Supplementary Materials

I. Analytics

Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (0.00 ppm) for ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and trichloro-fluoro-methane (0.00 ppm) for ${ }^{19} \mathrm{~F}-\mathrm{NMR}$. Coupling constants (J) are given in hertz (Hz) and the following abbreviations are used for the description of the NMR: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublet (dd).

Semi preparative and analytical HPLC was performed with a Dinoex HPLC system equipped with a 680 HPLC pump and a UVD170U UV-detector ($210 \mathrm{~nm}, 230 \mathrm{~nm}, 254 \mathrm{~nm}$ and 286 nm) using a reversed-phase column (analytical column: Luna, C18, $5 \mu \mathrm{~m}, 250 x 4.6 \mathrm{~mm}$; Gemini, C18, $5 \mu \mathrm{~m}$, $250 \times 4.6 \mathrm{~mm}$; semi preparative column: Luna, C18, $5 \mu \mathrm{~m}, 250 \times 20 \mathrm{~mm}$; Synergi, C12, max-RP, 250x10 mm) at a flow rate of $3.5 \mathrm{~mL} / \mathrm{min}$ for the semi preparative column and $1.0 \mathrm{~mL} / \mathrm{min}$ for the analytical column unless otherwise stated. For radio-HPLC an additional GabiStar radiodetector (Raytest) was used. Dionex Chromeleon software was used for UV-data analysis and Raytest Gina star software for radioactivity detection.

Folate-azide

For the synthesis of the folate-azide, reported procedures from literature [12, 19] were slightly modified (see scheme S1.1 and S1.2). In brief, N-(tert-butoxycarbonyl)-L-glutamic acid- α-methylester was coupled to 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethan-1-amine using COMU as coupling agent and DIPEA to yield Boc-Glu(OMe)-PEG3-azide (tert-butyl-3-(2-(2-(2-(2-ethoxy)ethoxy)-ethoxy)ethylcarbamoylazid)-1-(methoxycarbonyl)-propylcarbamate). After deprotection, Glu(OMe) PEG3-azide was reacted with $\mathrm{N}^{2}, \mathrm{~N}^{10}$-diacetyl pteroic acid using COMU and DIPEA to give the final folate-azide.

Scheme S1.1: Synthesis of Glu(OMe)-PEG3-azide
(methyl-4-(2-(2-(2-(2-ethoxy)ethoxy)ethoxy)ethylcarbamoyl- azid)-3-aminobutanoate. Boc-Glu(OMe) $=\mathrm{N}$-(tert-butoxycarbonyl)-L-glutamic acid- $\alpha-$ methylester; COMU $=1$-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino- carbenium hexafluorophosphate; DIPEA = N,N-Diiso- propylethylamine;.

${ }^{19}$ F-DBCO-folate

semi-preparative HPLC: solvent A is water, solvent B is acetonitrile; flow: $3.5 \mathrm{~mL} / \mathrm{min}$; method: $0-17 \min 5-95 \%$ B, $17-19 \min 95 \%$ B, 19-20 min $5-95 \%$ A

MS (ESI positive): m/z 562.3 ([M] $]^{2+}, 100 \%$), 1123.3 ([M] ${ }^{+}, 10 \%$), calculated for $\mathrm{C}_{54} \mathrm{H}_{66} \mathrm{FN}_{13} \mathrm{O}_{13}$: 1123.5.

Due to the low yields no NMR was recorded.
Analytical HPLC: solvent A is water with 0.1% TFA (trifluoroacetic acid) and solvent B is acetonitrile with 0.1% TFA. The following method was used: 0-40 min, $5-95 \%$ eluent B (gradient). Retention time is 21.89 min , purity $\geq 98 \%$.

${ }^{19} \mathrm{~F}$-Ala-folate

semi-preparative HPLC system: solvent A is water, solvent B is acetonitrile; flow: $3.6 \mathrm{~mL} / \mathrm{min}$; method: 0-5 $\mathrm{min} 0 \% \mathrm{~B}, 5-14 \mathrm{~min} 0-60 \% \mathrm{~B}, 14-17 \mathrm{~min} 95 \%$ B ,17-18 $\mathrm{min} 95 \% \mathrm{~B}, 18-19 \mathrm{~min} 95-5 \% \mathrm{~B}$.

Analytical HPLC: solvent A is ammonium formate solution (50 mM) and B is acetonitrile. The following method was used: 0-5 min 100\% A (isocratic), 5-18 min 0-95\% B (gradient), 18-22 min 95\% B (isocratic), 22-25 min 5-100\% A (gradient). Retention time 11.93 min , purity $\geq 97 \%$.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta[\mathrm{ppm}]=1.90-2.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-24), 2.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-25), 3.34-$ 3.58 (m, 13H, H-30 - H-38 and H-51), $3.80-3.81$ (m, 2H, H-29), $4.25-4.28$ (m, 1H, H-23), 4.35 (s, 2H, H-49), 4.50 (s, 1H, H-50), 5.04 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-12$), $4.56-4.58$ (m, 2H, H-39), $4.71-4.74$ (m, 2H, H-11), 5.36 $5.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-52), 6.64\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.5 \mathrm{~Hz}, \mathrm{H}-14 / 18\right), 7.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-27), 7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.24(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-22), 7.65\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.5 \mathrm{~Hz}, \mathrm{H}-15 / 17\right), 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-45), 8.67$ (s, 1H, H-8), 9.57 (br, 2H, H-19).

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta[\mathrm{ppm}]=26.9 \& 27.1$ (C24), 32.3 (C25), 42.0 (C49), 47.3 (C51), 50.3 (C39), 52.7 (C23), 66.9 (C11), 69.1 (C29), 69.5 - 70.1 (C30 - C38), 111.6 (C14/18), 126.5 (C45), 128.5 (C16), 129.4 (C15/17), 132.1 (C9), 138.3 (C46), 148.9 (C8), 151.2 (C13), 154.1 (C4), 158.5 (C2/5), 158.7 (C2/5), 166.8 (C21), 168.1 (C6/53), 168.2 (C6/53), 172.3 (C26), 174.1 (C41).

${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta[\mathrm{ppm}]=-194.3(\mathrm{~F}-54)$
MS (ESI positive): m/z (\% rel Int): 394.2 ([M] ${ }^{2+}, 100 \%$), 787.3 ([M] $]^{+}, 80 \%$), calculated for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{FN}_{12} \mathrm{O}_{10}$: 786.32.

II. ${ }^{18}$ F-Radiolabeling

II.1. General radiolabeling methods

Radiosyntheses were performed manually (starting activities $\leq 8 \mathrm{GBq}$) or in a manipulator-equipped hot cell (starting activities $>8 \mathrm{GBq}$) using conventional heating. N.c.a. $\left[{ }^{18} \mathrm{~F}\right]$ fluoride was produced using the ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n})^{18} \mathrm{~F}$ nuclear reaction. The aqueous ${ }^{18} \mathrm{~F}$-solution was trapped on an Sep Pak light Waters Accell Plus QMA cartridge, which was pre-conditioned with 1.0 M potassium carbonate solution $(10 \mathrm{~mL})$ and millipore water $(10 \mathrm{~mL})$. For elution, a solution of Kryptofix ${ }^{\odot}(5 \mathrm{mg}, 13 \mu \mathrm{~mol})$ and potassium carbonate $(1 \mathrm{mg}, 7.5 \mu \mathrm{~mol})$ in $600 \mu \mathrm{~L}$ (acetonitrile:water/1:1) was used. The azeotropic drying was performed at $85^{\circ} \mathrm{C}$ for 20 min under reduced pressure (250 mbar) and helium flow. Within this time, dry acetonitrile ($3 \times 1.0 \mathrm{~mL}$) was added and evaporated to yield the final dry $\left[{ }^{18} \mathrm{~F}\right]$ fluoride-base mixture.

II.3. ${ }^{18} \mathrm{~F}$-DBCO-folate

semi-preparative HPLC: solvent A is water, solvent B is acetonitrile; flow of $2.5 \mathrm{~mL} / \mathrm{min}$, isocratic method: 50\% A

 performed using water with 0.1% trifluoroacetic acid (TFA) as eluent A and eluent B was acetonitrile with 0.1% TFA. The following gradient method was used: 0-40 min, $5-95 \%$ B.

II.2. Synthesis of ${ }^{18} \mathrm{~F}$-Alakyne

semi-preparative HPLC: solvent A is 50 mM ammonium formate solution, solvent B is acetonitrile; flow of $3.6 \mathrm{~mL} / \mathrm{min}$, gradient method: 0-5 min 100% A, $5-18 \mathrm{~min} 0-95 \%$ B, $18-22 \mathrm{~min} 95 \%$ B, 22-25 min 5-100\% A

Figure S2. Analytical radio-HPLC chromatogram of ${ }^{18} \mathrm{~F}$-Alakyne. Analytical radio-HPLC was performed with the same gradient as described for the semi-preparative HPLC.

II.3. ${ }^{\text {18F-Ala-Folate }}$

semi-preparative HPLC: see ${ }^{18} \mathrm{~F}$-Alakyne

Figure S3. Analytical radio-HPLC chromatogram of ${ }^{18} \mathrm{~F}$-Ala-Folate. Analytical radio-HPLC was performed with the same gradient method as described for the semi-preparative HPLC.

III. In vitro studies

III.1. Stability in human serum albumin

Figure S4. Stability of ${ }^{18} \mathrm{~F}$-DBCO-folate and ${ }^{18}$ F-Ala-folate in human serum albumin at $37{ }^{\circ} \mathrm{C}$ for 1 h and 2 h .

III.2. FACS analysis of human KB and OC316 cells

Figure S5. FACS analysis of human KB and OC316 cells. 1×10^{6} cells were stained with $0.25 \mu \mathrm{~g}$ of anti-human FOLR1-APC (R\&D System) and analyzed by a LSRII (Becton Dickinson) flow cytometer equipped with DIVA software (version 6.0).

III.3. PIE-charts for uptake assay

Figure S6. Activity distribution of $5 \mathrm{nM}{ }^{18} \mathrm{~F}$-DBCO-folate in uptake assay at $4^{\circ} \mathrm{C}(\mathrm{a})$ and $37^{\circ} \mathrm{C}$ (b).

Figure S7. Activity distribution of $5 \mathrm{nM}^{18} \mathrm{~F}$-Ala-folate in uptake assay at $4^{\circ} \mathrm{C}(\mathrm{a})$ and $37^{\circ} \mathrm{C}(\mathrm{b})$.

IV. Ex vivo biodistribution

Table 1. Ex vivo biodistribution studies of ${ }^{18} \mathrm{~F}$-DBCO-folate in healthy and KB tumor bearing balb/c and balb/c nu/nu mice after 60 min p.i. Errors are given as standard deviation. Bold framed cells reflect FR-positive tissues. n.d. = no data.

	healthy balb/c mice		balb/c mice, KB xenograft	
	60 min p.i.	60 min p.i.	60 min p.i.	60 min p.i.
	($\mathrm{n}=4$)	Blocked $^{\text {a }}$ ($\mathrm{n}=5$)	$(\mathrm{n}=4)$	Blockade ${ }^{\text {a }}(\mathrm{n}=5$)
organ/tissue	[\%ID/g tissue]	[\%ID/g tissue]	[\%ID/g tissue]	[\%ID/g tissue]
Pancreas	0.08 ± 0.01	0.09 ± 0.05	0.07 ± 0.01	0.03 ± 0.02
Inguinal lymph nodes	0.18 ± 0.08	0.10 ± 0.08	0.48 ± 0.14	0.04 ± 0.02
Lung	0.35 ± 0.27	0.36 ± 0.11	0.17 ± 0.06	0.13 ± 0.05
Blood	0.08 ± 0.01	0.12 ± 0.05	0.09 ± 0.04	0.06 ± 0.04
Heart	0.09 ± 0.01	0.11 ± 0.06	0.08 ± 0.02	0.04 ± 0.02
Liver	0.24 ± 0.02	0.33 ± 0.08	0.18 ± 0.07	0.14 ± 0.06
Intestines (empty)	0.87 ± 0.57	0.33 ± 0.22	0.42 ± 0.52	0.56 ± 0.81
Spleen	0.07 ± 0.02	0.11 ± 0.06	0.06 ± 0.02	0.05 ± 0.03
Left kidney	3.90 ± 0.38	0.40 ± 0.07	4.83 ± 0.90	0.30 ± 0.04
Right kidney	3.99 ± 0.37	0.38 ± 0.07	4.76 ± 0.89	0.30 ± 0.02
Muscle	0.06 ± 0.01	0.07 ± 0.05	0.07 ± 0.01	0.02 ± 0.01
Stomach (empty)	n.d.	n.d.	0.82 ± 0.64	0.22 ± 0.09
Appendix	n.d.	n.d.	0.13 ± 0.02	0.07 ± 0.01
Tumor			0.48 ± 0.14	0.09 ± 0.04

${ }^{\text {a }}$ In the blocking group, each animal received $100 \mu \mathrm{~g} / 100 \mu \mathrm{~L}$ of native folic acid in phosphate buffered saline (PBS) 2 min before radiotracer injection.

Table 2. Ex vivo biodistribution studies of ${ }^{18} \mathrm{~F}$-Ala-folate in healthy and KB tumor bearing balb/c and balb/c nu/nu mice after 60 min p.i. Errors are given as standard deviation. Bold framed cells reflect FR-positive tissues. n.d. = no data.

	healthy balb/c mice		balb/c mice, KB xenograft	
	60 min p.i.	60 min p.i.	60 min p.i.	60 min p.i.
	$(\mathrm{n}=3)$	Blocked $^{\text {a }}$ ($\mathrm{n}=3$)	$(\mathrm{n}=5)$	Blockade ${ }^{\text {a }}$ ($=4$)
organ/tissue	[\%ID/g tissue]	[\%ID/g tissue]	[\%ID/g tissue]	[\%ID/g tissue]
Pancreas	0.33 ± 0.20	0.16 ± 0.04	0.26 ± 0.11	0.12 ± 0.08
Inguinal lymph nodes	0.93 ± 0.67	0.27 ± 0.15	0.57 ± 0.15	0.17 ± 0.12
Lung	0.36 ± 0.16	0.38 ± 0.05	0.28 ± 0.05	0.19 ± 0.10
Blood	0.29 ± 0.29	0.18 ± 0.01	0.17 ± 0.05	0.13 ± 0.06
Heart	0.32 ± 0.21	0.14 ± 0.04	0.22 ± 0.09	0.09 ± 0.05
Liver	1.51 ± 1.26	1.63 ± 0.32	1.71 ± 1.02	1.34 ± 0.67
Intestines (empty)	1.67 ± 1.12	4.86 ± 3.97	3.42 ± 2.18	1.49 ± 1.23
Spleen	0.15 ± 0.09	0.14 ± 0.03	0.16 ± 0.04	0.11 ± 0.06
Left kidney	19.90 ± 8.63	1.88 ± 0.44	14.49 ± 3.42	1.07 ± 0.49
Right kidney	20.55 ± 9.71	1.72 ± 0.58	14.27 ± 3.35	1.00 ± 0.36
Muscle	0.26 ± 0.13	0.15 ± 0.02	0.22 ± 0.02	0.22 ± 0.13
Stomach (empty)	0.71 ± 0.24	1.99 ± 1.68	0.95 ± 0.50	2.50 ± 1.80
Appendix	0.20 ± 0.11	3.11 ± 1.71	0.39 ± 0.22	0.13 ± 0.04
Tumor			1.68 ± 0.13	0.26 ± 0.06

${ }^{\text {a }}$ In the blocking group, each animal received $100 \mu \mathrm{~g} / 100 \mu \mathrm{~L}$ of folic acid in phosphate buffered saline (PBS) 2 min before radiotracer injection.

V. Time-Activity Curve

Figure S8: Accumulation kinetics of ${ }^{18} \mathrm{~F}-\mathrm{DBCO}$-folate and ${ }^{18} \mathrm{~F}$-Ala-Folate. Analysis of a dynamic PET scan over 60 min p.i.

VI. PET/MR-studies

Figure S9: MIP PET images of a KB-tumor bearing mouse which received blocking dose of folic acid. Static scan over 10 min 50 min p.i. (a) ${ }^{18} \mathrm{~F}$-DBCO-folate and (b) ${ }^{18} \mathrm{~F}$-Ala-folate. $\mathrm{Tu}=\mathrm{KB}$-tumor, $\mathrm{Gb}=$ gallbladder, $\mathrm{Li}=$ liver, $\mathrm{Ki}=$ kidney, $\mathrm{Int}=$ intestines, $\mathrm{Bl}=$ bladder.

