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Abstract: The antibacterial activity of imidazole and imidazolium salts is highly dependent upon their
lipophilicity, which can be tuned through the introduction of different hydrophobic substituents on the
nitrogen atoms of the imidazole or imidazolium ring of the molecule. Taking this into consideration,
we have synthesized and characterized a series of imidazole and imidazolium salts derived from
L-valine and L-phenylalanine containing different hydrophobic groups and tested their antibacterial
activity against two model bacterial strains, Gram-negative E. coli and Gram-positive B. subtilis.
Importantly, the results demonstrate that the minimum bactericidal concentration (MBC) of these
derivatives can be tuned to fall close to the cytotoxicity values in eukaryotic cell lines. The MBC value
of one of these compounds toward B. subtilis was found to be lower than the ICs; cytotoxicity value
for the control cell line, HEK-293. Furthermore, the aggregation behavior of these compounds has
been studied in pure water, in cell culture media, and in mixtures thereof, in order to determine if
the compounds formed self-assembled aggregates at their bioactive concentrations with the aim of
determining whether the monomeric species were in fact responsible for the observed antibacterial
activity. Overall, these results indicate that imidazole and imidazolium compounds derived from
L-valine and L-phenylalanine—with different alkyl lengths in the amide substitution—can serve as
potent antibacterial agents with low cytotoxicity to human cell lines.
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1. Introduction

Aromatic heterocycles, particularly the imidazole ring, have been used in the last decades as
structural skeletons to obtain different types of bioactive compounds with antibacterial, antifungal,
anticancer, antiviral, antidiabetic, and other properties [1-4]. The search for new potent drug molecules
derived from imidazole continues to be an intense area of investigation in medicinal chemistry [5-7].
Moreover, pharmaceutical research, manufacture, and regulation are enhancing the development of
solid active ingredients, delivered as powders or tablets; however, many solid drugs which perform well
in in vitro evaluation remain too insoluble for the body to absorb [8,9]. Most of the bioactive agents sold
for pharmaceutical or food industries are salts [10,11], and in this context, ionic liquids (ILs) represent a
promising class of drug candidates whose physicochemical and pharmaceutical properties can be easily
tuned [12-17]. In this regard, the imidazolium skeleton can be transformed into ionic liquids with
promisingly potent pharmacological properties [18-21]. Consequently, monoimidazolium [22-24] and
bisimidazolium [25-28] salts have been explored as a new generation of antibacterial agents. In this
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context, amino acid-based monoimidazolium salts with good bacterial toxicity have been reported in
the literature [29].

Our research group has an ongoing interest in the biomimetic and bioactive capacity of
imidazole or imidazolium amino acid derivatives [30-33]. Herein, imidazole, monotopic, and ditopic
imidazolium salts derived from L-valine and L-phenylalanine with different alkyl lengths in the amide
substitution were synthesized and characterized comprehensively. The antibacterial activity of these
amino acid-based imidazolium salts against Gram-negative Escherichia coli DH5-o (herein E. coli)
and Gram-positive Bacillus subtilis 1904-E (herein B. subtilis) were evaluated and their cytotoxicity was
also studied using a human embryonic kidney cell line (HEK-293). Finally, due to the amphiphilic
character of these compounds and the strong tendency towards self-aggregation of ionic liquid-related
surfactants based on imidazolium salts [34-37], we investigated the spontaneous aggregation behavior
of these compounds in water and in bacterial cell culture medium. Through optical and scanning electron
microscopy, as well as UV-vis and fluorescence spectroscopy, we have extracted structure-property
relationships between the degree of aggregation/self-assembly of the L-valine and L-phenylalanine
derivatives and their corresponding antibacterial activity and cytotoxicity [38].

2. Results

2.1. Synthesis

The imidazole-amino acid derivatives 1a, 2a, and 3a were obtained from the corresponding
x-amino amide as previously described [31]. Monotopic and ditopic -imidazolium salts 1b-3b and
1c-3c were obtained in high yield by treatment of the corresponding imidazole with benzyl bromide or
1,3-bromomethylbenzene, respectively, as described in our previous publications (Scheme 1) [30,32].
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Scheme 1. Synthesis of the amino acid-based imidazolium salts in this report.

2.2. Antibacterial and Cytotoxicity Studies

The in vitro antibacterial activities of the synthesized compounds were examined against E. coli and
B. subtilis. Bacteria were incubated in culture media with varying concentrations of the examined
compound and the antibacterial properties were determined by observation of the optical density
at 560 nm (bacteriostatic activity) and by the Resazurin cell viability assay (bactericidal activity).
The corresponding minimal bactericidal concentration (MBC) and minimum inhibitory concentration
(MIC) values that were obtained are summarized in Table 1 (please refer to Table S1 for MIC and MBC
values in uM).

The outer membrane of Gram-negative bacteria such as E. coli includes porins, which allow the
passage of small hydrophilic molecules across the membrane, and lipopolysaccharide molecules that
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extend into extracellular space. Thus, the observed trend in the activity results could be explained
by the relative lipophilicity of the compounds combined with their capacity to disrupt the cell
membrane [39,40]. The relative lipophilicity of the compounds was determined theoretically using
VCCLab and Molinspiration softwares (LogP values Table 1) and experimentally (retention time values
from HPLC, Table 1, Figures S3-58). The HPLC method used was first validated using different
lipophilic commercial compounds with LogP values from 1 to 4.5 (Figure S3a). The structure-activity
relationships of the compounds will be further discussed in Section 3.

Table 1. Minimum inhibitory concentration (MIC, pg/mL), minimal bactericidal concentration
(MBC, pg/mL), the half maximal inhibitory concentration ICsy (ug/mL) values and the partition
coefficient log P values and HPLC retention times for the different compounds.

E. coli B. subtilis

a U b g
Entry Compound LogP Retention Time (min) MIC ug/mL® MBC pg/mL® MIC pg/mL®  MBC pg/mL ° HEK-293 IC50 pg/mL

1 1la 3.01¢ 6.1 >2000 >2000 16 16 32+05
2 1b 3634 6.2 128 256 4 8 0.8 +0.2
3 1c 4834 7.7 256 256 16 32 18+4
4 2a —-0.67 € 34 >2000 >2000 >2000 >2000 >45
5 2b -0204 3.7 >2000 >2000 >1000 >1000 >79
6 2¢ —1344¢ 3.1 1000 >2000 128 256 >142
7 3a 3.50 ¢ 6.7 1000 >2000 16 16 73+12
8 3b 42649 8.8 32 128 4 4 61 +6
9 3¢ 5.964 10.0 2000 2000 64 64 37+5
10 Alamethicin [41] - - 16 - 6251 [42]

2 Average of values calculated using VCCLab and Molinspiration software. P Retention time in HPLC C18 reverse
phase, CH3CN/H,O 70/30 (0.1% HCO,H). © Value for the protonated forms. d Calculated for the imidazolium
cations. © MIC/MBC values were obtained from a minimum of three separate experiments. Please refer to Supporting
Information for MIC/MBC/IC 50 values in uM. f Cytotoxicity against MRC-5 cells.

The MBC values obtained were plotted against the logP values of the corresponding compounds
to study the possible correlation between activity and lipophilicity (Figure 1).
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Figure 1. Plot of Log P vs. MBC. * For the sake of clarity, MBC values > 2000 pg/mL are given the value
of 3000 pg/mL.
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Electron microscopy is a powerful tool to further assess the effect of the imidazole derivatives and
imidazolium salts on bacterial cell growth, inhibition, and death. Two compounds which showed from
moderate to good antibacterial activity—the bisimidazolium salt 1c and the monoimidazolium salt
3b, respectively—were chosen for electron microscopy characterization. For these studies, E. coli and
B. subtilis were inoculated for 20 h with each compound at their corresponding MIC (Figure 2) and % MIC
(Figures S1 and S2) concentrations and fixed with glutaraldehyde.

E. coli

B. subtilis

Figure 2. Scanning electron microscopy (SEM) images of E. coli and B. subtilis without treatment (-)
and after incubation with compounds 1c and 3b at their corresponding MIC (60,000x). See Supporting
Information for additional SEM images.

2.3. Aggregation Studies

The self-assembly of the compounds in aqueous medium and in the bacterial cell culture medium
(LB broth) was investigated by optical and scanning electron microscopy, as well as UV-vis and
fluorescence spectroscopy.

2.3.1. Fluorescence Spectroscopy

To investigate the microenvironment of the critical aggregation concentration (CAC) for self-assembly
in water and in the bacterial cell culture medium by fluorescence, the intensity ratio of two of the peaks
(Iy/I3) of the pyrene fluorescence spectrum was used [43—45]. Plots of the pyrene I1/I5 ratio as a function
of the total surfactant concentration show a typical sigmoidal decrease in the region where self-assembly
takes place. Atlow concentrations, this ratio is larger as it corresponds to a polar environment for pyrene.
When the surfactant concentration increases this ratio decreases rapidly, as the self-assembly favors the
location of pyrene in a more hydrophobic environment, until reaching a roughly constant value because of
the full incorporation of the probe into the hydrophobic region of the aggregates. Different approaches
have been used to estimate CAC values from I1/I3 ratios [46]. The most common approach is the use of the
break points, either directly or by extrapolating the values from the intersection of the two straight lines
defined at the constant and variable regions of the I;/I3 sigmoidal curve [43,46-48]. As CAC represents the
threshold of concentration at which self-aggregation starts, the corresponding value can be estimated from
the break point at lower concentration (see Figures 59-514) [49-52].

Fluorescence studies were carried out using MilliQ® water and 1/1 MilliQ® water/bacterial cell
culture medium, because with the pure cell culture medium, a strong broad fluorescence emission
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band was observed precluding an accurate analysis. Furthermore, compound 3¢ could not be studied
due to solubility problems. The corresponding CACs obtained in water and in the 1/1 mixture of
water/bacterial cell culture medium by fluorescence are shown in Table 2.

Furthermore, the MBC values of the compounds against B. subtilis were compared to their CAC
(Figure 3). This comparison can shed light on the active form of the molecules exerting the antibacterial
action, i.e.,, monomeric or aggregated structures.

Table 2. Estimated critical aggregation concentration (CAC) values obtained in aqueous and bacterial
cell culture medium using fluorescence spectroscopy at 25 °C.

CAC Fluorescence

Ent Amphiphili d (miD”
ntry mphiphilic Compoun COMW ©
wbh
CAC1 CAC2
1 la 0.085 0.004 0.045
2 1b 0.084 0.006 0.048
3 1c 0.010 0.016 0.21
4 2a 431 2.89 5.4
5 2b 4.57 3.46 8.4
6 2c 2.34 2.25 3.54
7 3a 0.033 0.018 0.325
8 3b 0.098 0.063 0.33
9 3c nd 4 nd 9

2 CAC values from the break point. b In water. € In the 1/1 bacterial cell culture medium/water. 4 Low solubility.

- u -CAC
—e—MBC

—a— MBC
- e- CAC
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Figure 3. Correlation of MBC for B. subtilis and CAC for the different series of compounds in the
bacterial cell culture medium: (a) valine derivatives with long alkyl chain; (b) valine derivatives with
short chain; and (c) phenylalanine derivatives with long alkyl chain.
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2.3.2. Optical Microscopy and Scanning Electron Microscopy (SEM)

The morphology of the aggregates in water, in 1/1 water/bacterial cell culture medium, and in
the cell culture medium at concentrations above the CAC, were studied by optical microscopy
(Figures 515-517) and SEM (Figure 4 and Figure S18).

Figure 4. SEM images for 3b (a) 0.5 mM in water; (b) 0.7 mM in 1/1 water/bacterial cell culture medium;
and (c¢) 0.7 mM in the bacterial cell culture medium.

2.3.3. UV-Vis Spectroscopy

The aggregation and stability of the aggregates in the different solvents, water, 1/1 water/bacterial
cell culture, and bacterial cell culture medium for 1a-c were studied by UV-vis at 25 °C measuring the
absorbance at 600 nm, for 1 mM colloidal solutions (Figure 5, Figures S19 and S20) [53,54].
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Figure 5. (a) Change in absorbance at 600 nm with respect to time for 1b at 1 mM in different media.
(b) Change in absorbance at 600 nm with respect to time for 1a-1c at 1 mM in the bacterial cell

culture medium.
3. Discussion

The Gram-positive cell wall is composed of a thick, multilayered peptidoglycan sheath outside of
the cytoplasmic membrane, while the Gram-negative cell wall is composed of an outer membrane
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linked by lipoproteins to thin, mainly single-layered peptidoglycan. The peptidoglycan is located
within the periplasmic space that is created between the outer and inner membranes [55]. It therefore
follows that all the tested compounds were more active against B. subtilis (Gram-positive) than
E. coli (Gram-negative) (i.e., see Table 1, entries 1 and 7). Compound 3b (entry 8) proved to be the
most active antibacterial agent possessing an MBC as low as 4 and 128 ug/mL against B. subtilis and
E. coli respectively; while those compounds with shorter alkyl chains presented the lowest activity.
Some of the compounds (Table 1, entries 2, 3, 6, 7, and 8) presented MIC values lower than MBC values.
An antimicrobial compound is considered to be bactericidal whenever its MBC to MIC ratio is less
than or equal to four. Compounds with MBC/MIC >4 are considered to be bacteriostatic [56]. In all the
cases in which we could obtain exact MBC and MIC values (Table 1, entries 2, 3, 8 and 9), their ratio
was equal to or minor than four. Therefore, compounds 1b, 1c, 3b, and 3¢ can be considered to possess
true bactericidal activity.

The structural element which clearly relates to a better activity is the use of longer alkyl chains
(compounds 1 and 3) in contrast to shorter alkyl chains (compounds 2), probably due to an increased
lipophilicity. The toxicity towards miscellaneous bacterial strains of alkyl imidazolium salts has
been reported to increase with the length of the alkyl chain [57]. The monoimidazolium salts with
these longer alkyl chains (1la-b and 3a-b) were more active against B. subtilis and E. coli than the
bisimidazolium counterparts, with the monotopic salt 3b showing the lowest MIC and MBC values
(entries 2 and 8, Table 1), this indicates that the introduction of two hydrophobic alkyl chains contributes
greatly to decrease the activity, opposite to the trends observed in the literature [27].

Regarding amino acid nature, the phenylalanine monotopic salt with long alkyl chain (3b)
presented lower MIC and MBC values against E. coli than the analogous valine compound (1b)
(entries 2 and 8, Table 1), however for ditopic salts, the behavior is the opposite, 3¢ presented higher
MIC and MBC values than 1c (entries 3 and 9, Table 1).

Although a similar biological activity for the Gram-positive and Gram-negative organisms is
preferred, it is not always the case with different strains of microorganisms. Some authors have
described that Gram-positive organisms preferred a more lipophilic molecule than the Gram-negative
ones [58]. This has been attributed to the difference in the cell outer membrane between bacterial
types and strains: while Gram-positive bacteria have a very simple cell wall, the outer membrane
of Gram-negative bacteria contains lipopolysaccharides which are cross-bridged by divalent cations,
adding strength to the membrane and impermeability to lipophilic molecules. This agreed with the
results obtained in Table 1 where the more lipophilic compounds showed less activity against E. coli.

A good correlation was obtained between the theoretical logP, calculated using the average values
from VCCLab software and Molinspiration, and the retention time observed from HPLC (Figure S1).
The activity observed against B. subtilis increases for compounds with logP > 3 with MBC < 64 mg/mL.
However, MBC values greater than 2000 pug/mL were obtained for both lipophilic and lipophobic
compounds, with the exception of the lipophilic compounds 1b, 1¢c, and 3b which present lower MBC
values (Figure 1).

From the SEM images in Figure 2, both bacteria strains incubated with compounds 1c and 3b
show clear signs of damage: from morphological changes to disruption of the cell membrane and
leakage of cytoplasmatic material, ending with the disintegration of the bacteria into small fragments.
Most images, especially of B. subtilis, show an “implosion” of bacteria, with a marked depression in the
middle of the cell (also refer to Figures S1 and S2). In some of the images, aggregates of the compounds
can be seen surrounding the bacteria, many of which are attached to the cell membrane.

Human embryonic kidney cells, HEK-293, were chosen as a cell model to evaluate the cytotoxicity
of the compounds. The HEK-293 cells were incubated in the cell culture medium with varying
concentrations of the examined compound and the impact of treatment was measured using the MTT
cell viability assay [46]. The results indicated that compounds 1a-1c, 3a, and 3c were considerably
toxic with ICs values lower than 36 uM (Table 1 and Table S1). Surprisingly, compound 3b derived
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from phenylalanine was less toxic to the HEK-293 cell line at concentrations 15 times higher than the
MIC and MBC for the B. subtilis strain (Table 1, entry 8) [59].

Comparing results with the commercial antibiotic alamethicin, the corresponding MIC value
of 3b against B. subtilis is lower than alamethicin, (Table 1, entry 10) [41], whereas the toxicity of
alamethicin against MRC-5 human cells is similar to the cytotoxicity of the imidazolium salt 3b against
HEK-293 line [42].

To gain a more detailed understanding on the mechanism of cytotoxicity of these imidazole and
imidazolium salts on bacteria, we studied the possible structure—activity relationship between their
antibacterial activities and their aggregation behavior in bacterial cell medium [23,38].

From pyrene fluorescence studies in pure water, the plot of the I1/I3 ratio for the corresponding
emission spectra vs. concentrations showed one single break point (Figure S9, Figure 511, and Figure S13)
reaching in all cases values of I;/I3 = 1.3 or lower after the break point. However, in the bacterial cell
culture medium, the plot of the I1/I5 ratios for the corresponding emission spectra vs. concentration
presented two single break point and, in some cases, even three points. The two break points observed
for all the compounds suggest the presence of two different processes. The first one takes place at
I1/I3 values observed for pyrene in the absence of compounds (I1/I3 = 1.16 in water/1/1 bacterial cell
culture medium) and reveals that pyrene is fully exposed to the polar solvent mixture in this first
aggregation step. At the second break point, at higher concentrations, this ratio reaches lower values
suggesting the formation in this region of aggregates in which the probe molecule is less solvent
exposed [60]. For example, for compound 1b, the first break point at 6 pM leads to aggregates with an
appreciable solvent exposed probe (I1/I3 = 1.1) and the second process starts at ca. 48 uM affording
aggregates, providing a low polarity microenvironment to pyrene, reaching I1/I3 values = 0.8 for
1 mM concentration.

The CAC values obtained for compounds with long alkyl chain were in the uM range while
for compounds 2a-c with short alkyl chains, the CAC values obtained were in the mM range
(i.e., entries 1 and 4, Table 2), where the lowest CAC values for the ditopic salts were found in water.
In general, for the imidazole and monotopic salts, changing the medium from water to water/bacterial
cell culture medium led to a decrease in the CAC values (i.e., Table 2, entries 1 and 2), however for
ditopic salts, the CAC values did change significantly (Table 2, entries 3 and 6).

Comparing the first CAC values obtained in 1/1 water/bacterial cell culture medium and the MBC
for B. subtilis for the different series of compounds in Figure 3, it can be observed as compounds 1a-1c
presented the CAC below the MBC, implying that these compounds exist in an aggregated form at the
MBC concentration, meaning fewer imidazolium monomers will be present at these concentrations,
less than is needed to produce a significant biologic effect, thus increased overall concentrations are
needed to obtain the desired bactericidal effects if the monomeric form is the responsibility of the
corresponding bioactivity. However, different behavior was observed for the series 3a-3b derived from
phenylalanine. Figure 3c shows how the CAC line intersects the MBC line, indicating that compound
3b is not aggregated at the corresponding MBC value and exerts a high bactericidal effect, as observed
in Table 2 (entry 8). Finally, for the 2a—2c series, the CAC is below the MBC for 2a but above for 2b
and 2c, illustrating that the monomeric form is responsible for the corresponding antibacterial activity
(Table 2, entry 6).

In addition to the results above, the compounds containing dodecyl chains can easily align with
lipids and hence, accumulate within the bacterial cell membrane. In this regard, compounds with
longer alkyl tails have CACs in the uM range in the bacterial cell culture medium and thus easily
self-assemble, leading to an easy accumulation within the cell membrane. Therefore, resulting in a
lower effective concentration at the site of action within the cellular cytoplasm lower. This accumulation
could lead to a biocidal mechanism based on [38], as is observed in Figure 2. Furthermore, it appears
that the shorter chain length results in reduced membrane interaction and an energetically unfavorable
micelle formation, meaning low self-assembling capability, which leads to a lower overall bacterial
cytotoxicity as seen from the corresponding MIC and MBC values (Table 1).
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Consequently, by comparing the MBC for B. subtilis and CAC of the imidazole and imidazolium
series, this study has provided a better understanding of the relationship between the biological
activities of these compounds correlated with their aggregation capabilities. The results demonstrate
that the compounds with longer alkyl chains provide excellent antimicrobial activity although most of
them are aggregated at the antimicrobial response concentration, with only compound 3b existing in
its monomeric form at its corresponding MBC value.

Optical microscopy confirmed the formation of spherical aggregates between 0.5-20 um diameter
in size in the three different media (Figures S15-S17). Regarding the medium, in general, in the
culture medium, the dispersity of the aggregates decreased for compounds with longer alkyl chains
(see Figures 515 and S17). Furthermore, in the culture medium, compounds 2a-c and 3b were able to
form worm-like aggregates at the studied concentrations (Figures S16 and S17).

SEM images for 1c and 3b in water, in 1/1 water/bacterial cell culture medium and in the bacterial
cell culture medium revealed the formation of different aggregates morphologies. Compound 1c
produced spherical aggregates with <3 um diameter size in all three media, with the aggregates
in water being more distorted (Figure S18). Compound 3b was able to form spherical aggregates
in water and water/bacterial cell culture medium (Figure 4a,b), while in the pure culture medium,
different morphologies were observed, such as spherical aggregates <1 um in diameter coexisting with
fibrillary aggregates (Figure 4c). When viewed at higher magnification, it is observed that the larger
spherical aggregates consisted of several smaller aggregates or dendritic fibrillary aggregates for 3b
and 1c, respectively (Figure 4 and Figure 518).

Regarding the stability of the aggregates formed, studies by UV-vis spectroscopy for la—c are
gathered in Figure 5. Figure 5a shows the change in absorbance (—AAg) of compound 1b (1 mM)
at 600 nm with respect to time in the different media. The initial rate for the change in absorbance
associated to the destabilization of the aggregates is defined by the slope of the linear region of the
initial —AAggg versus time plot. The slope and the total change in the absorbance was the smallest when
using the water/bacterial cell culture medium, being the rate at the initial region for pure water and
bacterial cell culture medium in the same ranges. However, it must be highlighted that the absorbance
decreases until reaching a zero value after 500 min for pure water. A different behavior was obtained
for 1a and 1c (see Figures S19 and 520). For compound 1a, the absorbance at 600 nm decreased with
time in the three media with similar rates, while for 1c, the rate followed the order water > bacterial
cell culture medium > 1/1 water/bacterial cell culture medium, reaching almost zero values in the tree
media after 24 h.

Overall, the results obtained show that in the pure culture medium, the stability of the aggregates
follows the order 1a > 1b > 1c (Figure 5b), indicating that the introduction of the two headgroups and
hydrophobic alkyl chains in 1c contributes to a minor stabilization of the aggregates in this medium.

4. Materials and Methods
4.1. Materials

4.1.1. Reagents and Culture Media

Resazurin sodium salt and dimethyl sulfoxide (DMSO) were bought from Sigma-Aldrich.
Luria-Bertani (LB) liquid broth (Miller’s formulation) and nutrient broth (NB) were freshly prepared
and sterilized by autoclave. Broth powders were bought from Scharlab. Tryptone soy agar plates were
purchased from Thermo Scientific. Glutaraldehyde was purchased in solution at 25% in H,O and
Grade II from Sigma Aldrich and used as provided. Phosphate buffer was prepared from the solid
salts NaH,PO4 and Na,HPOy, both purchased from Aldrich at qualities 99% and 99.5% respectively,
by dissolving them in MilliQ® water and adjusting pH with NaOH and HCl solutions.

Cell culture media for cytotoxicity studies were purchased from Gibco (Grand Island, NY, USA).
Fetal bovine serum (FBS) was obtained from HyClone (UT, USA). Supplements and other chemicals
not listed in this section were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Plastics for
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cell culture were supplied by Thermo Scientific BioLite (Madrid, Spain). All tested compounds were
dissolved in DMSO at a concentration of 10 mM and stored at —20 °C until use. HEK-293 cell
lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing glucose (1 g/L),
glutamine (2 mM), penicillin (50 pg/mL), streptomycin (50 pg/mL), and amphotericin B (1.25 pg/mL)
supplemented with 10% FBS.

Reagents and solvents, including NMR solvents, were purchased from commercial suppliers
and were used without further purification except for pyrene, used for fluorescence studies, that was
crystallized twice from methanol. Deionized water was obtained from a MilliQ® equipment (Burlington,
MA, USA). Imidazoles 1a and 2a and imidazolium salts 1b and 1c were prepared as previously
described [30,32].

4.1.2. Synthesis and Characterization

Imidazole 3a and compounds 2b-c and 3b—c were prepared following the synthetic protocols.

General procedure for compound 3a: To a mixture of glyoxal (40% aq., 1.1 equiv, 2.6 mL)
and formaldehyde (37% aq., 5.0 equiv., 7.7 mL), the (5)-2- amino-N-dodecyl-3- phenylpropanamide
compound (1.0 equiv,, 6.9 g, 20.8 mmol) and ammonium acetate (1.1 equiv, 1.8 g, 23.4 mmol)
were dissolved previously in methanol and added. The reaction mixture was stirred at room
temperature for 48 h. The solvent was evaporated under reduced pressure and the resulting crude
residue was treated with saturated Na,COj3 solution, extracted with CH,Cl, (3%), dried with anhydrous
MgSQy, filtered, and concentrated.

General procedure for compounds 2b-3b: To a mixture of compound 2a-3a (1.1 equiv)
and bromomethylbencene (1.0 equiv) were dissolved in acetonitrile (5 mL). The reaction was carried
out under microwave irradiation using 120 W, 1.72 x 100 Pa, 150 °C, and 1 h. After solvent evaporation,
the remaining solid was washed with diethyl ether (x3) to afford the desired compound.

General procedure for compounds 2c-3c: To a mixture of compound 2a-3a (2.2 equiv) and
1, 3-(bis-bromomethyl)benzene (1.0 equiv) were dissolved in acetonitrile (5 mL). The reaction was
carried out under microwave irradiation using 120 W, 1.72 x 10° Pa, 150 °C, and 1 h. After solvent
evaporation, the remaining solid was washed with diethyl ether (x3) to afford the desired compound.

Compound 3a: yellow liquid (7 g, 88%), [a]*°p = —7.11 (c = 0.01, MeOH); m.p= 56.1 °C. 'H NMR
(400 MHz, CDCl3 and CD30D) 6 7.26-7.07 (m, 4H), 7.00 (m, 1H), 6.97-6.89 (m, 3H), 6.48 (t,] = 5.7 Hz,
NH), 4.67 (dd, ] = 9.1, 6.0 Hz, 1H), 3.46 (dd, ] = 14.0, 6.0 Hz, 1H), 3.19-3.00 (m, 3H), 1.30 (m, 2H),
1.26-1.04 (m, 18H), 0.85-0.77 (m, 3H). 13C NMR (101 MHz, CDCl3) § 168.3, 134.0, 136.3, 129.6, 128.8,
128.7,127.2,118.0, 62.9, 39.8, 39.3, 31.9, 29.6, 29.6, 29.5, 29.3, 29.2, 26.8, 22.7, 14.1. MS (ESI) (m/z) calcd.
for Co4H37N3O [M+H]* = 384.3; found 383.4 (100%), 767.7 (35%, [M+M+H]"). IR (ATR) = 3309, 2953,
2919, 2850, 1656, 1549, 1493, 1469, 1454 cm~!. Calculated for CoyH37N30-4H,0: C 63.27, H 9.96, N 9.22;
found C 62.97, H9.74, N 9.58.

Compound 2b: yellow oil (150 mg, 93%); [«]*°p = 41.07 (c = 0.01, MeOH); m.p. 33 °C. 'H NMR
(400 MHz, CDCl3) 6 9.93 (s, 1H), 8.62 (t, ] = 5.7 Hz, 1H), 7.75 (t, ] = 1.8 Hz, 1H), 7.38-7.21 (m, 5H),
7.11 (s, 1H), 5.66 (d, ] = 10.6 Hz, 1H), 5.47-5.27 (dd, ] = 10.6, 2.2 Hz, 2H), 3.34-3.17 (m, 1H),
3.12-2.96 (m, 1H), 2.45-2.37 (m, 1H), 1.54-1.40 (m, 2H), 1.32-1.21 (m, 2H), 1.03 (d, ] = 6.5 Hz, 3H),
0.81 (t, ] = 7.3 Hz, 3H), 0.76 (d, ] = 6.6 Hz, 3H). '3C NMR (101 MHz, CDCl3) & 167.0, 136.1, 131.8,
130.1, 129.8, 128.6, 121.8, 120.9, 67.7, 53.9, 39.6, 31.2, 31.0, 20.2, 18.8, 18.3, 13.7. MS (ESI) (m/z) calcd.
for C19HpgN3O [M]* = 314.2; found 314.5 (100%); IR (ATR)= 3220, 3063, 2962, 2933, 2873, 1672, 1550,
1497, 1456, 1327, 1225, 1152 em™!. Calculated for C19HpgN3OBr: C 57.87, H 7.16, N 10.66; found C
57.80, H 6.98, N 11.01.

Compound 3b: yellow viscous solid (129 mg, 90%); [a]®p = —31.07 (c = 0.01, MeOH); m.p =16 °C.
'H NMR (300 MHz, CDCl3) & 9.53 (s, 1H), 8.59 (t, ] = 5.5 Hz, NH), 7.74 (s, 1H), 7.41-7.14 (m, 7H),
7.04-6.95 (m, 2H), 6.92 (s, 1H), 6.55 (m, 1H), 5.14 (q, ] = 14.7 Hz, 2H), 3.51-2.95 (m, 4H), 1.83 (s, 3H),
1.44 (m, 2H), 1.17 (s, 16H), 0.92-0.70 (m, 3H). 13C NMR (101 MHz, CDCl3) & 166.6, 136.1, 134.3, 131.9,
129.8, 129.7, 129.1, 129.0, 128.2, 127.5, 121.8, 120.9, 62.3, 53.6, 40.0, 39.0, 31.9, 29.7, 29.6, 29.5, 29.4,
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29.2,28.9, 27.0,22.7, 14.1. MS (ESI) (m/z) calcd. for C31HyyN3O [M]* = 474.4; found 474.7 (100%);
IR (ATR) = 3297, 3061, 2966, 2922, 2851, 1654, 1557, 1495, 1453 cm™~!. Calculated for C3;HyyN3OBr-H,O:
C 65.02, H8.10, N 7.34; found C 65.46, H 8.24, N 7.68.

Compound 2c: yellow oil (104 mg, 90%); [o]*°p = 6.93 (c = 0.01, MeOH); m.p.= 85 °C. 'H NMR
(500 MHz, CDCl3) § 10.01 (s, 2H), 8.40 (t, ] = 5.6 Hz, 2H), 8.12 (s, 2H), 7.68 (d, ] = 1.3 Hz, 2H),
7.47-7.36 (m, 2H), 7.34-7.23 (m, 2H), 5.73 (d, ] = 14.4 Hz, 2H), 5.55-5.38 (dd, ] = 10.7 Hz, ] = 3.5 Hz,
4H), 3.37-3.25 (m, 2H), 3.15-3.00 (m, 2H), 2.53-2.38 (m, 2H), 1.64-1.43 (m, 4H), 1.39-1.20 (m, 4H),
1.08 (d, ] = 6.6 Hz, 6H), 0.87 (t,] = 7.3 Hz, 6H), 0.82 (d, ] = 6.7 Hz, 6H). 13C NMR (126 MHz, CDCl3)
§206.8, 166.7, 136.5, 134.1, 130.6, 130.5, 129.9, 122.4, 120.8, 77.3, 77.0, 76.8, 68.1, 53.2, 39.5, 31.1, 30.9,
30.9,20.1, 18.8, 18.4, 13.6. MS (ESI) (m/z) calcd. for C3;HsoNgO, [M[** = 275.2; found 275.3 (100%);
IR (ATR)= 3412, 3228, 3125, 3066, 2962, 2933, 2873, 1671, 1550, 1465, 1360, 1298, 1226, 1152 cm™!.
Calculated for C3;HsgNgO,Bry-2H,0: C 51.48, H 7.29, N 11.26; found C 50.84, H 7.32, N 11.46.

Compound 3c: yellow viscous solid (126 mg, 82%); [o]®p = 17.33 (c = 0.01, MeOH); m.p. =60 °C.
'H NMR (300 MHz, CDCl3) & 9.47 (s, 2H), 8.21 (t,] = 5.7 Hz, NH), 7.81-7.51 (m, 6H), 7.29-7.06 (m, 16H),
6.13 (t, ] = 8.0 Hz, 2H), 5.31 (s, 4H), 3.37 (dd, ] = 13.6, 7.2 Hz, 2H), 3.25-3.10 (m, 4H), 3.00-2.84 (m, 2H),
1.41-1.29 (m, 4H), 1.23-1.05 (m, 32H), 0.80 (m, 6H). 13C NMR (101 MHz, CDCl3) & 166.3, 136.3, 134.3,
133.6, 130.6, 130.3, 129.7, 129.2, 128.9, 127.5, 122.3, 121.0, 62.6, 53.0, 39.9, 38.9, 31.9, 29.7, 29.7, 29.6, 29.5,
29.4,29.2,28.9,26.9,22.7,14.1. MS (ESI) (m/z) calcd. for Cs4HgpNgO, [M]?+ = 435.3; found 435.7 (100%);
IR (ATR)= 3294, 3063, 2923, 2852, 1656, 1554, 1495, 1454, 1362 cm™!. Calculated for CssHgyNgO,Bry:
C 65.23, H 8.02, N 8.15; found C 65.76, H 8.57, N 8.34.

4.1.3. Microorganisms and Growth Conditions

Two bacterial strains were used in the antibacterial assays: Escherichia coli DH5x as a Gram-negative
model and Bacillus subtilis 1904-E as a Gram-positive model. Both bacterial strains were donated to our
laboratory and can be provided on request by contacting the corresponding authors. Both bacterial
strains were incubated at 37 °C and the pre-inoculum incubation time was of 24 h. Liquid Luria-Bertani
(LB) medium was used for E. coli DH5x and nutrient broth (NB) for B. subtilis.

4.2. Methods

4.2.1. Bacterial Proliferation Assay in Presence of Imidazole Derivatives

The bacteria cell bank suspensions were thawed and inoculated in the appropriate liquid broth for
24 h at 37 °C with mild agitation. A dilution from these culture solutions was used for the following
tests, corresponding to an inoculum of 1 x 107 CFU/mL. Stock solutions of all the tested compounds
were prepared in DMSO at a concentration of 100 mg/mL, aliquoted, and stored at —20 °C.

(A) Bacterial growth inhibition assay: Conditions here described are for testing 6 different
concentrations of the compounds, with triplicates of each condition. Therefore, 4 compounds were
tested per plate. An adapted version of the microdilution method was used. Firstly, the imidazole
derivatives were dissolved in the corresponding broth at 2x the highest tested concentration. Then,
100 pL of the 2x solutions were added to the first (A) and second (B) row wells of a 96-well plate.
In addition, 100 puL of liquid medium had been previously added to rows B to F. Subsequent dilutions
at 1:2 are prepared in rows B to F, by withdrawal of 100 uL from the previous row (more concentrated)
to the next row (half diluted), mixing well. Then, 100 uL were discarded from the last row (F). By now,
there are 100 pL in each well, and 100 pL of bacterial suspension at 107 CFU/mL were added to each
well. Then, the 96-well plates were incubated for 24 h at 37 °C under mild agitation. Bacterial growth
was controlled both by visual observation of the turbidity in each well and by measuring the optical
density (OD) at 560 nm at time 0 h and 24 h. Results are recorded as the lowest concentration of
antimicrobial agent that inhibits visible growth of the bacteria, and were compared with the OD
variation of a control culture containing E. coli or B. subtilis (+ control) and of solution of the tested
compounds without bacteria (- control).
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(B) Bacterial cell viability assay: Cell viability was analyzed using a Resazurin (7-Hydroxy-3H-
phenoxazin-3-one 10-oxide) assay in a 96-well plate. Once the bacterial cultures of growth inhibition
assay had been grown for a total of 24 h, 25 pL of a 0.1 mg/mL resazurin (prepared in LB or NB medium)
were added to each well and incubated in the dark at 37 °C for 1 h under stirring. Resazurin has a blue
color at the testing pH and turns pink when reduced by the viable bacteria to resorufin. Therefore,
pink wells indicate metabolizing bacteria, while blue wells are indicative of bacteria that have lost
their ability to convert resazurin to resorufin. Different controls were made in order to corroborate
the MBC value obtained by the resazurin assay. The change of color was confirmed at 1, 4, and 24 h
after its addition. The viability of bacteria was verified (either confirmed or rejected) by the colony
plate-counting method, by seeding 10 uL from the cell culture onto tryptone soy agar plates and
observing the presence or absence of bacterial growth after 24 h at 37 °C.

4.2.2. Log P Calculation and Retention Time Determination

LogP values for the different compounds were calculated using VCCLab (ALOGPS 2.1)
and Molinspiration (miLogP2.2) softwares. We used LogP as the average of these values.
The protonated forms for the imidazole derivatives were considered. Reverse phase HPLC (equipment:
Agilent technologies 1100 series, column: Xterra MS C18 4.6 X 150 mm (5 pmol/L)) was also used for
measuring the relative lipophilicity of these compounds, since the retention time of each molecule
on the reverse phase column is related to its lipophilicity. All the products were dissolved in MeOH
at 2 mmol/L concentration and eluted using 70/30 acetonitrile/water and 0.1% of formic acid for
15 min and flow rate 0.2 mL/min at 25 °C. A used was 254, 280, and 220 nm taking the corresponding
chromatogram with higher mAU (see Supporting Information).

4.2.3. H NMR Studies

NMR experiments were carried out on a Varian INOVA 500 spectrometer (500 MHz for 'H and
125 MHz for 13C), on a Bruker Avance III HD 400 spectrometer (400 MHz for 'H and 100 MHz for
13C) or on a Bruker Avance III HD 300 spectrometer (300 MHz for 'H and 75 MHz for 13C)at 25 °C.
Chemical shifts are reported in ppm using TMS as the reference.

4.2.4. Fluorescence Spectroscopy Measurements

Pyrene was used as a fluorescence probe to determine the CAC of the compounds in water and
1/1 water/bacterial cell culture medium at 25 + 1 °C. Fluorescence measurements were performed
with a Spex Fluorolog 3-11 instrument equipped with a 450 W xenon lamp (right angle mode). Firstly,
a stock pyrene solution of 1.98 x 10™* mol/L was prepared in ultrapure methanol. Then, solutions of
the imidazole and imidazolium salt compounds (ranging from 6 to 3 x 1073 mmol/L) were prepared
in different vials and 5 uL of pyrene solution was transferred into the vials, reaching a final pyrene
concentration of 9.89 X 107 mol/L in each vial. Fluorescence spectra of pyrene were recorded from
200 to 650 nm after excitation at 337 nm, and the spectra were not corrected for the Xe lamp spectral
response. The slit width was set at 5 nm for both excitation and emission. The peak intensities at
373 and 385 nm were determined as I; and I3, respectively. The ratios of the peak intensities at 373 and
385 nm (I1/1I3) for the emission spectra were recorded as a function of the logarithm of concentration.
The CAC values were taken from the break point. Samples were excited with a 337 nm NanoLED.

4.2.5. Optical Images

Images were recorded with OLYMPUS COVER-018 microscopy, BX51TF model, at 25 °C.
Experiments were carried out in water, 1/1 water/bacterial cell culture medium, and in bacterial
cell culture medium.
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4.2.6. Scanning Electron Microscopy (SEM)

SEM images of the compounds were obtained using a JEOL 7001F microscope with a digital
camera; while SEM images of the incubated bacteria were obtained using an Inspect F50 microscope,
at 10 kV and spot size of 3.0, with a digital camera. Bacteria solutions at ca. 0.5 x 10’ CFU/mL were
incubated overnight without and with compounds 1c and 3b at their 3 MIC and MIC. After this,
bacteria were washed with sterile PBS and fixed by incubation for 2 h in a 2.5% glutaraldehyde
solution in phosphate buffer 10 mmol/L at pH 7.2. The fixed bacteria were subsequently washed
once with phosphate buffer saline solution and four times with MilliQ water to remove any residual
salts and glutaraldehyde. Finally, bacteria were resuspended in MilliQ water and 10 pL of these
solutions were placed on silicon wafers and allowed to dry by evaporation overnight. Samples were
coated with platinum using the sputtering technique in which microscopic particles of platinum are
rejected from the surface after the material is itself bombarded by energetic particles of a plasma or gas.
Experiments were carried out in water, 1/1 water/bacterial cell culture medium, and in bacterial cell
culture medium.

4.2.7. UV-Vis Spectroscopy

UV-Vis absorption spectra of the colloidal solutions were recorded on a Hewlett-Packard
8453 spectrophotometer at 25 °C. Experiments were carried out in water, 1/1 water/bacterial cell
culture medium, and in bacterial cell culture medium.

4.2.8. Cell Proliferation Assay for Cytotoxicity Studies

In 96-well plates, 3 X 10 HEK-293 cells per well were seeded and incubated with serial
dilutions of the tested compounds (from 200 to 0.2 pM) to a total volume of 100 uL of their growth
media. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma Chemical Co.)
dye reduction assay in 96-well microplates was used, as previously described [18]. After 2 days of
incubation (37 °C, 5% CO; in a humid atmosphere), 10 uL of MTT (5 mg/mL in phosphate-buffered saline,
PBS) was added to each well, and the plate was incubated for a further 3 h (37 °C). The supernatant was
discarded and replaced by 100 pL of DMSO to dissolve formazan crystals. The absorbance was then
read at 540 nm by Multiskan™ FC microplate reader. For all concentrations of compound, cell viability
was expressed as the percentage of the ratio between the mean absorbance of treated cells and the mean
absorbance of untreated cells. Three independent experiments were performed, and the ICsy values
(i.e., concentration half inhibiting cell proliferation) were graphically determined using GraphPad
Prism 4 software.

Statistical analysis: GraphPad Prism v4.0 software (GraphPad Software Inc., La Jolla, CA, USA)
was used for statistical analysis. For all experiments, the obtained results of the triplicates were
represented as means with standard deviation (SD).

5. Conclusions

A series of novel imidazole and imidazolium salts derived from L-valine and L-phenylalanine
containing different hydrophobic groups have been synthesized and their antibacterial activity studied
against E. coli and B. subtilis. The results demonstrate that an optimum lipophilicity of the alkyl
chain and the amino acid side chain is needed to achieve antibacterial activity. The compounds
presented better antibacterial activity against B. subtilis than E. coli, where compound 1a-1b and 3a-3b
were the most active against B. subtilis, showing MBC values corresponding to 16 ug/mL or lower.
Monotopic compound 3b was 15 times less active against human embryonic kidney cells HEK-293
than toward B. subtilis, thus demonstrating its potential as an effective antibacterial agent with good
biocompatibility. Aqueous aggregation studies revealed CAC values for compounds 1a-1c and 3a-3¢
in the uM range in water alone, however these CAC values decreased for imidazole and monotopic
species when water was replaced with bacterial cell culture medium. Optical microscopy and SEM
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images confirmed the formation of these spherical aggregates. It is important to note that most of the
bioactive compounds were aggregated to some extent at their MIC/MBC concentrations, however the
monotopic compound 3b was not aggregated at its corresponding MBC, suggesting that the monomeric
species was responsible for the observed antibacterial activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/12/482/s1.
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