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Abstract: Two transient receptor potential (TRP) channels—TRPA1 and TRPV3—are post-translationally
hydroxylated, resulting in oxygen-dependent regulation of channel activity. The enzymes responsible
are the HIF prolyl hydroxylases (PHDs) and the asparaginyl hydroxylase factor inhibiting HIF
(FIH). The PHDs and FIH are well characterized for their hydroxylation of the hypoxic inducible
transcription factors (HIFs), mediating their hypoxic regulation. Consequently, these hydroxylases
are currently being targeted therapeutically to modulate HIF activity in anemia, inflammation,
and ischemic disease. Modulating the HIFs by targeting these hydroxylases may result in both
desirable and undesirable effects on TRP channel activity, depending on the physiological context.
For the best outcomes, these hydroxylases could be therapeutically targeted in pathologies where
activation of both the HIFs and the relevant TRP channels are predicted to independently achieve
positive outcomes, such as wound healing and obesity.
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1. Introduction

The transient receptor potential (TRP) channels are non-selective cation channels broadly
expressed in most tissues in the body. TRP channels play a role as cellular sensors which respond
to a diverse range of extracellular and intracellular stimuli, including second messengers, chemicals,
temperature, redox state, mechanical stimulation, and osmolality [1–4]. Recent research suggests
that abnormal activity of some members of the TRP super-family contributes to human pathologies
such as cancer, diabetes, lung and liver fibrosis, chronic pain, ischemia-reperfusion injury, pulmonary
hypertension, irritable bowel disease, drug toxicity, and others [2,5–9].

TRP channels are formed by homo- or hetero-tetramers of TRP proteins, with each a TRP monomer
comprised of six transmembrane domains flanked by intracellular N- and C-terminal domains. Similar
to voltage-gated channels, a conserved pore-forming loop between transmembrane domains 5 and 6 in
TRP proteins is responsible for cation permeability. Although most TRP channels under physiological
conditions conduct more Na+ than Ca2+, the Ca2+ permeability of TRP channels is considered to be
important for the maintenance of intracellular Ca2+ signaling and homeostasis.

Apart from specific stimuli that gate TRP channels, TRP channel activity can be further
controlled by a range of post-translational modifications, including phosphorylation and glycosylation
(reviewed in [10]). Two specific TRP channels—TRPA1 and TRPV3—are modified post-translationally
by hydroxylation (an oxygen-dependent modification), which mediates a characteristic response to
hypoxia [11,12]. The hydroxylases responsible for these modifications have emerged as key therapeutic
targets for a range of human diseases due to their direct regulation of the hypoxia-inducible factors
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(HIFs, the central transcription factors that mediate the genomic response to hypoxia), with important
therapeutic implications for TRP channels.

2. Hydroxylation-Dependent Regulation of Hypoxic Gene Expression

The prolyl hydroxylase containing enzymes (PHDs) and the asparaginyl hydroxylase factor
inhibiting HIF (FIH) belong to a conserved family of 2-oxoglutarate-dependent dioxygenases,
and act as cellular oxygen sensors [13]. These oxygen-sensing enzymes catalyze the addition of
hydroxyl (OH) groups to specific prolyl or asparaginyl residues on target proteins, altering their
activity. The three closely related PHD enzymes (PHD1, 2, and 3, also referred to in the literature
as EGLN2, 1, and 3) were originally characterized through their oxygen-dependent hydroxylation
of two proline residues within the HIFα subunit of the heterodimeric HIF transcription factors.
HIFα hydroxylation occurs in normoxia and promotes ubiquitination and rapid proteosomal-mediated
degradation (reviewed in [14]). In hypoxia the activity of the PHDs decreases, allowing the HIFα
subunits to avoid hydroxylation, ubiquitylation and subsequent degradation, and consequently the
stabilized HIFα mediates robust gene induction in response to hypoxia (Figure 1). Thus, the PHDs
act as the essential oxygen sensors in this pathway and are the primary regulators of the HIF-driven
genomic response to hypoxia. FIH was subsequently characterized as a related hydroxylase that
hydroxylates a single asparaginyl residue in a transactivation domain of the HIFα subunit, resulting
in transcriptional repression in hypoxia (reviewed in [15]). As with the PHDs, hypoxia results in
the loss of efficient oxygen-dependent hydroxylation, and alleviates the transcriptional repression,
contributing to increased hypoxic gene induction mediated by the HIFs. However, the role of FIH in
modulating oxygen-dependent gene regulation via the HIFs is modest compared to the PHDs, and its
physiological importance less well characterized.
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Figure 1. Schematic representation of transient receptor potential (TRP) channel and hypoxia-inducible
factor (HIF) regulation by the prolyl hydroxylase containing enzymes (PHD) and asparaginyl
hydroxylase factor inhibiting HIF (FIH) hydroxylases. Oxygen-dependent hydroxylation (-OH) of
TRPA1 and TRPV3 channels inhibits cation entry through activated channels, and hydroxylation of
HIFα proteins leads to proteolytic degradation and transcriptional repression. Inhibition of hydroxylase
activity by hypoxia or specific inhibitors leads to increased cation entry and robust HIF-dependent
gene activation.

The PHDs and FIH also have a number of substrates in addition to the HIF proteins, although
the physiological consequence of hydroxylation on these substrates has not been well established.
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Other substrates for the PHDs include pyruvate kinase M2, RNA polymerase II, erythropoietin receptor,
eukaryotic elongation factor 2, and beta(2)-adrenergic receptor [16]. FIH has been shown to hydroxylate
a number of proteins containing ankyrin repeat domains (ARDs), although in most cases there is
no obvious effect on the function of the hydroxylated substrate [17]. However, two more recently
identified ARD substrates and one non-ARD substrate show some hydroxylation-dependent changes
in activity [11,18,19].

3. Hydroxylation-Dependent Regulation of TRP Channel Activity

TRPA1 is activated by a range of chemical agonists (both endogenous and exogenous), mechanical
stimulation, and cold temperature (reviewed in [20]). It has been implicated in a number of pathologies,
including acute inflammation and cartilage degeneration in osteoarthritis [21], urinary bladder pain in
cystitis [22], neuropathic and inflammatory pain, migraine, and familial episodic pain syndrome [23,24].
Takahashi and colleagues reported that TRPA1 is also sensitive to changes in oxygen, undergoing
oxygen-dependent hydroxylation on a single proline residue within the ARD by the PHDs in
normoxia [12]. Their data supported hydroxylation-dependent inhibition of channel activity that
was rapidly reversed in hypoxia, when the oxygen-sensing PHDs have greatly diminished activity,
leading to an increase in activity of the unmodified channel. Furthermore, they demonstrated that
TRPA1 channels also respond to oxygen through the oxidation in hyperoxia of specific cysteine
residues located within the seventeenth ARD (Cys 633 and Cys 856). A recent study proposes a role
for TRPA1 hydroxylation in the hypoxic ventilator response [25]. In addition, this oxygen-dependent
hydroxylation has been implicated in mediating the response to cold temperature through the
production of reactive oxygen species [26]. Of interest, TRPA1 also responds to ischemia in
oligodendrocytes, mediating Ca2+ entry and subsequent damage to myelin, although the role of
hydroxylation in this response has not been explored [27].

TRPV3 was originally characterized as a warm temperature sensing channel [28–30], and is also
activated by endogenous and exogenous chemical ligands. It plays roles in the maintenance of
epidermal barrier function, hair growth, and nociception, and has been implicated in pathologies
associated with dermatitis, pruritus, inflammation, ischemia, and wound healing [31,32]. The TRPV3
channel has also been shown to be hydroxylated, but on a single asparaginyl residue within the
ARD, by FIH [11]. In common with the PHD-mediated hydroxylation of TRPA1, FIH-dependent
hydroxylation of TRPV3 in normoxia inhibits channel activity, but is rapidly reversed in hypoxia,
leading to increased hypoxic TRPV3 activity (Figure 1).

In the case of both TRPA1 and TRPV3, the mechanism by which hydroxylation modulates channel
activity has not been determined. For example, hydroxylation may influence the physical structure
of the channels and consequently influence gating, or may affect agonist binding, multimerisation
with other TRP channels, or the recruitment of accessory proteins that modulate function. In addition,
while the evidence for TRPA1 and TRPV3 hydroxylation is strong, as with other non-HIF substrates,
the physiological role for these hydroxylation events remains poorly defined.

Whether other TRP channels are regulated by hydroxylation, mediated by the PHDs, FIH, or other
hydroxylases remains unclear. In addition to TRPA1 and TRPV3, it has also been reported that
peptides from the ARD of TRPV4 can be hydroxylated in vitro by FIH [33]. We have investigated
the hydroxylation of nine other TRP channels predicted using bioinformatics to be substrates of
FIH (TRPC1, C3, C4, C5, C6, V2, V5, V6), but found no evidence for hydroxylation using in vitro
hydroxylation assays (unpublished data). Furthermore, other than TRPA1, none of the nine other TRP
channels analyzed by Takahashi et al. displayed hypoxic induction, including TRPV3. However, it is
important to note that these experiments were performed in 10% oxygen, which is relatively mild
hypoxia and unlikely to influence FIH-mediated hydroxylation [12,34]. A recent report of interest
implicated mouse TRPC2 in sensing low oxygen within olfactory epithelium [35]. While it is unclear
whether this response involves hydroxylation (and TRPC2 is only a pseudogene in humans), it does
support the hypothesis that other TRP channels may also be regulated in a similar manner to TRPA1
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and TRPV3. The formation of heterotetramers with other channels may also cause the modification
of one channel to influence the activity of another. For example, TRPV3 is known to form functional
heterotetramers with TRPV1 [29,36], hence regulation of TRPV3 via hydroxylation may indirectly
influence the activity of a TRPV1/V3 heterotetramer where V1 is activated.

Although the body of literature on TRP-hydroxylation is clearly very limited and more research is
required to ascertain the physiological relevance, these studies establish that the oxygen-dependent
hydroxylation of at least two members of the TRP superfamily confers hypoxic responsiveness to these
channels. These findings have important implications regarding the potential for novel therapeutic
manipulation of the activity of these specific TRP channels via altered hydroxylation, either directly or
as a consequence of the therapeutic targeting of the PHDs and FIH to regulate other substrates.

4. Therapeutic Targeting of PHDs and FIH to Activate HIF

Given that hypoxia contributes to the pathophysiology of most major diseases, including
myocardial and cerebral ischemia, vascular disease, and cancer, it is not surprising that therapeutic
manipulation of the ubiquitous HIF pathway has become a highly sought after goal. The PHDs and FIH
are attractive therapeutic targets, as they are well characterized functionally and structurally [37–40],
can be expressed recombinantly [41,42], and inhibition results in HIF activation, with the PHDs of
particular interest as the primary regulators of the HIFs [43]. However, specificity is an important
issue when targeting PHDs or FIH in human pathologies, given the large family of related
2-oxoglutarate-dependent oxygenases, the hundreds of target genes directly regulated by the HIFs
that influence diverse biological processes including erythropoiesis, angiogenesis, metabolism,
cell migration and survival, and the other less well characterized substrates of the PHDs and FIH,
including the TRP channels.

To date, numerous PHD inhibitors have been developed, with a number in pre-clinical and
clinical trials (reviewed in [43]). The initial focus has been on the treatment of anemia, as erythropoietin
is a direct target gene of HIF, with two PHD inhibitors currently in Phase 3 clinical trials showing
considerable promise. Additional clinical and preclinical trials have also targeted ischemia and
inflammation, with other pathologies also under investigation. Specificity for different HIF-mediated
outcomes is achieved through the use of inhibitors that display selectivity for one or more of the PHDs
(the three different PHDs show some specificity for different HIFα proteins, and consequently regulate
distinct target gene responses), as well as distinct delivery and treatment regimes. Little is known
regarding the consequence of these treatments on non-HIF targets of the PHDs, including TRPA1.

Preliminary screens have also been performed to identify specific inhibitors of FIH [44,45],
but given the modest effects on HIF activity mediated by FIH, it has not been a focus of pharmaceutical
research. However, one potential advantage of targeting FIH is that additional specificity may be
achieved compared with the PHDs, as FIH only influences the expression of a discrete subset of HIF
target genes, and shows some specificity for different HIF isoforms [34,46].

5. Therapeutic Targeting of PHDs and FIH to Modulate TRP Channel Activity

Therapeutic manipulation of the PHDs and FIH is likely to modulate the activity of TRPA1
and TRPV3, respectively. Importantly, inhibition of hydroxylase activity—which has been the
focus of therapeutic manipulation to achieve HIF activation—has the potential to increase TRPA1
and TRPV3 activity through abrogation of hydroxylation. However, given the key role of the
hydroxylases—specifically the PHDs—in regulating the ubiquitously expressed HIFs, specificity
is likely to be a major issue. Importantly, while specific inhibitors of the PHDs and FIH should
theoretically also modulate TRPA1 and TRPV3 activity, respectively, through altered hydroxylation,
this needs to be determined experimentally. This characterization should include inhibitors that
show specificity for each of the hydroxylases, including those currently in clinical trials, and their
consequence on both hydroxylation and activity. In the case of both TRPA1 and TRPV3, loss of
hydroxylation does not appear to independently activate the channels, but rather the limited data are
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consistent with an increase in the activity of an already active channel. Hence therapeutic targeting of
the PHDs or FIH might only modulate the activity of an already active channel. Physiologically, this
would depend on the presence of endogenous chemical agonists, mechanical stimuli, or temperature
to activate the channels.

The knowledge that TRPA1 is also regulated by PHD-mediated hydroxylation should also inform
the current clinical and preclinical trials using PHD inhibitors to activate the HIFs. For example,
a number of pre-clinical studies have targeted inflammation in mouse models of colitis with mostly
positive outcomes [43]. However, in similar models of colitis, TRPA1 channels are shown to contribute
to disease pathology [47], with TRPA1 antagonists being designed and trialed for treatment of
inflammation and pain [48]. Consequently, the activation of TRPA1 achieved with PHD inhibitors is
likely to promote rather than inhibit disease pathology and associated pain.

Targeting TRPV3 activity via FIH should be more specific, given the modest role for FIH in HIF
regulation and the apparent lack of an effect of hydroxylation on the activity of most characterized
ARD substrates [17]. However, this is complicated by the metabolic phenotype of FIH null mice,
which are viable and display hypermetabolism, hyperventilation, lowered body mass and adiposity,
resistance to weight gain when fed a high fat diet, and insulin hypersensitivity. This phenotype is
not readily explained by the known roles for FIH in regulating the HIFs or other characterized ARD
substrates, and supports the existence of one or more additional substrates involved in controlling
metabolism [49].

A more prudent strategy to therapeutically target the PHDs or FIH to modulate TRP channel
activity would focus on pathologies where activation of both the HIFs and the relevant TRP channels
are predicted to independently achieve positive outcomes. For example, both TRPV3 and HIF have
been implicated in wound healing [50,51], hence the therapeutic inhibition of FIH may promote wound
healing through two independent pathways, via activation of both HIF and TRPV3. The targeted
deletion of FIH in mice and mice treated with activators of TRPV3 channels both display similar
metabolic effects, including decreased adiposity and resistance to weight gain on a high fat diet [49,52].
So, the therapeutic inhibition of FIH in the context of obesity or diabetes may also result in beneficial
outcomes through two independent pathways.

6. Conclusions

The recent identification of hydroxylation-mediated changes in TRPA1 and TRPV3 channel
activity—although based on a limited number of highly focused studies—has expanded our
understanding of the role of channel post-translational modifications, and the oxygen-dependent
modulation of these channels. It has also uncovered new therapeutic strategies to modulate the
activity of these specific channels by targeting the PHDs and FIH, while identifying potential TRP
channel-mediated side effects as a consequence of targeting these hydroxylases to therapeutically
regulate HIF activity.
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