore of the laser line points on these planes is known in 

the global coordinate system, it is possible to obtain the XW, YW coordinates of the identified points 

using Equation (13). After the camera calibration, the perspective transformation matrix coefficients 

are known, the reason why Equation (13) represents in this case a system of two equations with two 

variables for each identified point of the laser line. In this way, with the 3D coordinates of the laser 

line points known in the global coordinate system, it is possible to follow a least squares resolution 

scheme to determine the coefficients of Equation (14), assuming that every point in the laser line must 

fulfil the plane equation in addition to the camera model. The plane that best fits to the identified line 

points is then calibrated and well-known in the LTS global coordinate system. 

Finally, in the subsequent LTS operation, the information provided by the laser plane complements 

Equation (13) and allows the reconstruction of the 3D global coordinate system by means of  

Equation (21) applied to each point, from the screen coordinates u, v after the identification of the 

points in the image: 

11 31 12 32 13 33 14

21 31 22 32 23 33 24

w

w

w

m m u m m u m m u X u m

m m u m m v m m v Y v m

cA cB cC Z cD

            
     

         
     
          

 (21)  

It is necessary to note that the sensor calibration has been shown without considering distortion 

effects on the reconstructed points. These effects are very low in the modelled sensor because the 
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capture distance to the surface only allows the capture of points in the range of ±5 mm around the 

central line of the captured image, where the distortion effects are minimum. In order to verify 

distortion effects on the reconstructed points, the calculation of the screen coordinates corresponding 

to the gauge object points after the calibration has been made, obtaining mean values of 0.224 pixels in 

maximum error for the u coordinate and 0.233 for the v coordinate in several calibration tests. 

4.3. AACMM-LTS extrinsic calibration 

Once the sensor calibration from the captured image has been done, not only the laser line points 

but also the calibration object points coordinates are known in the LTS global frame. This calibration 

defines the sensor global reference system that matches the gauge object local coordinate system for 

the position of image capture. In this way, the matrix that relates the sensor global coordinate system 

to the AACMM global coordinate system for the AACMM capture image position is the 

transformation matrix obtained by contact measurement of the gauge object in Equation (15). 

Rewriting this equation, the expression of Equation (22) is obtained, valid only for the AACMM and 

LTS position and orientation used in the image capture: 

_

0 _ _
1 1

i i

i iAACMM

W LTS

i i

AACMM W LTS

x x

y y
M

z z

   
   
   
   
   
   

 (22)  

where 
AACMM

MW_LTS = 
AACMM

MCAL. 

With Equation (22), laser line points can now be obtained in the AACMM global frame for the 

calibration position. Once mounted in the arm, obtaining the LTS extrinsic parameters requires the 

calculation of a new transformation matrix, necessary to express these points in the last AACMM joint 

frame. The matrix that makes this link is 
6_AACMM

M0_AACMM that will coincide with the inverse matrix of 

the product of matrices A1 to A6 of Equation (3) corresponding to the AACMM position during 

calibration image capture. Thereby, it is possible to calculate the desired homogeneous transformation 

matrix, which will obtain laser line point coordinates related to the last AACMM joint frame for the 

calibration position: 

   
1

0

6 __ _

6_ _
1 1

i i

i iAACMM

W LTSCalibration pos Calibration pos
i i

AACMM W LTS

x x

y y
T M

z z



   
   
    
   
   
   

 (23)  

With this, it is possible to define the desired matrix by means of Equation (24). This matrix contains 

the sensor extrinsic parameters that determine the position and orientation of the sensor global 

coordinate system with respect to the last coordinate system of the kinematic chain of the arm. The 

terms pr form a 3 × 3 rotation matrix and the terms pt the translation vector between both  

coordinate systems: 
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 (24)  

In Equation (24), a transformation matrix between the LTS and the last AACMM joint frame 

independent of the AACMM position is obtained, since both systems have coincident movements and 

both matrices are known. If the position of the sensor according to the calibration object remains 

constant, this matrix will be the same independently of the AACMM position at the moment of 

calibration image capture, with small variations occurring due to the error introduced by the AACMM 

kinematic model geometric parameters. Finally, it will be necessary to apply the AACMM model with 

the current position j geometric parameter values to obtain the captured laser line coordinates in any 

AACMM position, as shown in Equation (25): 
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 (25)  

 

where the vector    
_

1 1
T T

i i i Wi Wi WiW LTS
x y z X Y Z  is calculated in Equation (21) for each 

identified point of the laser line in the image. Matrix MLTS_Probe, obtained in Equation (24), has been 

called the “probe matrix”, since integration of both mathematical models produces one more link in the 

AACMM kinematic chain, replacing the contact probe sphere centre by laser line points related to the 

LTS global reference frame. Figure 9 illustrates the third step of the process showing the frames and 

transformations involved. Thus, considering the contact measurement of the gauge object and the 

capture of one image in a single AACMM position, the LTS intrinsic parameters are obtained; and also 

the extrinsic parameters that link the LTS global frame and the last joint frame of the AACMM 

kinematic model in a single step. 

5. Tests and Results 

In order to analyze the accuracy and repeatability of the developed calibration procedure, several 

calibration tests have been carried out using the FARO AACMM already described. A commercial 

LTS (DATAPIXEL Optiscan H-1040-L) was linked to the arm. The nominal working characteristics 

of this sensor are frame rate, 60 fps; working distance, 100 mm; measurement range, 40 mm; field of 

view, 40 mm; triangulation angle 30º, as well as accuracy, according to the manufacturer, of  

±0.010 mm. It is equipped with a 1/3 CCD sensor. This LTS is able to obtain 30,000 pts/sec with 

nominal repeatability of 10 µm. Previous studies on this sensor mounted in a CMM [2] showed that, in 

optimal capture conditions, it is able to obtain this level of repeatability in the nominal range, with 

accuracies of around 100 µm measuring gauge planes and spheres.  
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Figure 9. Coordinate systems and transformations in calibration pose. 

 

 

Ten different calibrations have been carried out giving 10 MLTS_Probe matrices in different CMA 

orientations, the position of the calibration object remaining fixed. The results do not show definitive 

values of the calibration process repeatability, since important variations in matrix terms are observed, 

mainly in the translation terms, due to the impossibility of manually fixing the relative position 

between the LTS and the calibration object. Due to the fact that the LTS reference frame is fixed in the 

calibration object local frame during its intrinsic calibration, differences between calibrations are 

expected, since the relative position between this reference system and the last AACMM joint frame 

changes for each calibration. Therefore, to analyze the calibration influence over the accuracy and 

repeatability of the captured points, it is necessary to define a method that allows reconstructing the 

same captured points with the 10 different calibrations made. For this reason, a parametric algorithm 

has been developed to reconstruct points in the AACMM coordinates from the known u, v screen 

coordinates of the captured laser line points, the laser plane equation and the perspective 

transformation matrix obtained in each intrinsic calibration. 

As a repeatability analysis of the calibration procedure, a gauge plane has been digitized obtaining 

10 different point clouds for the same plane. For each one of these clouds, the u, v coordinates of the 

laser line points have been stored, in addition to the AACMM joint reference frames position for each 

captured line, so that the laser line points expressed in the AACMM global reference frame can be 

reconstructed in accordance with the chosen calibration. Therefore, once the clouds are reconstructed, 

10 clouds of points for each calibration are obtained. Thus, a total of 100 clouds are calculated, with 

information of one particular cloud of points reconstructed with 10 different calibrations. Since the 

aforementioned studies demonstrate the high repeatability of the intrinsic calibration procedure, the 

results obtained for the digitized plane should show the influence of the extrinsic calibration in the 

final result. 

A plane has been chosen as a gauge geometric primitive in the first test. The nominal value for the 

plane equation was obtained as the average result from 10 AACMM contact measurements of the 

plane, Figure 10(a), with 10 points each one, to absorb, as far as possible, the errors derived from the 

AACMM kinematic model parameters. After that, 10 clouds of points were obtained digitalizing the 
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plane, storing the described parameters for their later reconstruction in AACMM global coordinates as 

shown in Figure 10(b). 

Figure 10. Gauge plane: (a) Contact measurement for nominal data on AACMM global 

frame. (b) Digitalization. 

 

 

Once the point clouds were reconstructed, the digitized plane equation for each one was determined 

by a least squares estimation algorithm that includes segmentation and point filtration techniques based 

on the standard deviation of point distances to the calculated plane. Two error parameters were chosen. 

Firstly, the angle between the nominal and the calculated plane normal vectors, and finally the 

difference in the Z coordinate of the central point of the cloud projected on the nominal and the 

calculated plane. Equations (26) and (27) show the error expressions for cloud i corresponding to 

calibration j for the normalized equation values of nominal and measured planes:  

cos( )ij N ij N ij N ija a A A B B C C        (26)  

ij N ijz Z Z    (27)  

ij C ij C ij

ij

A X B Y D
Zij

C

    
  (28)  

Figure 11(a) shows the results obtained for the angle between normals. It is possible to see two 

effects in this figure. Firstly, the error obtained for 10 clouds with each calibration (curves along x axis) 

is represented. Each one of these curves represents the repeatability of the process of points capture 

with a single calibration, which is why the variability and the error in this case are referable to the 

measurement system. The maximum value for all calibrations obtained for this value of system 

repeatability is around 250 arcsecs, attributable to the repeatability of the AACMM-LTS system for a 

certain calibration. Secondly, for each cloud of points, the range of the values obtained with each 

calibration is represented, showing a mean range for the angle between normals due to the calibration 

procedure of around 100 arcsecs. Thus, a certain influence of the calibration process is observed in the 

results, although at this point it is not possible to isolate this influence from other error sources due to 

the process of the capture itself, for example the lack of squareness of the laser plane with respect to 

the digitized surface, the variations in capturing distance during the digitalization, or the  

AACMM repeatability. 
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Figure 11. System repeatability and calibration process influence: (a) Angle between 

normals. (b) Projected central point error. 

 

 

 

Figure 12 is aimed at trying to isolate the influence of the calibration process. In the case of  

Figure 12(a), the mean range of the error for 10 point clouds for each calibration has been calculated 

obtaining, as mentioned above, values of around 100 arcsecs for each one with low standard deviations. 

If the variations produced in this range when reconstructing the clouds with different calibrations are 

calculated, a variation of the average repeatability values within the range of 30 arcsecs around the 

mean repeatability value of the system is observed, directly attributable to the calibration process. 

Figure 11(b) represents the effect of the calibration process on the Z error. As in the case of the 

angle between normal vectors, repeatability values for Z within the same calibration of around 60 µm 

are observed and are mainly attributable to the system repeatability. On the other hand, the calibration 

influence is appraised again in the system accuracy, introducing variations of 50 µm in the Z error. 

Figure 12(b) shows the influence of the calibration process on the average system repeatability, 

introducing maximum variations within a range of 10 µm. 

After the repeatability was analyzed, an estimation of the complete system accuracy was made by 

means of a reference ceramic sphere digitized five times and reconstructing the clouds of points with 

the calibration close to the average values of error obtained in the angle between the normals and Z.  

To emphasize the influence of the points capture strategy, the sphere was digitized five times orienting 

the laser plane perpendicular to the surface, and another 5 times with an orientation of the LTS similar 
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to that used for its calibration. The results of Figure 13 show appreciable differences in the accuracy of 

the system based on the direction of the laser plane. 

Figure 12. Calibration influence on system repeatability: (a) Angle between normals mean 

repeatability. (b) Projected central point error mean repeatability. 

 

 

 

The best results are obtained, for orientation of the laser perpendicular to the sphere surface, 

showing accuracies around of 50 µm both in radius error (RNOMINAL-RMEASURED) and in distance 

between centres error. In Figure 13 it must be considered that a ceramic sphere has been used as a 

reference object, being partially translucent and producing laser penetration into its surface, resulting 

in a measured radius smaller than the nominal one. The influence of the capture conditions is 

significant, mainly considering the difficulty of keeping the capture conditions constant in a manually 

operated measurement system. 

Figure 13. Accuracy estimation of the whole system. Radius and centre distance errors 

digitizing a reference sphere. 
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6. Conclusions 

This paper presents an intrinsic and extrinsic LTS-AACMM calibration method, the calibration 

procedure being performed in a single step with the LTS already mounted in the AACMM, with no 

need to previously characterize the LTS-Contact probe set geometry by means of calibration methods 

on CMM. The developed method also avoids the use of approximated techniques to optimize the LTS 

position and orientation subsequent to the assembly of the sensor in the arm; techniques that are based 

on contact measurement and digitalization error of gauge primitives in several trajectories. These 

approximated techniques use estimated initial values of sensor position and orientation and are 

common practice in almost all commercial AACMM-LTS systems. This achieves a simple and cheap 

calibration method for the final user, required for any portable measurement equipment. By means of 

the use of a gauge object that materializes points in different planes with respect to a local reference 

frame, it is possible to obtain the equation of the sensor laser plane, its perspective transformation 

matrix and the necessary conjugated pairs of points in the LTS frame and the AACMM frame for the 

extrinsic calibration in a single operation in any AACMM image capture posture. The experimental 

results show the repeatability of the calibration process by means of digitalization of gauge primitives, 

with suitable accuracies for AACMM-LTS digitalization systems. 

A procedure of kinematic calibration for AACMMs has also been presented. This method is based 

on the continuous capture of arm positions by directly probing the centre of the spheres of a gauge ball 

bar by way of a self-centring kinematic coupling probe. Oppositely, current methods are based on the 

capture of identification data probing surface points of geometrical primitives of different gauge 

objects. Parameter identification relies on a Levenberg-Marquardt scheme with an objective function 

including terms of error in distances and terms of standard deviation which allow to consider the 

influence of arm repeatability, given its capacity to probe the same point from different orientations. 

References  

1. Sansoni, G.; Trebeschi, M.; Docchio F. State-of-the-art and applications of 3D imaging sensors in 

industry, cultural heritage, medicine, and criminal investigation. Sensors 2009, 9, 568–601. 

2. Aguilar, J.J.; Santolaria, J. Guillomia, D.; Pastor, J.; Cajal, C. Accuracy analysis of laser scanning 

probes used in coordinate measurement: Simulation and experiments. VDI Berichte 2004, 1860, 

739–744. 

3. Zhang, J.; Djordjevich, A. Study on laser stripe sensor. Sens. Actuat. A-Phys. 1999, 72, 224–228. 

4. Wang, G.; Zheng, B.; Li, X.; Houkes, Z.; Regtien, P.P.L. Modelling and calibration of the laser 

beam-scanning triangulation measurement system. Robot. Auton. Syst. 2002, 40, 276–277. 

5. Zhang, G.J.; Wei, Z. A novel calibration approach to 3D Vision Inspection. Opt. Laser Technol. 

2002, 34, 373–380. 

6. Zexiao, X.; Jianguo, W.; Ming, J. Study on a full field of view laser scanning system. Int. J. Mach. 

Tools Manuf. 2007, 47, 33–43. 

7. Wang, L.S.; Lee, D.L.; Nie, M.Y.; Zheng, Z.W. A study of the precision factors of large-scale 

object surface profile laser scanning measurement. J. Mater. Proc. Technol. 2002, 129,  

584–587. 



Sensors 2009, 9              

 

 

7396 

8. Feng, H.Y.; Liu, Y.; Xi, F. Analysis of digitizing errors of a laser scanning system. Precis. Eng.–J. 

Int. Soc. Precis. Eng. Nanotechnol. 2001, 25, 185–191. 

9. Che, C.G.; Ni, J. A ball-target-based extrinsic calibration technique for high-accuracy 3-D 

metrology using off-the-shelf laser stripe sensors. Precis. Eng.–J. Int. Soc. Precis. Eng. 

Nanotechnol. 2002, 24, 210–219. 

10. Chen, C.H.; Kak, A.C. Modeling and calibration of a structured light scanner for 3-D robot vision. 

In Proceedings of the IEEE International Conference on Robot and Automation, Raleigh, NC, 

USA, May 8–13, 1987; Vol. 2, 807–815. 

11. Santolaria, J.; Pastor, J.J.; Brosed, F.J.; Aguilar, J.J. A one-step intrinsic and extrinsic calibration 

method for laser line scanner operation in coordinate measuring machines. Meas. Sci. Technol. 

2009, 20, 045107:1–045107:12. 

12. Zexiao, X.; Qiumei, Z.; Guoxiong, Z. Modeling and calibration of a structured-light-sensor-based 

five-axis scanning system. Measurement 2004, 36, 185–194. 

13. Zexiao, X.; Chengguo, Z.; Qiumei, Z. A simplified method for the extrinsic calibration of 

structured-light sensors using a single-ball target. Int. J. Mach. Tools Manuf. 2004, 44, 1197–1203. 

14. Santolaria, J.; Aguilar, J.J.; Yagüe, J.A.; Pastor, J. Kinematic parameter estimation technique for 

calibration and repeatability improvement of articulated arm coordinate measuring machines. 

Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2008, 32, 251–268. 

15. Denavit, J.; Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. 

J. Appl. Mech.-Trans. ASME 1955, 77, 215–221. 

16. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. 

Math. 1944, 2, 164–168. 

17. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. 

Appl. Math. 1963, 11, 431–441. 

18. Welch, S.S. Effects of window size and accuracy of subpixel centroid estimation of target images. 

NASA TP 1993, 3331, 1–35. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


