Supplementary Materials

Ordinary differential equations of the PGHS-1 model
$\frac{d E_{1}}{d t}=V_{10}-V_{11}-V_{31}+V_{50}-V_{72}$
$\frac{d E_{2}}{d t}=V_{11}-V_{12}-V_{13}-V_{32}-V_{38}$
$\frac{d E_{3}}{d t}=V_{9}-V_{10}+V_{12}-V_{30}$
$\frac{d E_{4}}{d t}=V_{35}-V_{37}-V_{49}+V_{54}-V_{56}$
$\frac{d E_{5}}{d t}=-V_{1}+V_{4}-V_{9}+V_{13}-V_{28}-V_{43}+V_{53}+V_{57}-V_{58}$
$\frac{d E_{6}}{d t}=V_{14}-V_{15}+V_{17}+V_{30}$
$\frac{d E_{7}}{d t}=V_{23}-V_{24}+V_{33}-V_{35}-V_{41}-V_{52}$
$\frac{d E_{8}}{d t}=V_{3}-V_{4}-V_{22}+V_{24}+V_{49}$
$\frac{d E_{9}}{d t}=V_{1}-V_{2}-V_{14}+V_{18}-V_{29}-V_{44}-V_{61}$
$\frac{d E_{10}}{d t}=V_{15}-V_{16}+V_{31}+V_{50}$
$\frac{d E_{11}}{d t}=-V_{47}+V_{52}-V_{53}-V_{54}$
$\frac{d E_{12}}{d t}=V_{7}-V_{8}+V_{22}-V_{23}$
$\frac{d E_{13}}{d t}=V_{2}-V_{3}-V_{19}+V_{21}+V_{48}+V_{56}$
$\frac{d E_{14}}{d t}=V_{16}-V_{17}-V_{18}+V_{32}-V_{39}-V_{56}$
$\frac{d E_{15}}{d t}=-V_{5}+V_{8}+V_{28}-V_{45}-V_{50}-V_{60}$
$\frac{d E_{16}}{d t}=V_{6}-V_{7}+V_{19}-V_{20}$
$\frac{d E_{17}}{d t}=V_{34}-V_{36}-V_{48}-V_{54}$
$\frac{d E_{18}}{d t}=V_{25}-V_{26}+V_{60}+V_{59}$
$\frac{d E_{19}}{d t}=V_{47}-V_{64}-V_{65}-V_{66}-V_{67}-V_{68}$
$\frac{d E_{20}}{d t}=V_{5}-V_{6}+V_{29}-V_{46}-V_{51}-V_{59}$
$\frac{d E_{21}}{d t}=V_{20}-V_{21}-V_{33}-V_{34}-V_{40}$
$\frac{d E_{22}}{d t}=-V_{25}+V_{27}+V_{36}+V_{37}+V_{58}+V_{61}$
$\frac{d E_{23}}{d t}=V_{26}-V_{27}-V_{42}$
$\frac{d F I E}{d t}=V_{38}+V_{39}+V_{40}+V_{41}+V_{42}+V_{43}+V_{44}+V_{45}+V_{46}+V_{54}$
$\frac{d A A}{d t}=-V_{1}-V_{5}-V_{30}-V_{31}-V_{32}$
$\frac{d O_{2}}{d t}=-2 \cdot V_{3}-2 \cdot V_{7}-2 \cdot V_{33}-2 \cdot V_{55}$
$\frac{d P G H_{2}}{d t}=V_{11}+V_{16}+V_{20}+V_{23}+V_{26}$

$$
\begin{align*}
& \frac{d R C}{d t}=-V_{9}-V_{10}-V_{12}-V_{14}-V_{15}-V_{17}-V_{19}-V_{21}-V_{22}-V_{24}-V_{25}- \tag{28}\\
& \quad V_{27}-V_{28}-V_{29}-V_{48}-V_{49}-V_{50}-V_{51}-V_{53} \\
& \sum_{i=1}^{24} E_{i}=E_{O} \tag{29}\\
& R C+O C=R C_{O} \tag{30}\\
& P G H_{2}+P G G_{2}=A A_{0},
\end{align*}
$$

where rate equations V_{i} are defined by the following relations:

$V_{1}=k_{1} \cdot\left(E_{5} \cdot A A-K_{1} \cdot E_{9}\right)$	(32)	$V_{35}=k_{14} \cdot E_{7}$
$V_{2}=k_{2} \cdot E_{9}$	(33)	$V_{36}=k_{15} \cdot E_{17}$
$V_{3}=k_{3} \cdot E_{13} \cdot O_{2} \cdot O_{2}$	(34)	$V_{37}=k_{16} \cdot E_{4}$
$V_{4}=k_{4} \cdot E_{8}$	(35)	$V_{38}=k_{i n 1} \cdot E_{2}$
$V_{5}=k_{1} \cdot\left(E_{15} \cdot A A-K_{1} \cdot E_{20}\right)$	(36)	$V_{39}=k_{\text {in } 1} \cdot E_{14}$
$V_{6}=k_{2} \cdot E_{20}$	(37)	$V_{40}=k_{\text {in } 1} \cdot E_{21}$
$V_{7}=k_{3} \cdot E_{16} \cdot O_{2} \cdot O_{2}$	(38)	$V_{41}=k_{i n 1} \cdot E_{7}$
$V_{8}=k_{4} \cdot E_{12}$	(39)	$V_{42}=k_{\text {in } 1} \cdot E_{23}$
$V_{9}=k_{5} \cdot E_{5} \cdot R C$	(40)	$V_{43}=k_{\text {in2 }} \cdot E_{5}$
$V_{10}=k_{6} \cdot E_{3} \cdot R C$	(41)	$V_{44}=k_{i n 2} \cdot E_{9}$
$V_{11}=k_{7} \cdot P G G_{2} \cdot E_{1}$	(42)	$V_{45}=k_{\text {in } 2} \cdot E_{15}$
$V_{12}=k_{8} \cdot E_{2} \cdot R C$	(43)	$V_{46}=k_{\text {in } 2} \cdot E_{20}$
$V_{13}=k_{9} \cdot E_{2}$	(44)	$V_{47}=k_{1} \cdot\left(A A \cdot E_{11}-K_{1} \cdot E_{19}\right)$
$V_{14}=k_{10} \cdot E_{9} \cdot R C$	(45)	$V_{48}=k_{5} \cdot E_{17} \cdot R C$
$V_{15}=k_{6} \cdot E_{6} \cdot R C$	(46)	$V_{49}=k_{5} \cdot E_{4} \cdot R C$
$V_{16}=k_{7} \cdot P G G_{2} \cdot E_{1}$	(47)	$V_{50}=k_{5} \cdot E_{15} \cdot R C$
$V_{17}=k_{8} \cdot E_{14} \cdot R C$	(48)	$V_{51}=k_{10} \cdot E_{20} \cdot R C$
$V_{18}=k_{11} \cdot E_{14}$	(49)	$V_{52}=k_{4} \cdot E_{7}$
$V_{19}=k_{6} \cdot E_{13} \cdot R C$	(50)	$V_{53}=k_{8} \cdot E_{11} \cdot R C$
$V_{20}=k_{7} \cdot P G G_{2} \cdot E_{16}$	(51)	$V_{54}=k_{\text {in } 1} \cdot E_{11}$
$V_{21}=k_{8} \cdot E_{21} \cdot R C$	(52)	$V_{55}=k_{3} \cdot E_{17} \cdot O_{2} \cdot O_{2}$
$V_{22}=k_{6} \cdot E_{8} \cdot R C$	(53)	$V_{56}=k_{13} \cdot E_{14}$
$V_{23}=k_{7} \cdot P G G_{2} \cdot E_{12}$	(54)	$V_{57}=k_{14} \cdot E_{4}$
$V_{24}=k_{8} \cdot E_{7} \cdot R C$	(55)	$V_{58}=k_{\text {in }} \cdot E_{5}$
$V_{25}=k_{6} \cdot E_{22} \cdot R C$	(56)	$V_{59}=k_{\text {in }} \cdot E_{20}$
$V_{26}=k_{7} \cdot P G G_{2} \cdot E_{18}$	(57)	$V_{60}=k_{\text {in }} \cdot E_{15}$
$V_{27}=k_{8} \cdot E_{23} \cdot R C$	(58)	$V_{61}=k_{\text {in }} \cdot E_{9}$
$V_{28}=k_{6} \cdot E_{5} \cdot R C$	(59)	$V_{62}=k_{\text {in }} \cdot E_{11}$
$V_{29}=k_{6} \cdot E_{9} \cdot R C$	(60)	$V_{63}=k_{7} \cdot P G G_{2} \cdot E_{15}$
$V_{30}=k_{12} \cdot\left(E_{3} \cdot A A-K_{12} \cdot E_{6}\right)$	(61)	$V_{64}=k_{2} \cdot E_{19}$
$V_{31}=k_{12} \cdot\left(E_{1} \cdot A A-K_{12} \cdot E_{10}\right)$	(62)	$V_{65}=k_{5} \cdot E_{19} \cdot R C$
$V_{32}=k_{12} \cdot\left(E_{2} \cdot A A-K_{12} \cdot E_{14}\right)$	(63)	$V_{66}=k_{8} \cdot E_{19} \cdot R C$
$V_{33}=k_{3} \cdot E_{21} \cdot O_{2} \cdot O_{2}$	(64)	
$V_{34}=k_{13} \cdot E_{21}$	(65)	

SBML file of the model can be downloaded from
https://www.researchgate.net/project/COX-1-2-and-NSAIDs

