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Abstract: Anti-inflammatory and antidiabetogenic properties have been ascribed to cannabidiol
(CBD). CBD-based medicinal drugs have been approved for over a lustrum, and a boom in the
commercialization of CBD products started in parallel. Herein, we explored the efficacy of CBD
in streptozotocin (STZ)-induced diabetic mice to prevent diabetic nephropathy at onset. Eight-to-
ten-week-old C57BL6J male mice were treated daily intraperitoneally with 10 mg/kg of CBD or
vehicle for 14 days. After 8 days of treatment, mice were challenged with STZ or vehicle (healthy-
control). At the end of the study, non-fasting blood glucose (FBG) level was 276 ± 42 mg/dL
in vehicle-STZ-treated compared to 147 ± 9 mg/dL (p ≤ 0.01) in healthy-control mice. FBG was
114 ± 8 mg/dL in vehicle-STZ-treated compared to 89 ± 4 mg/dL in healthy-control mice (p ≤ 0.05).
CBD treatment did not prevent STZ-induced hyperglycemia, and non-FBG and FBG levels were
341 ± 40 and 133 ± 26 mg/dL, respectively. Additionally, treatment with CBD did not avert STZ-
induced glucose intolerance or pancreatic beta cell mass loss compared to vehicle-STZ-treated mice.
Anatomopathological examination showed that kidneys from vehicle-STZ-treated mice had a 35%
increase of glomerular size compared to healthy-control mice (p ≤ 0.001) and presented lesions
with a 43% increase in fibrosis and T cell infiltration (p ≤ 0.001). Although treatment with CBD
prevented glomerular hypertrophy and reduced T cell infiltration, it significantly worsened overall
renal damage (p ≤ 0.05 compared to vehicle-STZ mice), leading to a more severe renal dysfunction
than STZ alone. In conclusion, we showed that CBD could be detrimental for patients with type
1 diabetes, particularly those undergoing complications such as diabetic nephropathy.

Keywords: cannabinoid; streptozotocin; phytocannabinoid; type 1 diabetes; endocannabinoid sys-
tem; chronic kidney disease

1. Introduction

Cannabis sativa is one of the most cultivated plants over the years due to its high
economical and medical value [1]. Numerous pharmacological studies have reported that
C. sativa has a variety of properties, including analgesic [2], antibacterial [3], and anti-
inflammatory [4] effects among others. The most abundant non-psychotropic cannabinoid
from Cannabis sativa is cannabidiol (CBD), which has increased interest for medicinal
applications because of its broad biological activity spectrum. The first study about the
effectiveness of CBD as an anticonvulsant was carried out by Consroe and Wolking in
1977 [5], a starting point for further research that demonstrated preclinical-evidences
of CDB such as anticonvulsant, antinausea, and analgesic effects [6]. Currently, CBD,
alone (Epidiolex) or in combination with THC (Sativex), is approved in some countries
for the treatment of refractory epilepsy in children and spasticity in multiple sclerosis,
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respectively [7]. Although the legal status is not clarified, CBD is also available as a
dietary supplement.

CBD signals through several receptors, triggering the serotonin, opioid, and endo-
cannabinoid systems (ECS) [8]. CBD is also a potent antioxidant and a negative allosteric
modulator (NAM) of the cannabinoid type 1 receptor (CB1R) [9]. The ECS is an en-
dogenous signal network with multiple functions under physiological and pathological
conditions. The ECS consists of cannabinoid receptors, endogenous fatty acid ligands, and
their biosynthetic and degradative enzymes. The main receptors of the ECS, the CB1R
and the cannabinoid type 2 receptor (CB2R) are seven-transmembrane G protein-coupled
receptors (GPCRs) widely distributed in different tissues [10]. CB1R is found in the CNS,
in metabolically active tissues including the liver, endocrine pancreas, kidney, and immune
cells, while CB2Rs are mainly distributed in the peripheral regions of the spleen and the
tonsils and immune cells [11]. Both cannabinoid receptors are involved in the development
of diabetic nephropathy, and while renal CB1R is overexpressed in diabetic nephropathy,
CB2R is downregulated [12–14].

The pharmacological effect of CBD has been previously investigated for the treatment
of a wide range of diseases, metabolic and autoimmune disorders, such as type 1 diabetes
(T1D). CBD ameliorates the manifestation and delays the onset of T1D in non-obese dia-
betic mice (NOD) [15,16]. T1D is an autoimmune disease with no cure characterized by a
progressive immune cell infiltration in and around the islets, which leads to the gradual
loss of insulin-producing beta cells, hyperglycemia, and eventually, an absolute insulin
deficiency [17]. High blood glucose due to T1D increases the risk of macro and microvas-
cular complications such as nephropathy [18]. In rodents, blockade of CB1R protects
insulin-producing pancreatic beta cells and prevents islet inflammation in obesity [14,19].
It also alleviates diabetic nephropathy in type 2 diabetic rats [14]. Additionally, we previ-
ously showed that a (+)-enantiomer of CBD ameliorated diabetic nephropathy at onset in
mice [20]. However, despite the beneficial effects of CBD on T1D NOD mice described 15
years ago, its potential effect on diabetic nephropathy has not been investigated.

Herein we document the outcome of CBD treatment at the onset of diabetic nephropa-
thy in a T1D mouse model and show that, overall, CBD has a detrimental impact on
diabetic nephropathy.

2. Results
2.1. Cannabidiol Does Not Avert Streptozotocin-Induced Hyperglycemia and Glucose Intolerance

Eight-to-ten-week-old mice were treated intraperitoneally with CBD (10 mg/kg; the
same dose used in our concurrent study with (+)-enantiomers of CBD [20]) or vehicle
(DMSO:Tween-80:PBS) for 14 days. On day 7, mice were challenged with streptozotocin
(STZ) or vehicle (Saline; control group) was initiated and blood glucose was monitored.
Non-fasting blood glucose was elevated after 3 days of STZ treatment in both vehicle-
STZ and CBD-STZ-treated mice compared to healthy controls (Figure 1a). On day 14,
non-fasting blood glucose was 1.8-fold and 2.3-fold higher in vehicle-STZ and CBD-STZ-
treated mice, respectively, compared to control (Figure 1b), and fasting blood glucose was
114 ± 8 mg/dL and 133 ± 26 mg/dL compared to 89 ± 4 mg/dL in healthy control mice
(Figure 1c). On day 14 both, vehicle-STZ and CBD-STZ-treated mice were glucose intolerant
as shown by significantly higher blood glucose than control mice upon intraperitoneal
glucose tolerance test (Figure 1d,e). In sum, treatment with CBD did not prevent STZ-
induced hyperglycemia and glucose intolerance.
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Figure 1. Cannabidiol (CBD) does not prevent streptozotocin (STZ)-induced diabetes. (a) Mid-study (3 days of STZ 
treatment) and (b) end-of-study (7 days of STZ treatment) non-fasting blood glucose levels in healthy control (control), 
vehicle-STZ- (Veh-STZ), and CBD-STZ-treated mice. (c) Fasting blood glucose at the end of the study. (d) Intraperitoneal 
glucose tolerance test (IPGTT) in vehicle-STZ and CBD-STZ-treated mice compared to control at the end of the study. (e) 
The area under the curve of the IPGTT was calculated using the trapezoidal rule. Values are expressed as mean ± SEM (n 
= 6–7 animals per group). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle-citrate buffer-treated mice (control). 

2.2. Cannabidiol Does Not Protect Beta Cell Mass from STZ 
CBD has been shown to reduce insulitis in NOD/ShiLtJ mice, thus preserving beta 

cell mass [15]. We then investigated if CBD was able to protect beta cells from treatment 
with STZ. On day 15 of treatment, mice were sacrificed and the pancreas dissected and 
processed for immunohistochemistry. Insulin staining revealed that STZ induced a 2.8-
fold reduction of insulin content, while treatment with CBD induced a 4.6-fold reduction 
of insulin content, compared to control (Figure 2a,b). Analysis of beta cell mass area 
showed that STZ alone induced a significant 4.8-fold reduction of beta cell mass, while 
treatment with CBD induced a 10-fold reduction of beta cell mass compared to control 
(Figure 2a,c). Overall, together with the data shown above, treatment with CBD did not 
avert STZ-induced diabetes in mice. 
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Figure 1. Cannabidiol (CBD) does not prevent streptozotocin (STZ)-induced diabetes. (a) Mid-study (3 days of STZ
treatment) and (b) end-of-study (7 days of STZ treatment) non-fasting blood glucose levels in healthy control (control),
vehicle-STZ- (Veh-STZ), and CBD-STZ-treated mice. (c) Fasting blood glucose at the end of the study. (d) Intraperitoneal
glucose tolerance test (IPGTT) in vehicle-STZ and CBD-STZ-treated mice compared to control at the end of the study.
(e) The area under the curve of the IPGTT was calculated using the trapezoidal rule. Values are expressed as mean ± SEM
(n = 6–7 animals per group). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle-citrate buffer-treated mice (control).

2.2. Cannabidiol Does Not Protect Beta Cell Mass from STZ

CBD has been shown to reduce insulitis in NOD/ShiLtJ mice, thus preserving beta cell
mass [15]. We then investigated if CBD was able to protect beta cells from treatment with
STZ. On day 15 of treatment, mice were sacrificed and the pancreas dissected and processed
for immunohistochemistry. Insulin staining revealed that STZ induced a 2.8-fold reduction
of insulin content, while treatment with CBD induced a 4.6-fold reduction of insulin content,
compared to control (Figure 2a,b). Analysis of beta cell mass area showed that STZ alone
induced a significant 4.8-fold reduction of beta cell mass, while treatment with CBD induced a
10-fold reduction of beta cell mass compared to control (Figure 2a,c). Overall, together with the
data shown above, treatment with CBD did not avert STZ-induced diabetes in mice.



Pharmaceuticals 2021, 14, 863 4 of 14
Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

 

(a) 

  
(b) (c) 

Figure 2. CBD does not prevent STZ-induced beta cell loss. (a) Representative images of immunofluorescent staining of 
insulin (green) and nuclei (DAPI, blue) of the pancreas from control, vehicle-STZ and CBD-STZ-treated mice (original 
magnification ×25, scale bar 50 μm). Quantification of (b) intra-islet staining and (c) beta cell mass (calculated as total beta 
cell area) per islet. N = 100 islets/group. Values are expressed as mean ± SEM (n = 6–7 animals per group). *** p < 0.001 vs. 
vehicle-citrate buffer-treated mice (control). 

2.3. Treatment with CBD Worsens Renal Lesions in STZ-Treated Mice 
Diabetic nephropathy is a severe complication of T1D, and previous studies showed 

that targeting the ECS ameliorates diabetic nephropathy in rodents [21]. Thus, we 
analyzed whether CBD was able to prevent STZ-induced renal lesions. Histochemical 
analysis of the kidney showed that STZ induced glomerular hypertrophy, as shown by a 
significant increase in glomerular size (Figure 3a,b), and glomerular lesions compared to 
control mice (Figure 3a,c). Although treatment with CBD did not increase the glomerular 
size (Figure 3a,b), it significantly increased glomerular lesions compared to control 
(Figure 3a,c). Moreover, treatment with CBD significantly worsened glomerular lesions 
compared to STZ alone (Figure 3a,c). Treatment with STZ also induced tubular (Figure 
4a,b) and interstitial (Figure 4a,c) lesions, which included immune cell infiltration, 
compared to control. Compared to STZ, treatment with CBD significantly worsened 

Figure 2. CBD does not prevent STZ-induced beta cell loss. (a) Representative images of immunofluorescent staining of
insulin (green) and nuclei (DAPI, blue) of the pancreas from control, vehicle-STZ and CBD-STZ-treated mice (original
magnification ×25, scale bar 50 µm). Quantification of (b) intra-islet staining and (c) beta cell mass (calculated as total beta
cell area) per islet. N = 100 islets/group. Values are expressed as mean ± SEM (n = 6–7 animals per group). *** p < 0.001 vs.
vehicle-citrate buffer-treated mice (control).

2.3. Treatment with CBD Worsens Renal Lesions in STZ-Treated Mice

Diabetic nephropathy is a severe complication of T1D, and previous studies showed
that targeting the ECS ameliorates diabetic nephropathy in rodents [21]. Thus, we analyzed
whether CBD was able to prevent STZ-induced renal lesions. Histochemical analysis of
the kidney showed that STZ induced glomerular hypertrophy, as shown by a significant
increase in glomerular size (Figure 3a,b), and glomerular lesions compared to control
mice (Figure 3a,c). Although treatment with CBD did not increase the glomerular size
(Figure 3a,b), it significantly increased glomerular lesions compared to control (Figure 3a,c).
Moreover, treatment with CBD significantly worsened glomerular lesions compared to STZ
alone (Figure 3a,c). Treatment with STZ also induced tubular (Figure 4a,b) and interstitial
(Figure 4a,c) lesions, which included immune cell infiltration, compared to control. Com-
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pared to STZ, treatment with CBD significantly worsened tubular and interstitial lesions,
with a patent infiltration of immune cells (Figure 4). Hence, anatomopathological analysis
of the kidney revealed that CBD worsens the structural damages generated by STZ.
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Figure 3. CBD worsens STZ-induced renal lesions in glomerulus. (a) Representative images of kidney
stained with PAS from control, vehicle-STZ and CBD-STZ-treated mice (original magnification ×10,
scale bar 50 µm). Quantification of (b) glomerulus diameter and (c) glomerular lesion score. Values
are expressed as mean ± SEM (n = 6–7 animals per group). ** p < 0.01, *** p < 0.001 vs. vehicle-citrate
buffer-treated mice (control); # p < 0.05, ## p < 0.01 vs. vehicle-STZ.
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Figure 4. CBD worsens STZ-induced renal lesions in tubules and interstice. (a) Representative
images of kidney stained with PAS from control, vehicle-STZ, and CBD-STZ-treated mice (original
magnification ×10, scale bar 50 µm). Quantification of (b) tubular and (c) interstitial lesion score.
Values are expressed as mean ± SEM (n = 6–7 animals per group). ** p < 0.01, *** p < 0.001 vs.
vehicle-citrate buffer-treated mice (control); # p < 0.05 vs. vehicle-STZ.

2.4. Treatment with CBD Partially Prevents STZ-Induced CD3+ Cells Infiltration in the Kidney

Since we found an increase in renal lesions in both STZ and CBD-STZ-treated mice,
we analyzed infiltration of immune T cells by immunohistochemistry of the kidneys using
CD3 T cell marker. A significant increase was found in CD3+ T cells infiltration into the
kidney of STZ-treated mice compared to control (Figure 5a,b). Treatment with CBD did not
avert CD3+ T cell infiltration, although it was significantly lower by 1.3 folds compared to
STZ-treated mice (Figure 5a,b). Thus, treatment with CBD had an anti-inflammatory effect
despite the renal damages observed.
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Figure 5. CBD significantly reduces but does not prevent STZ-induced immune cell infiltration in the
kidney. (a) Representative images of immunostaining for CD3 cells in the kidney from control, vehicle-
STZ, and CBD-STZ-treated mice (original magnification ×20, scale bar 100 µm). (b) Quantification of
CD3 positive area (percentage of total kidney area). Values are expressed as mean ± SEM (n = 6–7
animals per group). *** p < 0.001 vs. vehicle-citrate buffer-treated mice (control); ## p < 0.01 vs.
vehicle-STZ.

2.5. Treatment with CBD Does Not Avert STZ-Induced Renal Fibrosis and Worsens Renal Failure

Glomerulosclerosis in advanced diabetic nephropathy is associated with end-stage kidney
disease. We analyzed fibrosis in kidney samples from our mouse model. STZ significantly
increased glomerular fibrosis compared to control mice of 1.4 folds (Figure 6a,b). Treatment
with CBD did not prevent STZ-induced fibrosis, showing a 1.5-fold increase of the fibrotic area
compared to control (Figure 6a,b). To assess renal function, we analyzed the levels of creatinine
and blood urea nitrogen (BUN). Mice challenged with STZ exhibited a significant increase in
creatinine and BUN levels compared to healthy control mice (Figure 7a,b). Treatment with
CBD further increased creatinine (2.9-fold higher) and BUN levels (1.5-fold higher) compared
to STZ alone (Figure 7a,b). Altogether, treatment with CBD had a synergistic effect with STZ,
leading to a more severe renal dysfunction.
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Figure 6. CBD does not avoid STZ-induced renal fibrosis. (a) Representative images of collagen
staining of kidney from control, vehicle-STZ, and CBD-STZ-treated mice by picrosirius red dye
(original magnification ×10, scale bar 50 µm). (b) Quantification of collagen positive area (expressed
as a percentage of total kidney area). Values are expressed as mean ± SEM (n = 6–7 animals per
group). *** p < 0.001 vs. vehicle-citrate buffer-treated mice (control).
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Figure 7. CBD worsens STZ-induced renal dysfunction. Quantification of (a) plasma creatinine
and (b) blood urea nitrogen (BUN) in control, vehicle-STZ, and CBD-STZ-treated mice. Values are
expressed as mean ± SEM (n = 6–7 animals per group). * p < 0.05, ** p < 0.01 and *** p < 0.001 vs.
vehicle-citrate buffer-treated mice (control); ### p < 0.001 vs. vehicle-STZ.

3. Discussion

CBD is a known anti-inflammatory and antidiabetogenic phytocannabinoid that
has been approved for over a lustrum for use in specific medical conditions. Despite
the commercial boom associated with its legalization, its effects on various pathologies
and specific targets remain unexplored. Herein we investigated its potential effects in a
mouse model at the onset of diabetic nephropathy. We found that CBD induced stronger
changes than STZ alone, and worsened renal damage, showing that its use by patients with
T1D could be potentially detrimental and further deteriorate renal function in those with
diabetic nephropathy.

Some cannabinoid derivatives have been shown to increase resistance to hepatic steato-
sis and reversal of hepatic steatosis in Non-alcoholic Fatty liver disease (NAFLD) [22]. Stud-
ies from our group revealed that the treatment with the derivate ∆9-tetrahydrocannabinolic
acid reduced body weight and adiposity, improved glucose tolerance, and attenuated
liver fibrosis and immune cell infiltration in NAFLD rodent models [23]. Similarly, the
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synthetic cannabinoid Abn-CBD exerts beneficial immunomodulatory actions in the liver
of obese prediabetic mice with NAFLD [24]. In the case of CBD, it has been reported that
it attenuates alcohol-induced liver steatosis [25], although it could be due to its reported
effect on reducing alcohol intake in mice [26]. Differences between CBD’s effect in the
resolution of liver fibrosis in contrast to detrimental effects in renal function could also be
due to tissues specific mechanisms.

CBD delays the occurrence of hyperglycemia in the autoimmune T1D NOD mice [15,16]
but it did not prevent STZ-induced hyperglycemia nor protected beta cells from damage by
STZ. Although CBD ameliorates T1D in NOD mice, Dr. Weiss and colleagues did not study
its effect on the kidney [15,16]. In sham animals, CBD has shown to have no detrimental
effects in the kidney compared to the vehicle-treated group [27] but in the case of acute kidney
injury, CBD has been shown to protect from ischemia/reperfusion renal injury [27,28]. Few
studies have shown cases of acute kidney injury in synthetic cannabinoids consumers [29,30].
However, the consumption of cannabis increases the risk of mild renal function decline [31].
Further epidemiological studies are required to clarify these discrepancies and unravel whether
they are due to CBD alone or its combination with THC or other phytocannabinoids, or its
combination with other drugs of abuse.

Overall, and despite the short-time treatment, CBD induced stronger changes in the
kidney than STZ alone. Natural occurring CBD activates a plethora of systems including the
ECS. Renal CB1R becomes overactivated in diabetic nephropathy, while, in opposition, re-
nal CB2R is downregulated [12–14]. All of the naturally occurring CBD-type cannabinoids
have a (−)-trans absolute configuration, corresponding to negative optical rotation [32],
while (+)-CBD can only be obtained by organic synthesis. From (+)-trans-CBD, novel deriva-
tives have been developed with enhancing binding affinity to CB1R and CB2R. Among
them, (+)-Cannabidiol-dimethyl heptyl has shown analgesic activity [33,34]. Inverse ago-
nists of CB1R have been shown to prevent diabetic nephropathy in rodent models [14]. We
have recently described chemical modifications of (−)-CBD that increases the binding of
CB1Rs and CB2Rs [20]. In the same way (−)-CBD-2-hydroxy pentyl ((−)-CBD-HPE) had a
moderate binding to CB1R but strong for CB2R. In functional assays (−)-CBD-HPE behaved
as an agonist for CB2R and antagonist for CB1R [35]. We synthesized the (+)-enantiomer
of CBD and its derivative (+)-CBD hydroxy pentyl ester ((+)-CBD-HPE) and showed that
(+)-CBD-HPE exhibited an enhanced CB1R and CB2R binding and CB1R antagonist/CB2R
agonist functions compared to it respective (−) enantiomer [20]. Concurrently to CBD
and at the same dose, (+)-CBD-HPE prevented STZ-induced lesions in the kidney and
avoided renal fibrosis and CD3+T cell infiltration [20]. The beneficial effects obtained with
(+)-CBD-HPE are likely due to its enhanced affinity and activity over the CB1R and CB2R
compared to CBD. Interestingly, activation of CB2R protects against diet-induced diabetic
nephropathy [36]. CB1R becomes overactivated in the kidney upon treatment with STZ [12]
and extensive work by various groups have described that CB1R in the kidney plays a
key role in the development of diabetic nephropathy, and its blockade is a promising
therapy [12,14,21,37–39]. Specifically, in the STZ-induced diabetic model, AM251 (CB1R
antagonist with IC50 = 8 nM and Ki = 7.49 nM) prevents STZ-induced loss of nephrin,
podocin, and ZO-1, ameliorating albuminuria [12]. Thus, it is likely that CBD does not
function as NAM for CB1R in the STZ model (Figure 8). Usage of opioids has been linked
to the development of chronic kidney disease (CKD) [40], and CBD activates the opioid
system, which could be partially responsible for CBD’s detrimental effect on the kidney.
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One of the known properties of CBD besides analgesia is its anti-inflammatory capacity.
Despite the increase in STZ-induced renal damage upon CBD treatment, we observed a
slight reduction in CD3+ immune T cell infiltration, most likely due to its anti-inflammatory
properties, in agreement with the previous findings in NOD mice [15,17]. However, it was
not sufficient to prevent infiltration and eventual damage of the tissue. Nevertheless, its
anti-inflammatory properties could be of benefit when diabetic nephropathy is already
established and not at onset, as it has been previously suggested for other cannabinoids.
In an animal model of already established diabetic nephropathy, long-term treatment with
AM6545 and AM1241 had an anti-inflammatory role that reverted renal abnormalities at
the structural and functional level [41]. Thus, its usage in patients at risk of developing
CKD should be unadvisable in spite of its other potential benefits for CKD symptoms such
as nausea, chronic pain, anorexia, and insomnia. Further studies using CBD in models
with already established diabetic nephropathy to unveil its significance in this severe
complication are warranted.

4. Materials and Methods
4.1. Animals

All experiments were performed in strict accordance with European Union (EU)
and governmental regulations. Handling of animals was performed in compliance with
the guidelines of the European Union Directive 2010/63/EU for the use and care of
experimental animals; the Ethics Committee on Animal Experimentation of the University
of Málaga (UMA, Málaga, Spain) and the Regional Government of Andalucía approved all
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the procedures described in this study (Project number 28/06/2018/107). Male C57BL/6
mice (Charles River France) were used in all experiments. Animals were housed in groups
of 10 under controlled conditions of 12 h light/dark cycles at 20 ◦C (±2 ◦C) and 40–50%
relative humidity, with free access to water and standard food. Eight- to 10-week-old
C57BL6J male mice of 24.4 ± 0.2 g of body weight were randomized to 3 groups: healthy
control (vehicle and citrate buffer), vehicle-streptozotocin (STZ), and CBD-STZ. Mice
were injected daily intraperitoneally (i.p.) with vehicle (saline:DMSO:Tween-80, 95:4:1) or
10 mg/kg of CBD for 7 days. The dose of CBD was selected based on previous literature
to have no effect on sham animals but to have a positive effect on other models of kidney
injury [27], and it was equivalent to a concurrent study using 10 mg/kg of (+)-CBD-HPE
that showed a positive outcome compared to STZ-Vehicle (protected against STZ-induced
damage, fibrosis and inflammation in the kidney) [20]. Mice were fasted for 4 h prior i.p.
injections with STZ or citrate buffer (healthy controls) as described previously [42]. Mice
were given 10% sucrose water for 48 h upon STZ treatment to prevent ongoing toxicity
and to avoid hypoglycemia. Blood glucose was monitored daily using the OneTouch
Ultra blood glucose meter (LifeScan IP Holdings, LLC, Malvern, PA, USA). After 7 days
mice were euthanized by cervical dislocation, and tissues and blood were collected and
processed immediately for histological and biochemical analysis. n = 6–7 animals/group.

4.2. Intraperitoneal Glucose Tolerance Test

Mice were fasted overnight and given free access to water. Mice were given i.p. a
bolus of 2 g/kg glucose and blood glucose was determined at 0, 15, 30, 60, and 90 min.

4.3. Histochemical and Immunohistochemistry Analysis

The pancreas and kidney were dissected and fixed in methanol-free 4% paraformaldehyde
(Pierce) for 6 h at room temperature or 24 h at 4 ◦C, respectively, before paraffin embedding.
Kidney sections (5 µm) were deparaffinized and dehydrated in a graded series (100–70%) of
ethanol washes and stained with Periodic Acid Schiff (PAS) (Sigma-Aldrich, St. Louis, MO,
USA) to evaluate renal pathology. Two independent assessors reviewed histological sections
in a blinded manner and graded (0–3 scale) glomerular changes (hypercellularity, mesangial
expansion, and capillary dilation, 40 glomeruli), tubular lesions (atrophy and degeneration,
20 fields at 40×magnification), and interstitial damage (fibrosis and inflammation, 20 fields
at 40×magnification) [43]. Imaging was performed using a light microscope Leica DM2000
microscope. Glomerular area and diameter were marked manually and calculated automat-
ically using Image J software (http://rsb.info.nih.gov/.ij; 1.52p, accessed on 22 June 2019).
Kidney collagen was detected by Picrosirius Red staining (PSR) following the manufacturer’s
instructions (Sigma-Aldrich). Quantitative evaluation of PSR staining was estimated as the
staining under a grid intersection/total number of intersections multiplied by 100 (% of the
fraction area), as described previously [44]. The data were represented by the area percentage
of each slide positive (20 fields at 40× magnification) for red stain which was calculated
using Image J software. The mean scores were calculated by mouse and by group. For im-
munohistochemistry, slides were deparaffinized and rehydrated, and antigen retrieval was
performed in 10 mM sodium citrate buffer (pH 6) at 95 ◦C for 10 min. To block endogenous
peroxidase activity, sections were immersed in 3.3% hydrogen peroxide in methanol for 30 min
and blocked for 1 h with blocking solution (Merck-Millipore, Burlington, MS, USA) at room
temperature. T lymphocytes were detected with anti-CD3 primary antibody (SC-20047, Santa
Cruz Biotechnology, Quimigen, Madrid, Spain; 1:50) overnight at 4 ◦C. Then, the slides were
incubated for 1 h at room temperature with the biotin-conjugated secondary antibody (goat
anti-mouse, 21,538, Merck-Millipore). The reaction product was detected by avidin-biotin-
peroxidase (Vector Laboratories, Palex Medical, Barcelona, Spain), the color reaction was
developed with DAB (3,3′Diaminobenzidine) chromogen (Dako, Santa Clara, CA, USA) and
subsequent counter-stained with hematoxylin. DAB staining was quantified using Image J
Fiji after color deconvolution and further processed by Image J software to quantify signal
intensity. The data were represented by the area percentage of each slide positive for red or

http://rsb.info.nih.gov/.ij


Pharmaceuticals 2021, 14, 863 12 of 14

blue stain. Pancreas sections were deparaffinized and boiled for 10 min in sodium citrate buffer
10 mM. Sections were blocked in 5% goat serum 0.3% Triton-X-100 in PBS for 30 min at 37 ◦C
before incubation with the primary antibody in 1% serum, 0.3% Triton-X-100 in PBS overnight
at 4 ◦C. Primary antibody used was mouse anti-insulin (Sigma I-2018; 1:500). Sections were
washed 3 times for 5 min in 0.3% Triton-X-100 PBS and incubated with a secondary antibody in
1% serum, 0.3% Triton-X-100 in PBS for 30 min at 37 ◦C and then washed 3 times for 5 min in
0.3% Triton-X-100 PBS. Alexa Fluor antibodies were incubated for 45 min at 37 ◦C, and nuclei
stained using DAPI (Vector Laboratories) for immunofluorescence. All images were acquired
at 20× using an Olympus BX41 and analyzed using Image J software 1.52p.

4.4. Blood Urea Nitrogen Analysis

Levels of blood urea nitrogen (BUN) were determined in plasma using the DetectX® Urea
Nitrogen (BUN) Colorimetric Detection Kit from Arbor Assays (Quimigen, Madrid, Spain)
following manufacturer instructions. Samples were diluted 1:10–1:20 and run in duplicates.

4.5. Plasma Creatinine Analysis

Creatinine was quantified in plasma using the DetectX® Serum Creatinine Detection
Kit from Arbor Assays (Quimigen, Madrid, Spain) following manufacturer instructions.
Samples were diluted 1:2 and run in duplicates.

4.6. Data and Statistical Analysis

In vivo data are mean ± SEM. One-way analysis of variance (ANOVA) followed
by Tukey’s post-hoc test for parametric analysis or Kruskal-Wallis post-hoc test for non-
parametric analysis were used to determine the statistical significance. The level of sig-
nificance was set at p < 0.05. Statistical analyses were performed using GraphPad Prism
version 8.00 (GraphPad, San Diego, CA, USA).

5. Conclusions

Despite its anti-inflammatory properties, we have found that CBD worsens diabetic
nephropathy at onset and leads to earlier end-stage kidney disease in our mouse model.
CBD-based medicinal drugs have been approved for over a lustrum, and a boom in the
commercialization of CBD products started in parallel. Thus, caution should be taken by
patients with T1D and those undergoing complications such as diabetic nephropathy.
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