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Abstract: This paper presents a method to increase the reliability of Unmanned Aerial 
Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. 
Differential Global Positioning System (DGPS) and inertial sensors are used for sensor 
FDI in each UAV. The method uses additional position estimations that augment 
individual UAV FDI system. These additional estimations are obtained using images from 
the same planar scene taken from two different UAVs. Since accuracy and noise level of 
the estimation depends on several factors, dynamic replanning of the multi-UAV team can 
be used to obtain a better estimation in case of faults caused by slow growing errors of 
absolute position estimation that cannot be detected by using local FDI in the UAVs. 
Experimental results with data from two real UAVs are also presented. 
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1. Introduction 
 
Unmanned aerial vehicles (UAVs) and aerial robotics have attracted significant interest for a wide 

range of applications [1]. In many of them, the active cooperation of several UAVs may have 
important advantages [2]. Reliability is a key issue in aerial vehicles, where Fault Detection and 
Identification (FDI) techniques play an important role in the efforts to increase the reliability of the 
system. Most FDI applications to UAVs that appear in the literature use model-based methods, which 
try to diagnose faults using the redundancy of some mathematical description of the system dynamics. 
FDI has been applied to unmanned aircraft, either fixed wing UAVs [3] or helicopter UAVs [4-6].  

Differential GPS (DGPS) receivers are able to achieve accuracies of a few centimeters using 
carrier-phase measurements, which make them a good choice for UAV positioning main sensors. Since 
they usually are the only absolute position sensors employed in UAVs, the reliability of their 
measurements is critical for UAV missions. If DGPS readings are erroneous or differential mode is 
lost, position estimation may accumulate large drift errors.  

The literature concerning GPS fault detection is extensive; there exist several techniques developed 
to detect faulty measurements in the receiver, known as Receiver Autonomous Integrity Monitoring 
(RAIM) [7,8]. However, RAIM techniques need additional satellites in view to operate, and they are 
difficult to find in commercial GPS receivers. RAIM techniques are usually implemented in 
aeronautical-grade GPS receivers, which in general can not be used in small and medium UAVs due to 
their size, weight and cost limitations. This paper will concentrate in FDI for DGPS when RAIM 
techniques cannot be used. 

Ideally, FDI uses all available information to detect malfunctions in UAV subsystems. But there 
exist positioning errors that cannot be detected using the navigation sensors onboard the UAV. In  
multi-UAV missions, it is possible to take advantage of the capabilities that the team of UAVs offers 
to augment each of the individual FDI systems. In this way, sensors from other UAVs can be used to 
obtain additional data which can be applied to the UAV FDI system to detect faults in its own sensors. 

If the UAVs are equipped with visual cameras, different UAVs may identify, using their cameras, 
common objects in the scene. For instance, the use of a robust feature extraction technique capable of 
identifying natural landmarks of the scene [2], and the correspondences between the same landmarks 
obtained by two UAVs provide the relative pose displacement between both UAVs. Thus, for example, 
if the DGPS of UAV-A is faulty, this fault can be detected by using the DGPS of UAV-B and the 
relative position estimation computed from the images. The proposed idea is to estimate the position of 
UAV-A using the known position of UAV-B and the estimation of the relative position of UAV-A and 
UAV-B using the method described above. Unfortunately, these vision-based position estimations 
have different accuracy and noise levels depending on several factors. Therefore, a variable threshold 
strategy, for the fault detection process, has been adopted in this paper. Furthermore, in multi-UAV 
missions, the probability of having the same scene in the field of view of two or more UAVs when 
executing a plan is not very high. Thus, in this paper we propose the application of replanning 
techniques with the automatic generation of new tasks for the multi-UAV team in such a way that the 
above required condition for fault detection is satisfied for two UAVs. Particularly, the application of a 
market-based approach for the multi-robot task allocation (MRTA) problem is proposed.  
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The paper is organized as follows. Section 2 presents the techniques for fault detection and 
identification in helicopter UAVs. Section 3 describes multi-UAV vision-based relative position 
estimation. Section 4 presents the method implemented to dynamically replan the mission in order to 
improve the accuracy of the estimation. Section 5 presents the experimental data and the obtained 
results. Finally, the conclusions and future trends mentioned in Section 6 complete the paper. 
 
2. Sensor FDI in Small Autonomous Helicopters 
 

Several small autonomous helicopter prototypes have been developed in recent years at different 
research centers throughout the world [1]. Autonomous helicopter flight requires precise position and 
attitude information for control and stabilization. Small autonomous helicopters carry a pack of 
sensors that in a typical case includes an inertial measurement unit (IMU) with three gyros, three 
accelerometers and a 3-axis magnetometer for attitude determination, a centimeter-precision kinematic 
DGPS and an ultrasonic or barometric altitude sensor for take-off and landing. A fault in one of the 
sensors, if undetected, may induce position and attitude estimation errors. Reconfiguration in these 
cases usually consists in isolating the faulty sensor and using the other sensors to get the best 
estimation of position and attitude.  
 
2.1. Inertial, magnetometer and altitude sensor faults 
 

Usual UAV sensor faults are additive (sensor output has a drift term added), multiplicative  
(sensor output is scaled by a multiplicative term) or “stuck” output (sensor output remains fixed at a 
constant value). The presence of these faults can be detected in most cases by means of the so-called 
residuals, i.e., quantities that are over-sensitive to the malfunctions. Observer-based and parameter 
estimation are the most frequently applied methods for residual generation in FDI [9]. Most published 
work in recent years on FDI systems for autonomous vehicles also use observer-based methods. 
Neural networks have also been used to detect sensor and actuator faults in aircrafts [10] and 
UAVs [4,11]. 

The FDI system implemented in individual helicopters is described in detail in [5]. The structure of 
the sensor FDI system is based on a bank of output estimators as shown in Figure 1. The number of 
these estimators is equal to the number of system outputs. A residual is generated for each sensor, 
comparing the estimator output with the sensor output. Each residual is not affected by the other 
sensors, and therefore fault identification is straightforward: each residual is only sensitive to a single 
helicopter sensor. 

The FDI system with the above structure has been implemented using ARX input-output estimators. 
A number of ARX Multi-Input Single-Output (MISO) models have been identified from input-output 
data. These models are of the type: 
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The number of identified MISO ARX models is equal to the number m of the output variables. The 
model order n and the parameters αi,j and βi,j,k with i = 1, … , m, of the model have to be determined by 
the identification approach. The term εi(t) takes into account the modeling error, which is due to 
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process noises, parameter variations, etc. The ARX models are chosen with the structure that achieve 
the smallest Akaike's Information Theoretic Criterion (AIC) [12], according to a simple search 
algorithm, in which the first half of data is used for estimation and the second for cross validation. 

Figure 1. Bank of estimators for output residual generation. 

 
 
Independent residuals are constructed for each different sensor failure. Residuals are designed so 

that they respond to an individual failure and not to the others. In general, residuals rk are functions of 
the squared difference between real (ci) and estimated ( iĉ ) sensor outputs: 
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where mi are weighting coefficients that are determined for each failure based on experience and 
experimentation. Ideally, if no fault is present, the residual would be zero. In practice, the residual will 
take non-zero values due to estimation errors, sensor noise, etc. Usually, the residual for a specific 
sensor will be bounded, and therefore a “threshold level” can be defined so that the residual is always 
below it in absence of failures. The system has been tested with different sensors and failure types. The 
implemented sensor FDI system is able to detect many of these errors.  
 
2.2. Differential GPS sensor failures  
 

Consider now the Differential GPS absolute position sensor. This sensor implements complex 
processing algorithms to generate absolute position estimations from the received satellite signals and 
the differential corrections. There are several typical GPS error sources such as atmospheric delays, 
ephemeris errors, satellite and receiver clock errors or multipath signal reception. Many of these errors 
can be avoided in differential operation. 

There are also “system errors”, errors in the space and control segment (satellite hardware failures, 
control segment software or transmission errors, etc). Although these errors are rare, they can lead to 
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large position errors. These errors have received much attention since the selective availability turning 
off in 2000, due to the increasing use of GPS in critical civilian applications such as airport approach 
or coast navigation. These errors can be partially avoided in differential operation. 

From a practical point of view, a commercial GPS receiver operating in differential mode may have 
different error sources, which can be classified in three groups. The first group includes errors that can 
be detected by the GPS receiver. Among these are satellite signal reception problems, due to 
intermittent signal blocking when the vehicle is moving because of buildings, foliage and hilly terrain. 
Another source is differential correction errors. Timely differential corrections are very important for 
DGPS, but in some cases the correction messages may arrive “corrupted” due to problems on the 
communication link. Most DGPS receivers can provide an estimation of the level of accuracy of the 
calculated position, although this accuracy estimation can be erroneous in some cases.  

The second group includes errors that cannot be detected by the receiver, but can be detected using 
vehicle dynamics and model-based fault detection techniques. When in operation, position estimations 
from DGPS receivers may present a priori unknown-source errors. For example, typical results 
obtained in 24-hour static tests show that estimated position error was less than 2 cm most of the time, 
but also include several groups of 2 to 5 contiguous points with a 20-60 cm error, which appear from 
time to time with no predictable frequency, which seems to be caused by RTK integer ambiguity [13], 
and a few isolated points with large position errors. The number of satellites in view, CRC redundancy 
code, and indicators of differential carrier-phase estimation were all correct. A possible explanation 
can be receiver algorithm errors. In [14] another error source is suggested: GPS receivers have 
thousands of lines of code, many of which are from legacy code that is not fully tested. This can lead 
to unpredictable errors. Some of the described errors can be detected using model-based fault detection 
and identification techniques, as described in Section 2.2. Using this information, the faulty GPS 
estimations can be discarded. 

Figure 2. Outlier GPS-z sensor failure detection. Upper plot: residual signal. Lower plot: 
fault detection signal. 
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Figure 2 shows the detection of a one-meter outlier-type fault in the GPS-z sensor of the helicopter. 
In the upper plot of Figure 2 the residual signal of the GPS-z sensor (r1) generated by the ARX 
estimator is shown. The fault has been declared at t = 18 sec. Shortly after the fault, the residual goes 
above the threshold value (dashed line). The lower plot shows the fault detection signal (D, which 
equals 1 when a fault is detected, and is zero otherwise).  

But there are some cases in which the individual helicopter FDI system cannot detect the failure. 
For example, slow growing errors in absolute positioning estimations (due to loss or corruption of 
differential corrections unnoticed by the receiver) are difficult to detect using incremental sensors as 
gyros or accelerometers, since DGPS is the only absolute positioning sensor that is used in UAVs. 
Figure 3 shows an example of this case: at t = 2 s, a slow growing error is present in the GPS-z sensor, 
but the FDI system is not able to detect it using the other onboard sensors. 

Figure 3. Slow-growing drift GPS-z sensor failure detection. Upper plot: residual signal r1. 
Lower plot: fault detection signal. 

 
 
3. Multi-UAV Vision-Based Relative Position Estimation 
 

A method for the estimation of the ego-motion of a single UAV by means of monocular vision has 
been presented in [15]. This method assumes that the imaged scene is approximately flat or, in full 3D 
environments, that the UAV flies at relative high altitude compared to the deviations from the flat 
model. Its robustness would be reduced if the UAVs are flying at low altitudes in urban areas or hilly 
terrains, so the planning system should take this issue into account. 

The estimated position may present drifts along the sequence of images. This effect is mainly 
derived from the accumulative errors in the homography computation used to estimate the planar 
motion. Mosaicking can help to reduce the registration errors and, hence, to increase the accuracy of 
the position estimation. 

This method can be extended to estimate the relative position among several UAVs. Thus, if two 
UAVs are registering approximately the same scene and it is possible to match a set of features 
between their images, the relative displacement between the UAVs can be obtained by computing the 
plane-induced homography matrix that relates their cameras. 
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The technique described in [15] obtains the relative displacement between two views of the same 
planar scene. The relations presented also hold if the views are taken by different calibrated cameras. 
In this case, the homography that relates both views, 1 and 2, of the same planar scene (see Figure 4) is 
given by: 

( ) 1
2221

12 −⋅−⋅⋅= AntIRAH Tw  (3) 

where A1 and A2 are the intrinsic calibration matrices of both cameras, t2 is the relative translation of 
the second camera point of view in the first camera coordinate frame, n is an unitary vector normal to 
the plane in the first camera coordinate frame (in the outward camera direction), w = 1/z, z being the 
distance from the first camera to the plane and R2 is the rotation matrix that transforms a vector in the 
first camera coordinate frame into a vector expressed in the second camera coordinate frame. Thus, the 
relative displacement between two UAVs is obtained by computing the plane-induced homography 
matrix between their cameras (H12). 

Figure 4. Scheme of the geometry of multiple views of the same plane z. 

 
 
The computation of matches between images taken from very different points of view may be a 

hard limitation of this approach. Robust and repeatable features, with some degree of invariance, 
should be used, as affine invariant neighborhoods or maximally stable extreme regions. In our 
implementation, the algorithm proposed in [2] for blob matching and robust homography estimation is 
used. The idea is to use this algorithm to compute the homography that relates two images of the same 
scene taken by different UAVs. 

Thus, it is assumed that at a certain time instant (the time of image 0) the same scene is viewed by 
two UAVs, for instance UAV 1, which is taken as the reference UAV, and UAV 2. The robust 
matching procedure is applied with the aim to match image 0 of the reference UAV with its most 
recent captured image of UAV 2. If a number of good blob matches are obtained, the relative 
displacement between UAV 1 and UAV2 at that time is computed by means of the motion estimation 
algorithm. Otherwise, the images are discarded. 

In general, the probability of having the same scene in the field of view of two or more UAVs is not 
very high. In Figure 5 H12 is the homography matrix that relates two images gathered by UAVs 1 and 
2 for image 0 computed by blob matching. H j

0i, the homography matrix between image i and image 0 
for UAV j is computed by composing the homography matrices between consecutive images. For 
instance, H 2

02 = H 2
01 H 2

12. Combining the homographies H2
0i with H12 determines the homography 

matrices of UAV 2 at different time instants along its trajectory with respect to the view of UAV 1 at 
image 0. 
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Figure 5. Scheme of relations between homographies. 

 
 
If the position of the reference UAV in a global frame is known, it will be easy to estimate the 

position of all the UAVs in the global frame. For instance, the location of UAV 2 at time of image 2 
with respect the reference UAV at time of image 0 is given by H12H2

01H2
12. More details are  

given in [2]. 
Assume that a UAV team is executing a mission, for example a surveillance mission. One of the 

purposes of this work is to outline the replanning necessary to achieve that one UAV estimates the 
relative position of other UAV applying the method described above. As stated before, it is necessary 
that both UAVs take images of approximately the same scene.  

Given some invariant characteristic of the features used to establish matches between the two  
images [16], it is possible to face significant rotations, translations and scale shifts. However, in order 
to reduce the complexity of the matching stage, it is recommended to locate the two UAVs at 
approximately the same altitude (to reduce the scale shift effect) performing an angle of no more that 
45 degrees (see Figure 6.b).  

Figure 6. An example illustrating the re-planning process: (a) UAVs following the initial 
plan. (b) Dynamic replanning: UAV B plan changes to include wp6. 
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In addition, the uncertainty of the computed homography can be used as a measure of the accuracy 
of the relative position estimation. Particularly, the standard deviation of two parameters related with 
the uncertainty in the computed translation in pixel space will be used (UDev, VDev), when the 
homography is scaled such as h33 = 1. This standard deviation has been computed with the data 
obtained in many experiments with the real vehicles. From these results it can be stated that, in general, 
the computation of the relative position is very good if these deviations are lower than 1, good  
between 1 and 4, acceptable if they are between 4 and 7 and usually useless for values higher that 8. 
Notice that the correlation with the GPS has been intentionally discarded. 
 
4. Planning for Multi-UAV FDI 
 

As it has been mentioned in Section 1, since the accuracy and the noise level of the estimation 
depend on several factors, dynamic replanning of the multi-UAV mission is applied to improve the 
estimation. This replanning is based on the automatic generation of new tasks for the multi-UAV team, 
which are dynamically allocated during the execution of the mission. In this section, plans are only 
considered at a “high level”, i.e. each plan consists in a partially ordered set of high level tasks such as 
“visit a waypoint with a given heading”. Then, if a plan is composed by a list of “visit waypoint” tasks, 
the executive level of the UAV should compute straight paths between consecutive waypoints as the 
reference for its controller. Once a waypoint has been reached, the UAV stays in hovering until certain 
conditions are satisfied. Then, the UAV proceeds with the next waypoint in the list.  

In general, the accuracy of the estimation is improved when the images of both UAVs are taken 
from points with similar altitude and camera orientation angles that differ less than 45º. Then, a 
suitable re-planning strategy is that the faulty UAV generates a task consisting in visiting a waypoint 
with a given camera orientation following this criteria and the safety constraints. Furthermore, a 
sufficient amount of texture in the images improves homography-based localization, and this can be 
used as an additional criterion to select the new waypoint. 

This new task is generated considering safety issues, which are critical in multi-UAV missions. The 
best solution would be the implementation of sense-and-avoid techniques, but sometimes this is not 
possible due to payload limitations in small UAVs. In our approach, the conflicts between paths of 
different UAVs are solved at a waypoint level considering a safety radius around each UAV and a 
maximum separation with respect to the reference path. If a potential conflict is detected in a plan, it is 
solved with the suppression and addition of waypoints. 

The initial trajectory planning takes into account a fixed inter-UAV safety distance, but when 
replanning is required, a different safety radius should be applied due to the uncertainties in the 
position of the faulty UAV. In our particular case, as the UAVs are helicopters, their hovering 
capabilities allow to simplify the conflict resolution problem when sharing the airspace. Once a fault 
has been detected, the UAV enters in a vision based hovering mode until another UAV provides 
additional information for the position estimation. In this mode, the UAV has a bigger (but bounded) 
safety radius for collision avoidance purposes. Then, the location of the waypoint satisfies the new 
safety radius constraints. Once an UAV has reached that place, it also stays hovering until the faulty 
UAV has landed. 
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During the experiments, the specific values for the safety radius in nominal and faulty conditions 
were 3 and 5 meters, respectively, and the location of the computed waypoints allowed to view the 
same region. At the executive level, under a maximum wind speed of 40 Km/h the UAVs were able to 
follow the paths between waypoints with errors below 0.5 meters. 

The new task is dynamically inserted during the mission execution in the distributed task allocation 
framework applied in our multi-UAV architecture. It uses market-based negotiation rules implemented 
with a variant of the Contract Net Protocol (CNP) [17,18]. The main difference with the basic CNP 
protocol is that the bid of each UAV depends on its current plan and every time a local plan changes, 
the negotiation continues until no bids improve the current global allocation. When a new task is 
generated, all the UAVs take part in the negotiation of this task with the only restriction that the tasks 
in execution are not re-negotiated. The distributed algorithm allocates the new task trying to minimize 
its impact in the global cost of the mission (sum of the costs of all the UAVs).  

If a fault is detected in the sensors of an UAV, the planning system will issue an emergency 
procedure to safely land the faulty UAV, helped with the position estimation of the other UAV. It is 
not safe to continue with the mission using the position estimation provided by the other UAV, 
because it will be correlated. 

In order to illustrate the approach, let us consider a mission for three UAVs consisting in visiting 
five waypoints (see Figure 6a). After the initial distributed negotiation process, the allocation matrix is 
given by Table 1. 

Table 1. Initial Task Allocation Matrix. 

 wp1 wp2 wp3 wp4 wp5
UAV A 1 1 0 0 0 
UAV B 0 0 0 1 1 
UAV C 0 0 1 0 0 

 
The execution starts and after visiting wp1, the UAV A sends a multi-UAV FDI request, and 

generates a new task consisting in visiting wp6 with a given camera orientation. UAV B and UAV C 
begin a negotiation process bidding with the insertion cost of the new task in their current local plans. 
As it can be seen in Figure 6b, this cost is lower for UAV B as far as wp4 is nearer from wp6 than wp3. 
Therefore, UAV B changes its local plan inserting task wp6 before task wp5. 

Once that UAV B has reached the waypoint wp6, relative position estimation is performed using 
the algorithms presented in section 3 using the images from both cameras. This position estimation is 
fed to the fault detection system, along with the covariance estimation, with the corresponding 
threshold level. 
 
5. Experimental Results 
 

Experimental testing of fault detection systems is difficult because real experiments with faulty 
sensors or actuators can be very dangerous, particularly with aerial vehicles. One useful approach is to 
recreate offline experiments using real UAV flight data, introducing for example, a simulated fault in 
one sensor. Although it can not fully reproduce the experimental conditions, useful insights can be 
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obtained from these experiments if faults are simulated properly. The results presented in this section 
have been done using real flight data and images obtained in experiments that were done in the 
framework of the COMETS project. In this project a distributed system for cooperative activities using 
UAVs was designed, implemented, and demonstrated for cooperative fire detection and localization. 
The objective is that a group of networked UAVs survey an area looking for fire alarms. If an alarm is 
detected, the team should localize it and confirm or discard it, taking benefit of the diversity of sensors. 
Since localization is one of the main objectives, UAV position accuracy is very important for  
the mission. 

In this experiment, real flight data recorded by the helicopters Marvin and Heliv were used. Marvin 
is an autonomous helicopter developed by the Real-Time Systems & Robotics Group of the 
Technische Universität Berlin, Germany [19]. Marvin is built upon a conventional model airframe. 
Sensors for position and attitude determination include an IMU (with three magnetometers, three 
accelerometers, and three piezo-electric gyroscopes), an ultrasonic rangefinder looking down and a 
carrier phase differential GPS receiver. Marvin also has a digital camera. 

Heliv is the result of the evolution of a conventional remotely piloted helicopter, adapted by the 
Robotics, Vision, and Control Group at the University of Seville (Spain) by adding sensing, perception, 
communication, and control functions. Heliv has an IMU, a GPS receiver and an ultrasonic altitude 
sensor for positioning, and it is equipped with one visual and one infrared cameras.  

Figure 7. Residual r2 for position estimation sequence with initial standard deviations of 
UDev = 5.8 and VDev = 6.1, and threshold level of 4.5. 

 
In the experiment carried out, Marvin and Heliv were instructed to patrol an area following their 

prescribed trajectories. A positioning error was artificially induced in the flight data recorded from 
Heliv. This error was a slow growing drift added to the position estimation. The fault detection of the 
individual UAV was not able to detect it. At fixed intervals, multi-UAV FDI tasks are executed, and 
Marvin is commanded to direct its camera to the same scene that Heliv is looking at. Following the 
procedure described in Section 3, the relative position of Marvin and Heliv is computed. The standard 
deviations of the homography are UDev = 5.8 and VDev = 6.1. The corresponding threshold level for 
this parameter is 4.5 (red dashed line in Figure 7). These variable threshold levels have been 
previously identified empirically, looking at the maximum value of the residual in fault-free conditions. 
An estimation of the absolute position of Heliv is generated using Marvin sensors. The discrepancies 
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between this estimation and Heliv’s own estimation are shown in Figure 7, along with the threshold 
level corresponding to the standard deviations. No fault is detected, but, since the standard deviations 
of the homography are not very good, the mission planner generates dynamically a new task for 
Marvin to go to a new point nearer to Heliv, from which the homography of the taken images is 
expected to have better standard deviations. 

Figure 8. Residual r2 for position estimation sequence with initial standard deviations of 
UDev = 2.3 and VDev = 1.5, and threshold level of 1.5. 

 
 
When Marvin arrives at this point, a new sequence of images is taken from both helicopters, and the 

relative position estimation is calculated again following the procedure from section 3. This time, the 
standard deviations of the homography are UDev = 2.3 and VDev = 1.5. Again, the discrepancies 
between this estimation and Heliv’s own estimation are shown in Figure 8, along with the threshold 
level corresponding to the standard deviations. In this case, the threshold level (dashed line) is lower, 
and it can be clearly detected that a fault is present in the sensors of the positioning system of Heliv. 
 
6. Conclusions 
 

Fault detection is an important issue in autonomous UAV navigation. Particularly, GPS transient 
failures, which are very usual in some scenarios, may have catastrophic effects. Computer vision can 
be used for relative position estimation in case of GPS failures. This paper has shown how  
computer-vision and task-replanning techniques can be used to improve the reliability in multi-UAV 
systems. The proposed method has been validated experimentally by using the information generated 
in the COMETS multi-UAV fire detection and monitoring field experiments. Future work will include 
the application of the proposed method by using cameras in fixed locations or transported by people 
and other sensors. 
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