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Abstract: The molecular mechanisms underlying tissue regeneration and wound healing are
still poorly understood despite their importance. In this paper we develop a bioinformatics
approach, combining biology and network theory to drive experiments for better understanding
the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets.
We start by selecting literature-relevant genes in murine wound healing, and inferring from
them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound
healing-related genes according to their topological properties. Lastly, we perform a procedure
for in-silico simulation of a treatment action in a biological pathway. The findings obtained by
applying the developed pipeline, including gene expression analysis, confirms how a network-based
bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the
understanding of molecular mechanisms and supporting the discovery of potential drug targets.

Keywords: network pharmacology; gene prioritization; wound healing

1. Introduction

In recent years, the process of tissue-regeneration has been widely studied to discover treatments
for controlling the progression of lesions and for restoring diseased or injured tissue functions.
Understanding how damaged, defective (e.g., cancer [1]), or lost tissues can be regenerated is one of
the major challenges in biomedical research and in regenerative medicine. The wound healing process
plays a key role in tissue regeneration; therefore, a better understanding of the molecules involved in
this process, and how they interact, provides new insights into the development of drug treatments.

The healing process is dependent on interactions between many cell types, extracellular matrix,
growth factors, and mediators in a specific temporal phase [2]. Schematically, the healing process
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can be divided into three different phases: inflammation, proliferation, and remodeling [3]. The time
span depends on the agent that affects the wound, the therapy chosen, and the control of the healing
environment. In order to successfully heal wounds, all these phases must occur in the proper sequence
and time frame. During the healing process some factors could bring delays and slow down the
achievement of tissue homeostasis. These factors could include infection, age, sex hormones, stress,
diabetes, obesity, medications, alcoholism, smoking, nutrition, and sterile environment [4].

The wound healing underlying genetic mechanisms have been only partially delineated [2,5].
Despite this, several medicine regenerative therapies are currently used to enhance wound healing,
such as autologous or allogenic cells, scaffold fabrication, 3D bioprinting, and biomaterials [6]. Among
them, our attention is currently devoted to Rigenera® (Human brain wave srl, Turin, Italy), a new
autograft protocol utilizing a CE (the abbreviation of the French phrase “Conformité Européene”
which literally means “European Conformity”.)-certified medical portable device. Rigenera® produces
autologous micro-grafts enriched with progenitor cells, which maintain high cell viability due to its
high regenerative potential, allowing the repair of damaged tissues [7]. Moreover, in the Rigenera®

protocol, the donor and acceptor are the same individual, preventing possible complications with
respect to conventional implants of no autologous micro-grafts [8]. Despite its widespread use in
clinical practice [7–11] and its efficacy in boosting tissue regeneration, the genetic and molecular
processes regulated by Rigenera® are still unclear. In particular, the mechanism of Rigenera® related
to gene expression is still unknown, and further in vitro analysis is required. Current clinical studies
based on the Rigenera® protocol attribute the effects of Rigenera® to the presence of mesenchymal
stem cells, already analyzed by fluorescence-activated cell sorting (FACS) analyses [7–9,11].

In this context, we designed a computational system biology method to unveil biological networks
and pathways significantly associated with tissue regeneration, wound healing, and Rigenera®.
In particular, we applied a network-based strategy: the process under study is represented as a
graph, with nodes corresponding to molecular entities of interest (e.g., proteins, genes), and edges
to their interactions (e.g., physical/functional interactions). Networks are not only useful tools for
integrating different knowledge sources that provide a complete and intuitive representation of the
system, but they can also be exploited to extract and predict hidden knowledge, such as biotargets
and regulators. Moreover, networks can in-silico simulate qualitative responses to external stimuli
(e.g., drug/treatments) under different conditions [12–14].

Our approach begins with the construction of a Protein-Protein Interaction (PPI) network
representing the wound healing process. In this case, network nodes correspond to proteins, while
network edges correspond to the interactions between them. Next, network analysis through graph
theory identifies relevant candidate nodes as targets for potential treatments. Gene enrichment p-values,
Boolean network simulations, as well as in vitro experiments on murine cells confirm the involvement
of the identified candidate genes in wound healing. In other words, given a poorly understood
biological process of interest, we developed and validated an in-silico knowledge-driven pipeline
unveiling pivotal molecular elements and molecular drug targets. The implemented procedures are
highly customizable and can be used to investigate Rigenera® and wound healing processes as well
as deepen our knowledge on other treatments or biological processes. This bioinformatics method
is designed to improve the ab initio veracity of hypotheses and to optimize planning of in vitro
experiments by researchers for finding new genes, proteins, and pathways involved in different
biological processes, diseases, and therapies.

2. Results

Literature analysis and knowledge extracted from public repositories (Section 4.1) led to the
selection of a small list of genes related to the wound healing process or to the Rigenera® action.
We will refer to this list as the input genes. The literature search (performed according to Section 4.1)
allowed us to extract a list of seven genes: Tnf, Cxcl2, Ccl12, Fgf5, Wnt5a, Col3a1, Fosb, and Pgk1; the
latter has been included to expand the scope of the network. In fact, besides being a housekeeping
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gene, Pgk1 is involved in epidermal regeneration after certain stimuli [15,16]. The input genes and the
related literature findings are reported in Table 1.

Table 1. Input genes set.

Gene Symbol Uniprot ID Protein Names Ref.

Tnf P06804 Tumor necrosis factor (Cachectin) (TNF-alpha) (Tumor necrosis factor
ligand superfamily member 2) (TNF-a) [17–20]

Cxcl2 P10889 C-X-C motif chemokine 2 (Macrophage inflammatory protein 2) (MIP2) [18,19,21]

Ccl12 Q62401
C-C motif chemokine 12 (MCP-1-related chemokine) (Monocyte
chemoattractant protein 5) (Monocyte chemotactic protein 5) (MCP-5)
(Small-inducible cytokine A12)

[20,22]

Fgf5 P15656 Fibroblast growth factor 5 (FGF-5) (Heparin-binding growth factor 5)
(HBGF-5) [19,23]

Wnt5a P22725 Protein Wnt-5a [20,24,25]

Col3a1 P08121 Collagen alpha-1(III) chain [20,26–28]

Fosb P13346 Protein fosB [22]

Pgk1 P09411 Phosphoglycerate kinase 1 [15,16]

2.1. Assessing the Starting Node Set

We verified how the input genes are involved in wound healing and enhanced by Rigenera® via
measuring gene expression after a skin scratch test [29] (methods in Section 4.1.1). Figure 1 shows
how all the nodes, with the exception of the untested housekeeping Pgk1, are stimulated by the
Rigenera® action. Moreover, all the genes, except for Tnf, are activated after the skin scratch test.
These seven genes are important in the three phases of wound healing; inflammation, proliferation,
and remodeling. Measured gene expressions are shown in Figure 1. At five hours, the input gene
expressions were significantly different between no Scratch-no Regenera vs. yes Scratch-yes Regenera
when taken as a system of seven genes (ZStouffer = 0.04—Equation (1)), as well as for three individual
gene expressions (Fgf5, p-value = 0.04; Wnt5a, p-value = 0.03; Col3a1, p-value = 0.04; t-test unequal
variance—Section 4.1.1.). As expected at 1 h, the input genes were also significantly dysregulated in
three genes (no Scratch-yes Rigenera, Tnf, p-value = 0.03; no Scratch-yes Rigenera, Cxcl2, p-value = 0.02;
no Scratch-yes Rigenera, Fosb, p-value = 0.015; t-test unequal variance—Section 4.1.1.).
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We set up a bioinformatics pipeline to infer other genes potentially involved in the wound
healing process, a so called candidate gene set, based on (a) the starting genes and (b) on the topological
knowledge extracted from a protein network. An outline of the presented method is depicted in
Figure 2.

Pharmaceuticals 2017, 10, 55 4 of 18 

 

(e) Wnt5a (f) Col3a1 

(g) Fosb

Figure 1. Gene expression after a skin scratch test with and without Rigenera®. (a) Tnf; (b) Cxcl2; (c) 
Ccl12; (d) Fgf5; (e) Wnt5a; (f) Col3a1; (g) Fosb. 

We set up a bioinformatics pipeline to infer other genes potentially involved in the wound 
healing process, a so called candidate gene set, based on (a) the starting genes and (b) on the topological 
knowledge extracted from a protein network. An outline of the presented method is depicted in 
Figure 2. 

 
Figure 2. Overview of the proposed computational systems biology method. The network 
construction is performed through the selection of input genes (shown with red diamonds) involved 
in the wound healing process. The knowledge about Protein-Protein Interaction (PPI) (STRING 

Figure 2. Overview of the proposed computational systems biology method. The network construction
is performed through the selection of input genes (shown with red diamonds) involved in the wound
healing process. The knowledge about Protein-Protein Interaction (PPI) (STRING repository [30]) is then
used to build the network. Next, the topological network analysis selects candidate nodes (i.e., cluster
hubs and bridge nodes) and identifies other key genes in the wound healing process. Finally, the
simulation of the Rigenera® autologous micro-graft action is performed in the TNF signaling pathway
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [31] through Boolean networks.
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2.2. A Protein Network for Wound Healing

We built the wound healing network using the input genes and the STRING repository [30]
(Section 4.2). The obtained network, depicted in Figure 3, consists of 446 nodes and 24,757 edges.

To prove the network’s meaningfulness, we performed a KEGG and Gene Ontology (GO) [32]
enrichment analysis (Section 4.2.1), finding 62 pathways and 40 GO terms significantly associated with
the network (threshold 10−3, hypergeometric test), of which 13 pathways and 19 GO terms specifically
pertain to wound healing. The complete list is reported in Supplementary Tables S1 and S2.
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Figure 3. Wound healing PPI network. (a) PPI Network. Eight input genes are highlighted in red
while the 47 bridge nodes are in yellow; (b) Network clustering. The clusters were identified with
ClusterONE and are highlighted with different colors. The nodes in the OUT group (see panel (b)
legend) refer to the nodes that, according to ClusterONE, did not end up in any of the clusters due to
their topological properties [33]. The hub nodes of each cluster are shaped with triangles.

In the following, we will focus on (a) cluster hubs to study the wound healing machinery with
bioinformatics, and (b) bridge nodes to unveil their potential as drug targets with in vitro experiments.

2.3. Pivotal Genes in Wound Healing: Hub Nodes of Clusters as the Key Elements in Regulation

Cluster hubs are pivotal nodes in highly connected modules (i.e., clusters) and they have a highly
significant number of neighbors. Therefore, these nodes are intrinsically important for understanding
the underlying genetic mechanisms.

To identify the hub nodes within a cluster (i.e., cluster hubs), we first partitioned the network with
ClusterONE [33]. Of the eleven obtained clusters (Table 2), we retained seven showing a p-value < 0.05
(one-sided Mann-Whitney U test). Next, for each cluster, hub nodes were ordered according to their
degree (i.e., the number of direct node neighbors), and only the ones ranking beyond the 90th percentile
(k > 203.5) were retained (Section 4.3.1) as a candidate gene set (cluster hubs).
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Table 2. Network clusters identified with ClusterONE.

Cluster Size Density Internal Weight External Weight p-Value # of Hubs

1 * 207 0.8654 1.85 × 104 66.97 <2.2204 × 10−16 ** 45
2 * 66 0.5888 1263 32.96 <2.2204 × 10−16 ** 20
3 * 58 0.8127 1343 103.4 <2.2204 × 10−16 ** 8
4 * 42 0.6027 518.9 116.2 <2.2204 × 10−16 ** 5
5 * 32 0.5541 274.8 23.84 <2.2204 × 10−16 ** 13
6 * 13 0.7173 55.95 49.28 7.27 × 10−5 4
7 11 0.675 37.12 77.5 0.103808 5

8 * 6 0.54 8.1 0.8 0.00150023 2
9 5 0.6669 6.669 7.334 0.0712283 1

10 4 0.9 5.4 14.4 0.997531 0
11 3 0.5987 1.796 4.2 0.5 1

* Significant clusters (p-value < 0.05); ** 2.2204 × 10−16 is the machine epsilon; Internal weight refers to the total
weight of the edges contained in the cluster; External weight denotes the total weight of the edges that connect the
cluster nodes with the rest of the network [33].

Cluster nodes were enriched with KEGG pathways and GO terms. In particular, clusters were
characterized by dozens of statistically significant GO terms and KEGG pathways (p-value < 0.001,
hypergeometric test), as summarized in Table 3 (detailed results are reported in Supplementary
Tables S3–S16).

Table 3. The number of statistically significant GO terms and KEGG pathways per cluster,
characterizing terms in the clusters by (1) all significant nodes, and (2) hub nodes.

Cluster # Significant
GO Terms

# Significant
KEGG Pathways Top GO Labels (Net Count) Top KEGG Pathways

1 15 35

G-protein coupled receptor
signaling pathway
chemotaxis
C-C chemokine receptor activity

Neuroactive ligand-receptor
interaction
Chemokine signaling pathway

2 23 16
basement membrane
external side of plasma membrane
extracellular matrix

ECM-receptor interaction
Focal adhesion
PI3K-Akt signaling pathway

3 16 2
positive regulation of transcription
negative regulation of transcription
regulation of transcription

Adipocytokine signaling pathway
Thyroid hormone signaling
pathway

4 48 10
positive regulation of transcription
canonical Wnt signaling pathway
Wnt-protein binding

Wnt signaling pathway
Breast cancer
mTOR signaling pathway

5 46 20
positive regulation of cell proliferation
lung development
cell surface

Rap1 signaling pathway
Ras signaling pathway
PI3K-Akt signaling pathway

6 9 53

regulation of transcription
positive regulation of transcription from
RNA polymerase II promoter
cellular response to calcium ion

Osteoclast differentiation
MAPK signaling pathway
TNF signaling pathway

8 2 6 phosphoglycerate mutase activity
glycolytic process

Glycine
Glycolysis/Gluconeogenesis
Metabolic pathways

Number of statistically significant GO terms and KEGG pathways per cluster. The three most frequent terms by net
count are reported, with terms related to the wound healing process in bold. Details about significant hub GO terms
and KEGG pathways are reported in Supplementary Tables S3–S16.

2.4. Pivotal Genes in Wound Healing: Bridge Nodes

Bridge nodes are measures of the betweenness of clusters. They are sparsely connected and
located among clusters. Identifying bridge proteins is generally done to unveil viable targets for
pharmaceuticals [34,35]. By applying the bridging procedure (Section 4.3.2), we identified 45 bridge
nodes. Next, we calculated the Stot score (Equation (4)) of each bridge node by considering the
wound healing-related KEGG pathways and/or GO terms (Supplementary Tables S17 and S18).
The final ranking is reported in Supplementary Table S19, and it represents the estimated likeliness of
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a bridge node being pivotal in wound healing. Based on the resulting prioritization, we conducted
gene expression analysis of the top three scored genes, namely Nfkb1, Rela, and Tnfrf1a (applying the
procedure in Section 4.1.1). The experimental results reported in Figure 4 support the findings predicted
by the topology analyses. In fact, at five hours, a trend was observed between no Scratch-no Regenera
vs. yes Scratch-yes Regenera for the three output genes (bridge nodes) (ZStouffer = 0.105—Equation (1);
Tnfrf1a, p-value = 0.086; Rela, p-value = 0.22; Nfkb1, p-value = 0.5; t-test unequal variance—Section 4.1.1.).

Pharmaceuticals 2017, 10, 55 7 of 18 

 

Bridge nodes are measures of the betweenness of clusters. They are sparsely connected and 
located among clusters. Identifying bridge proteins is generally done to unveil viable targets for 
pharmaceuticals [34,35]. By applying the bridging procedure (Section 4.3.2), we identified 45 bridge 
nodes. Next, we calculated the Stot score (Equation (4)) of each bridge node by considering the wound 
healing-related KEGG pathways and/or GO terms (Supplementary Tables S17 and S18). The final 
ranking is reported in Supplementary Table S19, and it represents the estimated likeliness of a bridge 
node being pivotal in wound healing. Based on the resulting prioritization, we conducted gene 
expression analysis of the top three scored genes, namely Nfkb1, Rela, and Tnfrf1a (applying the 
procedure in Section 4.1.1). The experimental results reported in Figure 4 support the findings 
predicted by the topology analyses. In fact, at five hours, a trend was observed between no Scratch-
no Regenera vs. yes Scratch-yes Regenera for the three output genes (bridge nodes) (ZStouffer = 0.105—
Equation (1); Tnfrf1a, p-value = 0.086; Rela, p-value = 0.22; Nfkb1, p-value = 0.5; t-test unequal 
variance—Section 4.1.1.).  

(a) Nfkb1 (b) Rela 

(c) Tnfrf1a

Figure 4. Gene expression after a scratch with and without Rigenera®. (a) Nfkb1; (b) Rela; (c) Tnfrf1a. 

2.5. Simulation of KEGG TNF Signaling Pathway Dynamics 

Following the suggested pipeline, we modeled the KEGG TNF signaling pathway dynamics 
with a Boolean network (BN) approach (Section 4.4). The resulting network is illustrated in Figure 5 
and consists of 44 nodes and 49 edges.  

Figure 4. Gene expression after a scratch with and without Rigenera®. (a) Nfkb1; (b) Rela; (c) Tnfrf1a.

2.5. Simulation of KEGG TNF Signaling Pathway Dynamics

Following the suggested pipeline, we modeled the KEGG TNF signaling pathway dynamics with
a Boolean network (BN) approach (Section 4.4). The resulting network is illustrated in Figure 5 and
consists of 44 nodes and 49 edges.

Next, we simulated the Rigenera® autologous micro-graft action in the BN by initializing the state
(upregulated) of its target genes whose expression is known, i.e., the input nodes (Figure 1) and the
candidate gene set (bridges) (Figure 3) overlapping with the TNF pathway. These nodes, Tnf, Rela
and Nfkb1, are all set to 1 and are highlighted in red in Figure 5. On the other hand, initial values
of the other network nodes are randomly assigned to 0 or 1 (Section 4.4). We next applied Odefy,
which performs the conversion of BNs into continuous ODEs, with continuous time descriptions, and
gives as an output the node behaviors after a certain stimulus (here Rigenera® action). In order to be
independent from the random assignment of non-target nodes, we applied Odefy with 1000 Monte
Carlo simulations, obtaining 1000 behaviors of all network nodes (one example is shown in Figure 6)
after the Rigenera® stimulus. The analysis of the results over the simulations allowed us to rank
the genes according to the frequency of their state changes. In detail, we looked for the genes that
consistently switch their state over the simulations, indicating they have been stimulated by Rigenera®.
The ranked list is showed in Supplementary Table S20 and the genes in the top 10 are Bag4, Pik3r1,
Pik3cb, Map2k6, Map3k7, Mapk10, Mapk11, Pik3ca, Map3k14, and Atf2.
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the other network nodes are randomly assigned to 0 or 1 (Section 4.4). We next applied Odefy, which 
performs the conversion of BNs into continuous ODEs, with continuous time descriptions, and gives 
as an output the node behaviors after a certain stimulus (here Rigenera® action). In order to be 
independent from the random assignment of non-target nodes, we applied Odefy with 1000 Monte 
Carlo simulations, obtaining 1000 behaviors of all network nodes (one example is shown in Figure 6) 
after the Rigenera® stimulus. The analysis of the results over the simulations allowed us to rank the 
genes according to the frequency of their state changes. In detail, we looked for the genes that 
consistently switch their state over the simulations, indicating they have been stimulated by 
Rigenera®. The ranked list is showed in Supplementary Table S20 and the genes in the top 10 are 
Bag4, Pik3r1, Pik3cb, Map2k6, Map3k7, Mapk10, Mapk11, Pik3ca, Map3k14, and Atf2. 
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values of some genes, initially set to 0, have been increased by the Rigenera® action, and vice versa. 
Panel (a) shows the behaviors of all network nodes; Panel (b) shows a subset of such node behaviors, 
in which Tnfrsf1a exhibits an increase, Itch a decrease, while Rigenera® seems to not affect the 
behaviors of Traf2 and Jun (their output values are similar to the initial ones). 

The top 10 gene list was analyzed by MouseMine [36]. In Table 4, the GO terms related to wound 
healing and tissue regeneration are reported. 

Table 4. GO biological processes associated with the top 10 genes stimulated by Rigenera®. 

Gene GO Term ID GO Term Name 

Bag4 

GO:0006915 apoptotic process 
GO:0010763 positive regulation of fibroblast migration 
GO:0030838 positive regulation of actin filament polymerization 
GO:0042981 regulation of apoptotic process 
GO:0045785 positive regulation of cell adhesion 
GO:0051496 positive regulation of stress fiber assembly 
GO:0071364 cellular response to epidermal growth factor stimulus 

Pik3r1 

GO:0001953 negative regulation of cell-matrix adhesion 
GO:0007162 negative regulation of cell adhesion  
GO:0008625 extrinsic apoptotic signaling pathway via death domain receptors  
GO:0043066 negative regulation of apoptotic process 
GO:0030335 positive regulation of cell migration 

Pik3cb 

GO:0001935 endothelial cell proliferation 
GO:0001952 regulation of cell-matrix adhesion 
GO:0007155 cell adhesion 
GO:0009611 response to wounding 
GO:0030168 platelet activation 
GO:0060055 angiogenesis involved in wound healing 

Map2k6 GO:0043065 positive regulation of apoptotic process 

Map3k7 
GO:0006915 apoptotic process 
GO:0016239 positive regulation of macroautophagy 
GO:1902443 negative regulation of ripoptosome assembly involved in necroptotic process 

Mapk10 GO:0006468 protein phosphorylation 

Mapk11 
GO:0006468 protein phosphorylation 
GO:0006950 response to stress 
GO:0016310 phosphorylation 

Pik3ca 
GO:2000270 negative regulation of fibroblast apoptotic process 
GO:0016310 phosphorylation 

Map3k14 GO:0006468 protein phosphorylation 

Figure 6. Plots of the TNF pathway node behaviors after the stimulation of Rigenera®. The plot has
been obtained with Odefy and it refers to the output of one Monte Carlo simulation. In detail, Rigenera®

autologous micro-graft targets in the pathway have been initialized to their expression values, while
other network nodes are randomly set to 0 or 1 (Section 4.4). The plot shows that the values of some
genes, initially set to 0, have been increased by the Rigenera® action, and vice versa. Panel (a) shows
the behaviors of all network nodes; Panel (b) shows a subset of such node behaviors, in which Tnfrsf1a
exhibits an increase, Itch a decrease, while Rigenera® seems to not affect the behaviors of Traf2 and Jun
(their output values are similar to the initial ones).
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The top 10 gene list was analyzed by MouseMine [36]. In Table 4, the GO terms related to wound
healing and tissue regeneration are reported.

Table 4. GO biological processes associated with the top 10 genes stimulated by Rigenera®.

Gene GO Term ID GO Term Name

Bag4

GO:0006915 apoptotic process
GO:0010763 positive regulation of fibroblast migration
GO:0030838 positive regulation of actin filament polymerization
GO:0042981 regulation of apoptotic process
GO:0045785 positive regulation of cell adhesion
GO:0051496 positive regulation of stress fiber assembly
GO:0071364 cellular response to epidermal growth factor stimulus

Pik3r1

GO:0001953 negative regulation of cell-matrix adhesion
GO:0007162 negative regulation of cell adhesion
GO:0008625 extrinsic apoptotic signaling pathway via death domain receptors
GO:0043066 negative regulation of apoptotic process
GO:0030335 positive regulation of cell migration

Pik3cb

GO:0001935 endothelial cell proliferation
GO:0001952 regulation of cell-matrix adhesion
GO:0007155 cell adhesion
GO:0009611 response to wounding
GO:0030168 platelet activation
GO:0060055 angiogenesis involved in wound healing

Map2k6 GO:0043065 positive regulation of apoptotic process

Map3k7
GO:0006915 apoptotic process
GO:0016239 positive regulation of macroautophagy
GO:1902443 negative regulation of ripoptosome assembly involved in necroptotic process

Mapk10 GO:0006468 protein phosphorylation

Mapk11
GO:0006468 protein phosphorylation
GO:0006950 response to stress
GO:0016310 phosphorylation

Pik3ca
GO:2000270 negative regulation of fibroblast apoptotic process
GO:0016310 phosphorylation

Map3k14

GO:0006468 protein phosphorylation
GO:0006955 immune response
GO:0016310 phosphorylation
GO:0030036 actin cytoskeleton organization

Atf2 GO:1902110 positive regulation of mitochondrial membrane permeability involved in apoptotic process

3. Discussion

3.1. Automatically Assembling a Gene Network

Our pipeline constructs a PPI network by expanding a list of wound healing-related genes
(Table 1). An initial assessment of gene expression levels confirms the input gene list as pertaining to
wound healing or to the action of Rigenera® (Figure 1). In fact, all the genes respond positively to the
skin scratch test. Tnf, Cxcl2, Ccl12, and Fosb are upregulated after the administration of Rigenera® even
in the absence of the scratch. When Rigenera® is administered along with the skin scratch test, all the
genes show an upregulation, mostly higher than all the other experimental settings, especially after
five hours (statistical significance reported in Section 2.1).

After network enrichment, p-values of wound healing GO terms and KEGG pathways show
how the network well represents the wound recovery process (Supplementary Tables S1 and S2).
In the significantly enriched lists, different wound healing-related concepts emerge. Within them
there are inflammation (GO:0006954) and angiogenesis (GO:0001525), along with their related terms.
The inflammatory response, a well-known phase of the wound healing process, besides being present
as a GO term, is underlined by the presence of cytokine-related [37] terms (GO:0016493, GO:0008009,
GO:0006935) and pathways (mmu04062, mmu04060, mmu04750). The network is also enriched by the
term extracellular matrix (GO:0031012) reflecting the pertinence of its nodes to the tissue regeneration.
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The Wnt pathway is activated for cell fate specification, cell proliferation, and cell migration.
Wnt is also an important signaling pathway during skin wound healing [38]. Studies show how
the expression of Wnt-5a in the wound promotes differences mimicking regeneration, including the
development of epithelia-lined cysts in the dermis, hair follicles, and sebaceous glands, without the
development of tumors [39]. Notably, an excess of Wnt signaling pathway concepts stands out among
the significantly associated terms (GO:0060070, GO:0035567, GO:0090263, GO:0016055, GO:0060071,
GO:0042813, GO:0017147) and pathways (mmu04310).

Once the network is assembled, we identified pivotal cluster hubs and bridge nodes. The first are
important as actors to understand the wound healing genetic orchestration, and the latter as candidate
drug targets.

3.2. Unveiling Cluster Hub Nodes

Functional regions, or clusters, allow the segregation of the network in functional modules.
These modules are consistently characterized by specific processes (Table 3), reflecting how
topologically-differentiated areas of the network are specialized in distinct aspects of wound healing.

• Cluster 1 gathers chemokine/chemotaxis processes, related to cell migration towards chemical
gradients. In particular, chemotaxis plays an important role during the inflammatory phase of
healing processes [40].

• Cluster 2 is labeled by extracellular matrix/skin development terms.
• Cluster 3 gathers genes involved mainly in DNA regulation of transcription.
• Cluster 4 gathers regenerative processes and cell growth, being labelled by cancer, pluripotency,

Wnt, and mTOR signaling pathways.
• Cluster 5, like cluster 2, is characterized by processes of cell adhesion and cell-cell

junction formation. This is confirmed by the presence of the Rap1 and Ras signaling
pathways, both involved in cell proliferation, survival, growth, migration, differentiation, or
cytoskeletal dynamism.

• Cluster 6 is characterized by inflammation and immune response processes. In fact, it is enriched by
terms such as MAPKs, TNF signaling pathway, inflammation regulation, and leukocyte migration.
The presence of osteoclast proliferation calcium ion terms is consistent with the involvement of
this cluster in new bone formation. Although not directly relevant in wound healing, the fact that
bone formation terms were grouped in the same cluster indicates how the clustering technique
successfully gathered similar genes in a consistent, meaningful fashion.

• Cluster 8 is labeled by terms mostly related with Glycine and sugar metabolism. Pgk1 appears in
this cluster, the housekeeping gene involved in glycolysis [15,16].

Within the clusters, cluster hub genes are identified by network theory topological rules.
These hubs are genes reflecting the general functions of their respective clusters, and are associated to
consistent specific GO terms and KEGG pathways (see Table 3).

3.3. Unveiling Bridge Nodes

Bridge nodes have been found to be associated to wound healing-related processes
(Supplementary Tables S17 and S18) other than the ones identified for the whole network
(Supplementary Tables S1 and S2). This may be due to their special property as individual actors
in bridging the different functions related to the various gene clusters. For example, bridge nodes
are related to the vascular endothelial growth factor (VEGF) pathway (mmu04370). VEGF plays
an important role during the wound healing process, since it is known to be an inducer of cell
migration through chemotaxis. It is considered one of the most important factors for its effects
on the healing process, including angiogenesis and collagen formation. Different bridge nodes
are also related to the apoptotic process (mmu04210). Apoptotic genes play an important role in
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different physiological processes by removing damaged and potentially dangerous cells. This event is
known as apoptosis-induced proliferation or compensatory proliferation and it is important in tissue
regeneration [41]. A recent study also shows the involvement of the JAK-STAT signaling pathway
(present in the list as mmu04630) in the promotion of compensatory proliferation. This pathway is the
principal signaling mechanism for a wide array of cytokines and growth factors [42].

Three genes, Rela, Nfkb1, and Tnfrsf1a, are identified as main bridges. Experiments on gene
expression show how their response, with or without the Rigenera® stimulus, is dependent on a
skin scratch test. Nfkb1 (Figure 4, panel (a)) responds to the scratch test by increasing its expression
level, peaking after five hours. Its expression is also stimulated by Rigenera® in the absence of a skin
scratch test. The highest fold change is however reached only when Rigenera® is administered after
the scratch test. Rela (Figure 4, panel (b)) shows a limited increase in its expression after scratch, or
after the sole administration of Rigenera®. It shows its highest levels of expression when Rigenera® is
administered after a skin scratch test. Finally, the expression of Tnfrsf1a (Figure 4, panel (c)) does not
seem to be activated by the scratch test; however, it seems to react to the administration of Rigenera®

after five hours, without or with the scratch tests. The analysis of the biological results, confirmed that
these genes tend to be related to the action of Rigenera® on a skin scratch (Section 2.4). The biological
experiments with n = 3 in four groups (no Scratch-no Rigenera®, no Scratch-yes Rigenera®, yes Scratch-no
Rigenera®, yes Scratch-yes Rigenera®) were underpowered to evaluate all combinations and control for
statistical multiplicity. Therefore, our method suggests three targets, among all possible candidates, for
drug discovery or repositioning that may be potentially involved in the wound healing process.

3.4. A Boolean Network to Study the TNF Signaling Pathway

Finally, with the modeling of the TNF signaling pathway into a Boolean network we demonstrate
the possibility of simulating the action of a treatment (Rigenera®) in order to provide qualitative
behavior of the genes in a biological pathway. The model pathway TNF has been chosen because of
its involvement in chemokine and cytokine pathways and its consequent role in the inflammation
phase of wound healing [17]. The analysis of the results obtained by applying Odefy enabled the
identification of a ranked list of the pathway genes based on the effect of the simulated Rigenera®

action. The top 10 genes significantly altered by the Rigenera® action simulation are Bag4, Pik3r1,
Pik3cb, Map2k6, Map3k7, Mapk10, Mapk11, Pik3ca, Map3k14, and Atf2. Their key role in wound healing
was then confirmed by the GO terms related to these genes (Table 4). The p38 MAPKs play a crucial role
during the inflammatory phase and they are already known to be involved in tissue regeneration [43].
Moreover, the gene Map2k6 is the major MAPK11 activator in response to the presence of cytokines,
such as TNF-α and IL-1. The Activating transcription factor 2 (Atf2) is a member of the leucine
zipper family of DNA-binding proteins. Atf2 is able to respond to stress and may influence cell
proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and
skeletal remodeling [44]. The activation of Atf2 complexes increases the transcription of genes involved
in inflammation such as cell adhesion molecules and cytokines, which are important for the recruitment
of leukocytes to the site of injury. Finally, for the genes Pik3r1, Pik3cb, and Pik3ca, we found evidence in
the literature (i.e., [45]) in addition to the GO terms about their relation to the wound healing process
and tissue regeneration. Future studies should include conventional autologous micro-graft controls in
order to identify Rigenera®-specific networks, which are currently confounded with micro-graft action.

3.5. Summary

Our method correctly identifies Rela, Nfkb1, and Tnfrsf1a as drug targets in the wound healing
process. It shows how network theories can successfully harvest biological knowledge applied
to physiological processes, such as wound healing, and can unveil: (a) candidate targets for
drugs/treatments; (b) pivotal genes for the process machinery; and (c) recommendations for
in vitro experiments; finally, it simulates the action of a treatment in biological pathways to predict
gene responses.



Pharmaceuticals 2017, 10, 55 12 of 18

4. Materials and Methods

We developed a bioinformatics pipeline (Figure 2) consisting of four different steps: (1) Selection
of the input genes; (2) Network construction; (3) Identification of candidate genes (cluster hubs and bridges);
(3) Gene expression in vitro experiments; and (4) Simulation of a treatment action. The developed
pipeline has been implemented in Python 2.7 and Matlab and it is available upon request from the
authors. All network figures were created with Cytoscape [46].

4.1. Selection of the Input Gene Set

The first step of the proposed approach includes the selection of a set of genes involved in the
process under study; in this case, wound healing and, consequently, to Rigenera®. The gene list
is generated from the literature and public repositories. To this end we looked into PubMed [47],
GenBank [48], Uniprot [49], and KEGG [31], and we manually retrieved a gene list on which the
network will be constructed, reported in Table 1. We obtained peer-reviewed studies by performing an
automated search in PubMed by using combinations of keywords such as “wound-healing”, “gene
expression”, “mice”, and “mouse”. This search yielded hundreds of publications; however, we retained
only the studies whose findings were experimentally validated. Furthermore, we restricted the search
to the experiments where normal vs. scratched tissue or similar approaches were applied (e.g., not
considering diabetic mice or experiments involving other treatments). Then relevant studies were
selected by first screening titles and abstracts, and then by analyzing full texts and experiment results.
In addition, we selected as candidates the genes present on the Mouse Wound Healing RT2 Profiler™
PCR Array (Qiagen, Valencia, CA, USA [20]). The genes identified with this procedure were then used
to query public repositories to verify their relation to wound-healing. This allowed the selection of
a restricted pool of genes on which to perform in vitro experiments to verify their association with
Rigenera® and wound healing. In this way, we can assess the methodology as a proof of concept to
investigate even poorly understood/studied biological processes and treatments (i.e., processes where
only a handful of genes is known to be influential). A detailed description of the method to select the
input genes is provided in Supplementary Method S1.

4.1.1. Gene Expression in vitro Experiments

In order to assess if the gene set identified is related to the wound healing process, we performed
gene expression assays for the selected genes.

All in vitro experiments were performed using murine cells, which were cultured from the murine
model C57BL/6. By performing a scratch assay, an in vitro damage was created according to the skin
scratch test standard practice [50]. Micro-grafts obtained by using the Rigenera® protocol have been
added autologously to this model. Cells were cultured in DMEM supplemented with 10% FBS and
treated for 1 and 5 h at 37 ◦C in 5% of CO2.

Gene expression analysis was performed with qRT-PCR on the input genes. For this analysis,
total RNA was extracted using the PureLink RNA Mini Kit (Invitrogen) and treated with the DNA-free
Kit (Invitrogen). 250 ng RNA was reverse transcribed into cDNA with the Superscript III Reverse
Transcriptase First-Strand Synthesis SuperMix (Invitrogen). Quantitative real-time PCR was performed
with the Platinum SYBRGreen qPCR SuperMix-UDG (Invitrogen). GraphPad Prism 6 was used to
graph the results of the biological replicates ± SEM. The ethical approval code is P056/2017. To assess
the statistical significance of the results, we performed the t-test controlling for distinct variances to
take into account the heteroscedasticity of the results [51]. Once it was assessed that the housekeeping
expression values (log2 transformed) of the samples have a similar distribution across the different
conditions (i.e., no Scratch-no Rigenera vs. yes Scratch-yes Rigenera), we could directly perform the
t-test assuming unequal variance on log2 transformed expressions of the tested genes. Next, on the
obtained p-values we performed an analysis of the biological validation results as a coordinated
gene set/systems/network-level signal. In order to detect a coordinated systems/network-level
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among input genes, we first summarized the p-values of the input gene expression using the Stouffer
Z-transform, a meta-analysis [52–54] that produces a joint p-value for the inputs (Equation (1)). The
Z-transform test converts the t-test p-values, Px, for each of n transcripts of the gene set into a standard
normal curve (Zx). The sum of these Zx’s, divided by the square root of the number of tests, n, has a
standard normal [54].

ZStouffer =
∑n

x=1 Zn√
n

(1)

4.2. Protein-Protein Interaction Network Construction

The PPI network related to the wound healing is derived by integrating the knowledge on PPI from
the STRING repository [30]. STRING allows the extraction of PPIs derived from different evidences,
i.e., Neighborhoods, Gene Fusion events, Co-occurrence events, Co-expression data, Experimental data,
Database information, and Text-mining associations. All these sources of evidence are benchmarked
and calibrated against previous knowledge. Through this procedure (detailed in [55]), STRING assigns
a confidence score to each known or predicted association. This score varies between 0 to 1 and it
assesses the quality of the retrieved association based on the related type of evidence (low confidence:
scores <0.4, medium: 0.4 to 0.7, and high: >0.7) [55]. In our approach, network nodes correspond
to proteins and two proteins are connected by an edge if an interaction between them is found in
STRING. Therefore, the entire set of network nodes is determined by considering the input gene
set and all its neighbors in STRING (depicted with light green in Figures 2 and 3). The connectivity
pattern among nodes is defined according to the STRING interactions and takes into account the
confidence score. In order to restrict the edge set to the most reliable STRING associations, we introduced
two constraints: (i) PPIs need to be derived from Experimental and Database evidence (considered
more reliable with respect to, for example, text-mining evidence); and (ii) the STRING confidence score
has to be higher than 0.7 (high-confidence association). Confidence scores have been also integrated into
the network model as weights on the network edges.

4.2.1. Enrichment analyses

To assess the meaningful representation of the network and biologically interpret the network
genes, we conducted KEGG [56] and Gene Ontology (GO) [32] enrichment analysis of the network
nodes. We detected the enrichment on the basis of the hypergeometric test and ranked KEGG
pathways and GO terms according to the obtained p-values corrected with a false discovery rate (FDR).
Statistically significant processes and terms are finally selected by considering only p-values < 0.001.

The resulting significant pathways are then compared to reference lists of KEGG pathways and
GO terms known to be related to wound healing. To this end, we manually selected 15 KEGG pathways
and 47 GO terms based on their relation with wound healing (Supplementary Tables S1 and S2).

4.3. Identification of Candidate Genes

The third step of the proposed procedure aims to identify candidate genes, i.e., network nodes
that can be suggested as targets for treatments or other genes that can have a key role in the process.
In our approach, such genes are selected based on in-silico analysis of the constructed PPI network.
Candidate genes are first selected based on their topological role in the network, and then enrichment
selects the best candidates for further investigation.

Since the structure of the PPI networks reflects the biological properties of the system
represented [12,13,57,58], to select candidate genes we introduced two constraints based on the
topological property of the network. Candidate genes can correspond to hubs of clusters and
bridge nodes.
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4.3.1. Cluster Hubs

In biological networks, and in particular in PPI networks, the topological network structure
is characterized by modules. Therefore, network nodes can be clustered into groups (clusters) and
these clusters reflect specific biological functions and/or biological processes [13,58]. In graph theory,
different clustering algorithms can be applied to detect network clusters [59–61]. Our approach uses
ClusterONE [33] as it takes into account network weights (i.e., STRING confidence scores) and it
allows cluster overlapping. This last property is very important in PPI networks since proteins may
have multiple functions and therefore the corresponding nodes may belong to more than one cluster.
ClusterONE also provides a p-value to select significant clusters, computed through a one-sided
Mann-Whitney U test performed on the in-weights and out-weights of cluster vertices. A low p-value
means that the in-weights are significantly larger than out-weights, so it is more likely that the cluster
is a valid finding and not the result of random fluctuations. To distinguish significant clusters from
insignificant ones, the authors suggest a p-value threshold of 0.05 [33].

Once the significant clusters are identified, in order to assess the meaningfulness of each
cluster, KEGG and GO enrichment analyses are performed as described for the network as a whole
(Section 4.2.1.). Next, we located cluster hub nodes (i.e., nodes having a number of neighbors higher
than average) with consideration of the top 10% of the highest degree nodes. This threshold was
suggested by previous works [34,35].

4.3.2. Bridge Nodes

Bridging centrality (BR) is a measure used in graph theory that can discriminate bridge nodes, i.e.,
the nodes that are crucial to dispatch information to the network topological structures. Bridge nodes
usually have fewer neighbors than hubs, and are typically located between highly connected regions
(i.e., network modules) [62–64].

The procedure of identifying bridge nodes begins with computing the BR measure for all network
nodes. The BR of a node is defined as the product of the betweenness centrality (BC) and the bridging
coefficient (BCoeff). BC measures the local properties of the network, while BCoeff measures global
ones. The BR of a node n was calculated as proposed by Vitali et al. [34,35] following the equation:

BR(n) = RWBC(n) × BCoeff(n) (2)

where RWBC is the random walk betweenness centrality [65] and the BCoeff is computed as:

BCoeff (n) =
D(n)−1

∑v∈N(n) D(v)−1 (3)

where D(n) is the degree of node n (i.e., the number of neighbors of n), and N(n) is the set of neighbors
of node n.

Bridge nodes in the network are identified as the nodes whose BR values are in the highest
percentiles (i.e., >90%) of the bridging centrality, similar to cluster hub nodes [34,35]. Because of
their topological properties, the higher the BR of a node, the more information that flows through it.
This makes bridging nodes good drug target candidates.

Once bridge nodes have been selected, a ranking score function is then applied to identify the
most significant candidates for further in vitro experiments. For each bridge node b, we automatically
retrieved its related KEGG biological pathways and GO terms. Next, by counting the number of
pathways and terms related to wound healing, we obtained two first scores SKEGG(b) and SGO(b).
These scores are then rescaled between 0 to 1 and a global score Stot is assigned to each bridge node b
according to the formula:

Stot(b) = 1− ∏
i=KEGG,GO

(1− Si(b)) (4)
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Based on the resulting ranked list, it is possible to plan in vitro experiments for the top
scored genes.

4.4. How Do Genes React to Rigenera® Stimulus? A Simulation of the Kegg Tnf Signaling Pathway

The fourth step of the proposed approach aims at investigating the effect of Rigenera® on wound
healing and suggesting other drug target candidates. To this end, we shift from a PPI representation of
the process to a more detailed model. PPI networks can, in fact, provide a static view of the process,
because the direction of the interaction (e.g., inhibition or activation) is often unknown. Instead, the
molecular network underlying a specific process is highly dynamic: molecules, proteins; and genes
associate, dissociate, and interact. In a previous work, we showed how signaling pathways from
KEGG can be automatically modeled as BNs [34]. In BNs, nodes are genes and each regulatory reaction
in a pathway is translated into a logic formula by parsing the KEGG pathway interactions, according
to the conversion rules shown in Supplementary Table S21. BNs can be easily converted into Ordinary
Differential Equations (ODEs) for simulation purposes.

The simulation of the Rigenera® effect in the TNF signaling KEGG pathway (mmu04668) modeled
as a BN is performed by initializing the input gene set and the bridge node states according to the
treatment action. This means that their state is set to 0 or 1 if the drug, respectively, decreases or
increases expression. Since only the initial states of these nodes in the pathway are known, following
the procedure exposed in [34], we performed 1000 Monte Carlo simulations randomly assigning 0/1
states to the other nodes. Simulations were performed using the MATLAB-toolbox Odefy [66]. Finally,
the states of all network nodes after the treatment stimulation are analyzed in order to identify other
candidate key genes in the wound healing process. To rank gene candidates, we count the number of
times that a gene changes its state from its initial value across all the Monte Carlo simulations, i.e., if
the initial gene value passes a 0.5 threshold in any direction then the gene is considered switched.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8247/10/2/55/s1.
Table S1: KEGG pathways significantly associated to the whole network, Table S2: GO terms significantly
associated to the whole network ; Table S3 to Table S16: GO/KEGG enrichment of the clusters; Table S17: KEGG
pathways related to the wound healing and to at least one bridge node; Table S18: GO terms related to the wound
healing and to at least one bridge node; Table S19: Bridge node score S; Table S20: Ordered list of genes changed
over the simulations; Table S21: Table to convert KEGG associations into Boolean rules; and Method S1: Input
gene panel setup.
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