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Abstract: Ammodaucus leucotrichus exhibits promising pharmacological activity, hinting at anti-
inflammatory and anti-arthritic effects. This study investigated seed extracts from Ammodaucus
leucotrichus using methanol and n-hexane, focusing on anti-inflammatory and anti-arthritic properties.
The methanol extract outperformed the n-hexane extract and diclofenac, a reference anti-inflammatory
drug, in trypsin inhibition (85% vs. 30% and 64.67% at 125 µg/mL). For trypsin inhibition, the IC50
values were 82.97 µg/mL (methanol), 202.70 µg/mL (n-hexane), and 97.04 µg/mL (diclofenac).
Additionally, the n-hexane extract surpassed the methanol extract and diclofenac in BSA (bovine
serum albumin) denaturation inhibition (90.4% vs. 22.0% and 51.4% at 62.5 µg/mL). The BSA
denaturation IC50 values were 14.30 µg/mL (n-hexane), 5408 µg/mL (methanol), and 42.30 µg/mL
(diclofenac). Gas chromatography–mass spectrometry (GC–MS) revealed 59 and 58 secondary
metabolites in the methanol and n-hexane extracts, respectively. The higher therapeutic activity of the
methanol extract was attributed to hydroxyacetic acid hydrazide, absent in the n-hexane extract. In
silico docking studies identified 28 compounds with negative binding energies, indicating potential
trypsin inhibition. The 2-hydroxyacetohydrazide displayed superior inhibitory effects compared to
diclofenac. Further mechanistic studies are crucial to validate 2-hydroxyacetohydrazide as a potential
drug candidate for rheumatoid arthritis treatment.
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1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammatory
changes in joint synovial tissue, cartilage, bone, and, occasionally, extra-articular loca-
tions [1]. The interaction between synovial-like fibroblasts, macrophages, and infiltrating
lymphocytes leads to the production of inflammatory cytokines [2]. The inflammatory
microenvironment can disrupt the balance between bone resorption by osteoclasts and
bone production by osteoblasts, contributing to bone deterioration [3]. Various factors,
such as ageing, smoking, immunogenicity, and genetic polymorphisms, may influence
RA pathophysiology and contribute to its refractory nature [4]. Currently, non-steroidal
anti-inflammatory drugs, immunosuppressive glucocorticoids, and disease-modifying
antirheumatic drugs are used to alleviate RA symptoms and slow disease progression [5].
These drugs have been associated with important side effects, including gastrointestinal
problems, hepatotoxicity, hepatitis, pneumonitis, and cardiovascular events [6]. An RA
disability rate of 43–48% and a disease progression time of 5–10 years underscore the
need for finding effective and safe treatments [4]. Plant-based therapeutics offer promis-
ing research and development opportunities because many of their active ingredients
(e.g., triterpenoids, phenols, flavonoids, and polysaccharides) exhibit anti-inflammatory,
analgesic, and immunomodulatory activities [7].

Medicinal plants for RA treatment have gained attention due to their potential thera-
peutic benefits and fewer side effects compared to conventional drugs [8]. Various plants
with anti-inflammatory, analgesic, and immunomodulatory properties have been tradition-
ally employed to alleviate RA symptoms. For instance, turmeric (Curcuma longa) contains
the active compound curcumin, with anti-inflammatory effects [9]. Moreover, Boswellia
serrata, commonly known as Indian frankincense, has recognized anti-inflammatory and
analgesic properties [10]. Willow bark (Salix spp.) is another traditional remedy that
contains salicin, a natural compound like aspirin with pain relief and anti-inflammatory
effects [11]. The anti-arthritic potential of ginger (Zingiber officinale) has also been explored,
and its active components exhibit anti-inflammatory and antioxidant properties [12]. Simi-
larly, devil’s claw (Harpagophytum procumbens) and cat’s claw (Uncaria tomentosa) have been
studied for managing RA symptoms [13]. However, more research and clinical studies are
needed to establish their precise mechanisms and dosages for optimal therapeutic benefits
in the context of RA treatment.

Ammodaucus leucotrichus, a plant within the Apiaceae family, stands out as a crucial
element in Moroccan flora, with significant applications in traditional herbal medicine
across North African nations. Known as ‘Kamune es sufi’ or ‘akâman’ in North African
countries, and “Moudrayga” in Algeria, this glabrous annual plant thrives in the Saharan
and sub-Saharan regions [14]. Its rich ethnobotanical uses include the treatment of various
conditions, particularly noteworthy for its efficacy in addressing issues associated with
RA. The plant has been traditionally employed to alleviate gastrointestinal problems,
pulmonary diseases, labor pains, and various ailments in both children and adults [14].
Of particular relevance to RA treatment, Ammodaucus leucotrichus has demonstrated its
effectiveness in managing conditions such as cystitis, nephritic colics, and kidney stones.
Moreover, its role as a sugar regulator for diabetics further underscores its therapeutic
potential [14]. The plant’s extracts, abundant in phytochemicals like perillaldehyde and
limonene, exhibit a wide array of pharmacological activities, including anti-inflammatory
effects [14]. This makes Ammodaucus leucotrichus a promising candidate for further research
and development in the pharmaceutical industry, particularly in the quest for novel and
effective treatments for rheumatoid arthritis.
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This study addressed the limitations and side effects associated with the existing
anti-inflammatory treatments for RA by focusing on innovative therapeutic strategies,
with a particular emphasis on Ammodaucus leucotrichus extracts. This study explored the
anti-inflammatory and anti-arthritic properties of Ammodaucus leucotrichus seed extracts
obtained using methanol and n-hexane as solvents. The methodology involved compre-
hensive analyses, including gas chromatography–mass spectrometry (GC–MS), to identify
the phytochemical constituents. In vitro assessments included protein denaturation assays
using bovine serum albumin (BSA) and protease inhibition assays using trypsin, an inflam-
mation enzyme. In silico molecular docking studies were used to assess the binding affinity
of key compounds identified in the methanol extract for trypsin, an enzyme essential in
RA-linked processes. Moreover, the interaction of the phytocompounds identified in the
methanol extract with ten human enzymes was investigated by determining their binding
affinity with the PASS tool, which was used to predict their biological activity, and ADME/T
to predict their absorption, distribution, metabolism, excretion, and toxicity. This pivotal
study explored the potential of Ammodaucus leucotrichus seed extracts for developing novel
and safer treatments for RA, with the goal of overcoming the challenges associated with
conventional drugs.

2. Results and Discussion

Seed extracts from Ammodaucus leucotrichus were investigated using methanol and
n-hexane, focusing on anti-inflammatory and anti-arthritic properties. The methanol extract
outperformed the n-hexane extract and diclofenac, a reference anti-inflammatory drug. The
selection of solvents in our extraction process, namely methanol and n-hexane, was meticu-
lously undertaken based on their distinct properties that allow for the selective extraction
of specific classes of compounds from Ammodaucus leucotrichus seeds. Methanol, being a
polar solvent, is proficient at extracting polar compounds such as phenolic compounds,
flavonoids, and certain organic acids. On the other hand, n-hexane, being non-polar, excels
in extracting lipophilic compounds like oils, fatty acids, and hydrophobic substances. The
choice to avoid water as a solvent in the extraction of Ammodaucus leucotrichus seeds was
driven by the nature of the target compounds. Water, being a polar solvent, might not
effectively extract certain non-polar compounds present in the seeds, potentially leading to
incomplete representation of the seed’s chemical composition. In contrast, the combination
of methanol and n-hexane offers a comprehensive extraction approach, ensuring that a
broader spectrum of compounds are captured in our analysis.

2.1. GC–MS Analysis of the Extracts

GC–MS analysis found 59 and 58 therapeutic secondary metabolites in the methanol
and n-hexane extracts. Validation included peak area, molecular weight, retention time,
PubChem CID number, and chemical formula. Details of the GC–MS analysis are sum-
marized in Tables S1–S3 and Figure S1 (Supplementary Materials). These secondary
metabolites were classified into different biological and pharmacological categories, such
as ketones, amino alcohols, hydrazide derivatives, pyranone derivatives, furfural deriva-
tives, aldehydes, phenol derivatives, sulfonate esters, cycloalkanols, carboxylic acids,
tricyclic sesquiterpenes, sesquiterpene alcohols, heterocyclic compounds, steroids, spiro
compounds, organosilicon compounds, tricyclic alcohols, phenone oximes, bicyclic ter-
penes, terpene alcohols, phthalate esters, siloxanes, sugar derivatives, nitrobenzofurans,
cyclopropane derivatives, fatty acids, saturated hydrocarbons, and terpene esters.

Table S1 (Supplementary Materials) presents phytochemicals in methanol extract of
Ammodaucus leucotrichus seed, highlighting the diverse chemical classes found in natural
plant products. Major classes include fatty acids, terpenes, and mycotoxins [14]. Fatty acids
play vital roles in biological processes, serving as lipid and signaling molecule compo-
nents [15]. Terpenes, such as neophytadiene and isospathulenol, contribute to plant flavors
and exhibit medicinal properties. The presence of trichothecenes suggests the potential
existence of mycotoxins, known for their toxicity and potential medicinal uses [16]. This
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chemical diversity reflects the plant’s adaptation and defense mechanisms. The compounds
offer potential biological activities, with the effects in RA depending on concentration,
bioavailability, and interactions. Fatty acids may display anti-inflammatory properties,
potentially alleviating RA symptoms [15]. Terpenes, including isospathulenol, studied
for their anti-inflammatory and antioxidant effects, might aid in managing RA inflamma-
tion [17]. Incorporating docking studies could enhance understanding by investigating the
interactions between these compounds and specific targets implicated in RA, providing
valuable insights for future research and therapeutic development.

Table S2 (Supplementary Materials) presents phytochemicals in n-hexane extract of
Ammodaucus leucotrichus seeds, highlighting the diverse chemical classes found in natural
plant products. The n-hexane extract of Ammodaucus leucotrichus seeds contains a diverse
array of compounds with potential implications for therapeutic applications. Notably, fatty
acids such as 9-Octadecenoic acid (Octadec-9-enoic acid) and Octadeca-9,12-dienoic acid
exhibit characteristics commonly associated with anti-inflammatory effects. Terpenoids
like 3-Isopropyl-6,7-dimethyltricyclo [4.4.0.(2,8)]decane-9,10-diol and spathulenol have
demonstrated anti-inflammatory and antioxidant properties, potentially contributing to the
management of conditions like RA [18]. The presence of alcohols, esters, and hydrocarbons
further diversifies the extract, highlighting the complex nature of the plant’s chemical
composition. Molecular docking studies could shed light on the specific interactions
between these compounds and molecular targets relevant to RA, potentially uncovering
novel therapeutic avenues.

The differences in chemical structure and solvation power between the solvents n-
hexane and methanol are explained by their distinct polarities [19,20]. The differences
are evident in the peak area percentages of various compound classes for both extracts
(Table 1). Notably, some compound classes that may have an effect on rheumatoid arthritis
(e.g., amino alcohols, hydrazide derivatives, pyranone derivatives, furfural derivatives,
sulfonate esters, cycloalkanols, tricyclic sesquiterpenes, heterocyclic compounds, steroids,
organosilicon compounds, phenone oximes, bicyclic terpenes, phthalate esters, siloxanes,
sugar derivatives, nitrobenzofurans, cyclopropane derivatives, and terpene esters) were
absent in the n-hexane extract. In this class, hydrazide derivatives, heterocyclic compounds,
and phenone oximes showed more significant effects in rheumatoid arthritis compared to
diclofenac, as tested in silico afterward.

Analysis of the results in Table 1 showed that the methanol extract included mainly
fatty acids (62.90%), followed by terpene alcohols (10.59%) and terpene esters (2.48%). The
n-hexane extract also included mainly fatty acids (68.09%), lower percentages of tricyclic
alcohols (3.65%), and terpene alcohols (0.11%). Moreover, n-hexadecanoic acid, with known
anti-inflammatory effects, was identified in both extracts. Previous studies suggest that
n-hexadecanoic acid has anti-inflammatory effects by inhibiting various inflammatory
mediators, including phospholipase A2, prostaglandins E2, interleukin (IL)-6, IL-1, tumor
necrosis factor, and nitric oxide synthase. Additionally, it exhibits hypocholesterolemic,
nematicidal, and pesticidal effects [21–26]. The fatty acids identified are in line with
the findings from a previous study [27]. Another noteworthy compound was 4-Prop-1-
en-2-ylcyclohexene-1-carbaldehyde, commonly known as perillaldehyde. This chemical
(molecular formula: C10H14O; molecular weight: 150.22 g/mol) was newly identified
in both extracts and had a peak area of 0.35% in the methanol extract and 3.02% in the
n-hexane extract.

A review by Idm’hand, Msanda, and Cherifi [14] offered comprehensive insights
into the phytochemistry and pharmacological attributes of Ammodaucus leucotrichus. Their
thorough analysis revealed an extensive phytochemical composition, comprising 129 com-
pounds from diverse chemical classes, including terpenoids, aldehydes, alcohols, ketones,
and other bioactive constituents. This array of compounds suggested broad pharmaco-
logical potential and versatile bioactive properties for potential therapeutic applications.
The study detailed the phytochemicals isolated from various plant parts, referencing seeds,
fruits, aerial parts, and others. The identified compounds ranged from well-known sub-
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stances like limonene, perillaldehyde, and α-pinene to a variety of terpenoids, alcohols,
and ketones. In contrast, our study took an experimental approach, focusing specifically on
the anti-inflammatory and anti-arthritic properties of Ammodaucus leucotrichus seed extracts
obtained using methanol and n-hexane as solvents. This targeted experimental work aimed
to explore the potential therapeutic benefits of the plant’s seed extracts in the context of RA.

Table 1. Comparative analysis of phytochemicals in the methanol and n-hexane extracts: peak area
percentages from the GC–MS (gas chromatography–mass spectrometry) analysis and therapeutic
effect on RA based on previous studies.

Class Methanol
Extract

Peak Area
(%)

n-Hexane
Extract

Peak Area
(%)

Anti-RA
Effect

Fatty acids
and

derivatives

Tetradecanoic acid;Methyl
(9Z,12Z)-octadeca-9,12-dienoate; (9Z,

12Z)-Octadeca-9,12-dienoic acid;
9-octadecenoic acid; octadecanoic

acid; Methyl hexadecanoate;
n-hexadecanoic acid; heptadecanoic
acid; Methyl (9E)-octadec-9-enoate

62.90

Methyl (9Z,12Z)-octadeca-
9,12-dienoate; (9Z,

12Z)-Octadeca-9,12-dienoic
acid; 9-octadecenoic acid;
octadecanoic acid; Methyl

hexadecanoate;
n-hexadecanoic acid; Methyl

(9E)-octadec-9-enoate

68.09 Yes [28,29]

Terpene
alcohols

2,4,7,14-Tetramethyl-4-vinyl-tricyclo
[5.4.3.0(1,8)]tetradecan-6-ol; bicyclo

[4.4.0]dec-2-ene-4-ol,
2-methyl-9-(prop-1-en-3-ol-2)-

10.59 (S)-(-)-(4-isopropenyl-1-
cyclohexenyl)methanol 0.11 Yes [30]

Terpene
esters

Trans-(R,R)-chrysanthemyl
(R)-2-methylbutanoate;

kauren-19-yl-acetate; Methyl-5,9,13-
trimethyltetradecanoate

4.23 Not present 0.00 Not tested

Phthalate
esters

Phthalic acid, tetradecyl
trans-dec-3-enyl ester; phthalic acid,

butyl hept-4-yl ester
2.42 Not present 0.00 Not tested

Sesquiterpene
alcohols

Isospathulenol, thunbergol,
1-(1,5-Dimethylhexyl)-10-hydroxy-

3a,6,6,9a,11a-
pentamethylhexadecahydrocyclopenta
[7,8]- phenanthro [8a,9-b]oxiren-7-yl

acetate, (7S)-1,1,7-Trimethyl-4-
methylidene-1α,2,3,4α,5,6,7α,7β-

octahydrocyclopropa[h]azulen-7-ol;
methyl 16-R/S-hydroxy-cleroda-

3,13(14)-Z-dien-15,16-olide

2.39

Isospathulenol, (7S)-1,1,7-
Trimethyl-4-methylidene-

1α,2,3,4α,5,6,7α,7β-
octahydrocyclopropa[h]azulen-

7-o, methyl
16-R/S-hydroxy-cleroda-

3,13(14)-Z-dien-15,16-olide;
(1R,7S,E)-7-isopropyl-4,10-

dimethylenecyclodec-5-
enol

2.72 Not tested

Hydrazide
derivatives

2-hydroxyacetohydrazide;
3-hydroxy-3-methyl-butyric acid,

hydrazide
1.91 Not present 0.00 Yes [31]

Bicyclic
terpenes

2-Ethylidene-1,7,7-trimethylbicyclo
[2.2.1]heptane;

8-isopropyl-1,5-dimethyltricyclo
[4.4.0.02,7]dec-4-en-3-one

1.08 Not present 0.00 Not tested

Ketones 4,4-Dimethylpentan-2-one 1.36 4-
Isopropenylcyclohexanone 0.46 Yes

[20,32,33]

Tricyclic
alcohols

3-Isopropyl-6,7-dimethyltricyclo
[4.4.0.0(2,8)]decane-9,10-diol 0.97

3-Isopropyl-6,7-
dimethyltricyclo

[4.4.0.0(2,8)]decane-9,10-
diol

3.65 Yes [34]

Furfural
derivatives 5-Hydroxymethylfurfural 0.87 Not present 0.00 Yes [32]
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Table 1. Cont.

Class Methanol
Extract

Peak Area
(%)

n-Hexane
Extract

Peak Area
(%)

Anti-RA
Effect

Cyclopropane
derivatives

Cyclopropanebutanoic acid, Methyl-
4-[2-[[2-[[2-[(2-pentylcyclopropyl)-

methyl]cyclopropyl]methyl]-
cyclopropyl]methyl]-

cyclopropyl]butanoate

0.71 Not present 0.00 Not tested

Saturated hy-
drocarbons Tetracontane 0.68

3-Methylheptane;
3-Methylhexane;

2,2-Dimethylhexane;
heptane

1.68 Not tested

Nitrobenzo-
furans 5-nitrobenzofuran-2(3H)-one 0.64 Not present 0.00 Not tested

Amino
alcohols (2R/2S)-2-Aminopropan-1-ol 0.57 Not present 0.00 Yes [35,36]

Tricyclic
sesquiter-

penes

(1R,4R,6R,10S)-4,12,12-Trimethyl-9-
methylene-5-oxatricyclo

[8.2.0.04,6]dodecane
0.55 Not present 0.00 Yes [37]

Carboxylic
acids and

derivatives

4-Prop-1-en-2-ylcyclohexene-1-
carbaldehyde; Undecyl methanoate 0.48

Dodecanoic acid, 2-(Tricyclo
[3.3.1.13,7]dec-1-

yl)propanoic acid
0.40 Yes [38–40]

Spiro
compounds

Spiro [5.6]dodecan-7-one, spiro
[5.5]undeca-1,7-diene 0.45 5,5-Diethyl-4-methyl-6-

spiro [2.3] hexane 1.05 Not tested

Steroids 3beta-trimethylsiloxy-5alpha,6alpha-
epoxycholestane 0.43 Not present 0.00 Not tested

Heterocyclic
compounds

2,2-bis(oxidanylidene)-1,5-
dihydroimidazo

[4,5-c][1,2,6]thiadiazin-4-one
0.38 Not present 0.00 Not tested

Organosilicon
compounds Trichloro(dodecyl)silane 0.38 Not present 0.00 Not tested

Aldehydes 4-Prop-1-en-2-ylcyclohexene-1-
carboxylic acid 0.35

4-Prop-1-en-2-
ylcyclohexene-1-carboxylic

acid
3.07 Not tested

Siloxanes Octadecamethyl-cyclononasiloxane 0.33 Not present 0.00 Not tested

Sugar
derivatives 1,2,3,4,5-Penta-O-acetyl-D-xylitol 0.27 Not present 0.00 Not tested

Phenol
derivatives Thymol 0.25 2,6-Dimethoxy-4-(prop-2-

en-1-yl)phenol 0.79 Yes [41]

Phenone
oximes 4’-Hydroxybutyrophenone oxime 0.22 Not present 0.00 Yes [42]

Pyranone
derivatives

3,5-Dihydroxy-6-methyl-2,3-
dihydropyran-4-one 0.20 Not present 0.00 Yes [32]

Cycloalkanols Cyclopentanol 0.19 Not present 0.00 Not tested

Sulfonate
esters

[(Z)-4-Methylsulfonyloxybut-2-enyl]
2-(tert-butoxycarbonylamino)acetate 0.13 Not present 0.00 Yes [33]

2.2. Protein Denaturation Assay

The anti-inflammatory properties of methanol and n-hexane extracts were assessed
using in vitro protein denaturation and protease activity (crucial factors in chronic inflam-
matory conditions like RA) inhibition assays. Protein denaturation, which is associated with
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inflammation, was evaluated using a BSA denaturation assay. The strongest BSA denatura-
tion inhibition was obtained with the n-hexane extract at 62.5 µg/mL: 90.36% vs. 51.36%
for diclofenac (the reference drug) at the same concentration (Figure 1A). Conversely, the
methanol extract exhibited a modest effect, reaching an IC50 of 5408.00 µg/mL, compared
with the n-hexane extract (IC50 = 14.30 µg/mL) and also diclofenac (IC50 = 42.30 µg/mL)
(Figure 1 and Table S4). This emphasizes the remarkable effectiveness of the n-hexane
extract in inhibiting BSA denaturation compared with the methanol extract and also di-
clofenac, suggesting its potential to inhibit the release of lysosomal material by neutrophils
at the inflammation site [43,44].
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Figure 1. Effect of different concentrations of the Ammodaucus leucotrichus seed methanol and
n-hexane extracts on BSA denaturation. (A) Comparison of the extracts with diclofenac in a protein
denaturation assay and (B) IC50 values (µg/mL) for BSA denaturation inhibition. Data are the
mean ± standard error of the mean.

2.3. Protease Inhibition Activity

Figure 2A illustrates the significant trypsin inhibition demonstrated by both extracts
at various concentrations, implying their potential for RA treatment (Table S5 in the
Supplementary Materials). The methanol extracts, along with diclofenac, achieved com-
plete inhibition (100%) at a concentration of 250 µg/mL. The n-hexane extract exhibited
lower (51%), but still significant inhibition, at the same concentration. The IC50 val-
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ues (Figure 2B and Table S5) were 82.97 µg/mL for the methanol extract, 97.04 µg/mL
for diclofenac, and 202.7 µg/mL for the n-hexane extract. The high trypsin inhibition
by the methanol extract suggests considerable anti-inflammatory effects, as reported by
Biswajita, P et al. [45] and Mane, M. P et al. [46] using other plant extracts (Enteromor-
pha intestinalis and Polygala arvensis). Protease inhibitors have demonstrated efficacy in
various clinical diseases, including cancer, AIDS, RA, pancreatitis, and thrombosis [47].
Therefore, the methanol extract holds promise for RA by effectively inhibiting proteases,
offering a natural alternative approach to diclofenac, a non-steroidal anti-inflammatory
drug with important side effects.
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2.4. Molecular Docking

Earlier assays clearly demonstrated the exclusive anti-protease efficacy of the methanol
extract, specifically against trypsin. To elucidate the responsible compounds, an in silico
screening of the 59 identified phytochemicals within the methanol extract was conducted,
utilizing drug design tools crucial for advancing drug development [48]. Molecular docking
simulations with trypsin unveiled a diverse range of affinities among the 59 key compounds,
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with the hydrazide group, including 2-hydroxyacetohydrazide and 3-Hydroxy-3-methyl-
butyric acid hydrazide (S1 and S2 in Table S6), standing out for its notable inhibitory
potential against RA. The substantial binding energies of these hydrazides highlight their
promising candidacy for further exploration in RA inhibition.

Notably, 2-hydroxyacetohydrazide exhibited a more negative binding energy than
diclofenac, emphasizing its inhibitory potency. Visual analysis underscores the rational ori-
entation of 2-hydroxyacetohydrazide and diclofenac within the trypsin active site (Figure 3).
Remarkably, 2-hydroxyacetohydrazide formed seven hydrogen bonds with crucial residues
(Cys191, Ser195, Ser190, and Gly219), indicating a robust inhibitory potential. In contrast, di-
clofenac formed only two hydrogen bonds (Figure 4) [48]. The predictive analysis unveiled
multi-faceted actions, encompassing sphinganine kinase inhibition, G-protein-coupled
receptor kinase inhibition, JAK2 expression inhibition, NF-kB activation, immunosuppres-
sant effects, and complement factor D inhibition. These insights provide a comprehensive
foundation for guiding future experimental investigations into the therapeutic potential of
Ammodaucus leucotrichus seed extract, positioning it as a promising source for developing
effective anti-RA agents.
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Figure 3. Placement of (A) 2-hydroxyacetohydrazide and (B) diclofenac within trypsin active site.
The most plausible conformation of each compound, obtained by FlexX, is illustrated. The active
site is represented in cyan as a ‘surface mode’, with the ligand atoms color-coded: carbon in green,
oxygen in red, and nitrogen in blue.

Furthermore, the maintenance of bone and cartilage integrity crucially depends on
balanced proteolytic activity, and various enzymes contribute to pro-inflammatory func-
tions in RA [49]. Serine proteases, such as trypsin, play a role in the complement cascade,
extending beyond the traditional roles of human collagenases in collagen breakdown [50].
The molecular docking results accentuate that 2-hydroxyacetohydrazide from Ammodaucus
leucotrichus exhibits tighter binding to the target protein trypsin than diclofenac. This
underscores 2-hydroxyacetohydrazide as a promising candidate for future RA research,
showcasing its potential in modulating proteolytic activity associated with RA pathology.

2.5. Prediction of Potential Protein Targets and Druglikeness Analysis

The screening of the 59 phytochemicals from the methanol extract of Ammodaucus
leucotrichus seeds also involved using the online PASS tool to predict their biological activity
spectrum (Figure 5). This tool provides insights into the potential pharmacological effects,
mechanisms of action, and toxicity based on the compound chemical structure [51]. The
diversity of predicted activities encompassed anti-inflammatory effects and targeting of key
molecules associated with RA. The tool successfully identified 2-hydroxyacetohydrazide in
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Table S7 (Supplementary Materials) as a potent agent with anti-inflammatory effects (Pa:
0.004) and sphinganine kinase inhibition activity. This positions 2-hydroxyacetohydrazide
as a promising multi-faceted candidate for RA treatment. Notably, the tool encountered
challenges predicting outcomes for 2-hydroxyacetohydrazide, possibly attributable to its
relatively short carbon chain.
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clofenac (reference drug) within trypsin active site (inflammation-related enzyme); hydrogen bonds
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The identified phytochemicals from the methanol extract of Ammodaucus leucotrichus
seeds target various key pathways associated with RA. Sphinganine kinase, a crucial
enzyme in the regulation of inflammatory factors and immune responses, was targeted by
several compounds, including 2-hydroxyacetohydrazide, emphasizing their potential in
modulating sphingosine metabolism [52,53]. G-protein-coupled receptors, implicated in RA
mechanisms, were also affected by multiple compounds, suggesting a role in modulating
receptor signaling for therapeutic benefits [54–56]. Inhibition of Janus kinases (JAKs) by
certain compounds aligns with the emerging class of JAK inhibitors in RA treatment,
demonstrating potential efficacy in disease modification [57,58]. Compounds displaying
immunosuppressant properties hold promise for mitigating chronic inflammation and
pain associated with RA [59,60]. Furthermore, the prediction of matrix metalloproteinase
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(MMP) inhibition, particularly MMP9, suggests a potential avenue for joint protection in
RA [61,62]. Transcription factor NF-κB, a key regulator of inflammation, was targeted by
several compounds, providing insights into potential anti-inflammatory effects [63,64].
Notably, the hydrazide of 2-hydroxyacetohydrazide stands out, possibly due to its unique
structure.
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Figure 5. Toxicity, calculated by ProTox-II, of key compounds identified in the Ammodaucus leucotrichus
seed methanol extract. The compounds include (A) n-hexadecanoic acid, (B) hexadecanoic acid
methyl ester, (C) 9-octadecenoic acid methyl ester (E)-, (D) (9Z, 12Z)-Octadeca-9,12-dienoic acid,
(E) 9-octadecenoic acid, and (F) 2-hydroxyacetohydrazide.
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Six selected compounds, including 2-hydroxyacetohydrazide, n-hexadecanoic acid,
hexadecanoic acid methyl ester, (9Z,12Z)-Octadeca-9,12-dienoic acid, and (E) 9-octadecenoic
acid, demonstrated promising effects on multiple RA therapeutic targets. This selection
process, involving in vitro and in silico assessments along with PASS predictions (Figure 5),
underscores a comprehensive approach to identifying potential anti-RA candidates [65]. To
further evaluate these compounds, pharmacokinetic properties and toxicity were assessed.
SwissADME and ProTox-II results indicated low toxicity for n-hexadecanoic acid, hexade-
canoic acid methyl ester, (9Z,12Z)-Octadeca-9,12-dienoic acid, and (E) 9-octadecenoic acid,
while 9-octadecenoic acid and 2-hydroxyacetohydrazide exhibited higher toxicity, highlight-
ing the importance of considering safety profiles in drug development [66]. Additionally,
Swiss Target Prediction revealed potential interactions with enzymes, fatty-acid-binding
proteins, G-protein-coupled receptors, and nuclear receptors, providing valuable insights
into the biological activity of these compounds [65]. Overall, this comprehensive analysis
offers a foundation for further experimental exploration and potential drug development
for RA treatment.

The bioavailability radar charts generated by SwissADME [66] stressed the favorable
characteristics of the compounds: high scores for size, polarity, solubility, and saturation,
and low scores for flexibility and lipophilicity. Moreover, 2-hydroxyacetohydrazide was
within the optimal range for all the tested characteristics (Figure 6 and Table 2). The
BOILED-Egg method was used to predict blood–brain barrier (BBB) access and passive gas-
trointestinal absorption. Key compounds (n-hexadecanoic acid, hexadecanoic acid methyl
ester, and 9-octadecenoic acid) were inside the yolk, suggesting high BBB permeation.
Only 2-hydroxyacetohydrazide was in the white part, suggesting favorable gastrointestinal
absorption due to its lower WLOGP value (a lipophilicity indicator) and higher Total Polar
Surface Area (TPSA) value compared with the other compounds. The outer gray region
indicates molecules with low absorption and limited BBB penetration: 9-octadecenoic acid
methyl ester (E)- and (9Z, 12Z)-Octadeca-9,12-dienoic acid. The SwissADME results suggest
a minimal impact of P-glycoproteins (P-gp) in the central nervous system on the main
substances present in the methanol extract, as indicated by the red dots. SwissADME also
predicted that most of the compounds but n-hexadecanoic acid and 9-octadecenoic acid
should not inhibit major cytochrome P450 (CYP) isoforms (CYP2C19, CYP2D6, CYP3A4,
and CYP2C9). Conversely, all the tested compounds but 2-hydroxyacetohydrazide should
inhibit CYP1A2 (Table 2). The physicochemical properties, crucial for efficacy, safety, and
metabolism, were assessed using six rule-based methods, including Lipinski’s Rule of
Five (RO5), confirming full compliance, with molecular mass <500 daltons, hydrogen
bond donors (HBD) <5, hydrogen bond acceptors (HBA) <10, and octanol–water partition
coefficient (Clog P) ≤5 for all the selected molecules (Table 2).

Table 2 provides the comprehensive in silico ADMET profile of the six key com-
pounds identified in the methanol extract of Ammodaucus leucotrichus seeds. The TPSA
values ranged from 26.30 to 75.35 Å², and 2-hydroxyacetohydrazide had the highest TPSA.
The consensus log Po/w, an indicator of lipophilicity, varied between 5.20 and −1.51;
n-hexadecanoic acid displayed the highest lipophilicity and 2-hydroxyacetohydrazide
was hydrophilic. All the compounds were predicted to have substantial gastrointestinal
absorption and complied with Lipinski’s Rule of Five, indicating their druglike properties.
BBB penetration was predicted for n-hexadecanoic acid and hexadecanoic acid methyl ester
but not for 2-hydroxyacetohydrazide. Importantly, the lack of P-gp substrate prediction
suggests favorable bioavailability. Although some compounds were predicted to inhibit
specific CYP isoforms, the majority of them displayed interesting characteristics for ef-
fective drug development and therapeutic applications, underscoring their potential as
promising drug candidates that deserve further exploration and experimental validation.
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sADME, for the key compounds identified in the methanol extract of Ammodaucus leucotrichus seeds:
(A) n-hexadecanoic acid, (B) hexadecanoic acid methyl ester, (C) 9-octadecenoic acid methyl ester (E)-,
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Table 2. In silico ADMET profiles of six phytocompounds identified in the methanol extract.

Entry n-Hexadecanoic
Acid

Hexadecenoic
Acid, Methyl

Ester

9-Octadec-
enoicacid,

Methyl Ester, (E)-

9,12-Octadecadie-
noicacid(Z,Z)-

9-Octadece-
noicacid

2-Hydroxy-
acetohydrazide

TPSA (Å²) 37.30 26.30 26.30 37.30 37.30 75.35

Consensus Log
Po/w 5.20 5.54 5.95 5.95 5.71 −1.51

Gastrointestinal
absorption High High High High High High

Bioavailability
score 0.85 0.55 0.55 0.55 0.85 0.55

BBB access Yes Yes No No No No

P-gp substrate No No No No No No

CYP1A2 Yes Yes Yes Yes Yes No
CYP2C19 No No No No No No
CYP2C9 Yes No No No Yes No

CYP2D6 CYP3A4 No No No No No No
inhibitor No No No No No No

Lipinski Yes Yes Yes Yes Yes Yes
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3. Materials and Methods
3.1. Phytochemical Extraction

Ammodaucus leucotrichus seeds were collected in the Bechar region (part of the arid
Algerian Sahara) in the southwest of Algeria during the summer of 2021. Professor
Sabah Charmat from Ferhat Abbas University Setif 1, Algeria, confirmed their authen-
ticity. An official voucher specimen was documented and assigned the reference num-
ber 220/SNV/DA/UFAS/21. The seed powder underwent solvent extraction using ab-
solute methanol (CH3OH, ≥99.8%, Sigma-Aldrich, Burlington, MA, USA) or n-hexane
(CH3(CH2)4CH3, ≥97.0%, Sigma-Aldrich) following the method outlined by Arrar et al. [67].
Briefly, 5 kg of seed powder was immersed in absolute methanol or n-hexane in a sealed
container and left at room temperature (27 ◦C) with regular agitation for 3–7 days until com-
plete dissolution of the soluble components. The solutions were filtered through Whatman
No. 4.1 filter paper and concentrated under reduced pressure using a rotary evaporator at
40 ◦C, yielding the crude extracts, dissolved in distilled water and kept at 4 ◦C.

3.2. Phytochemical Analysis by GC–MS

GC–MS (gas chromatography–mass spectrometry) analysis was completed using a
Hewlett-Packard 6890 system interfaced with a quadrupole mass spectrometer (model
HP 5973), equipped with an HP5 MS capillary column (5% phenylmethyl siloxane in
dimethylpolysiloxane, 30 m × 0.25 mm, 0.25 mm film thickness; PTAPC, BISKRA). The
experimental setup included helium carrier gas flow rate of 0.5 mL/min, split ratio of 30,
electron ionization system with ionization energy of 70 eV, and scan range of 30–550 atomic
mass units. The GC–MS transfer line temperatures for the injector and detector were set
at 250 ◦C and 280 ◦C, respectively, and the ion source temperature was maintained at
230 ◦C. The column temperature was at 60 ◦C for 8 min and then was increased gradually
to 280 ◦C (2 ◦C/min) and held isothermal for 30 min. Then, 0.2 mL of n-hexane (HPLC
grade 95%, Fisher Chemical) and methanol solution (HPLC grade, ≥99.9%, Sigma-Aldrich)
was injected. Mass spectra were compared with the computer libraries Wiley 7N, National
Institute of Standards and Technology (NIST) 02, and NIST 98 (NIST11 and Wiley 8) for
compound identification [27].

3.3. Protein Denaturation Assay

The in vitro anti-inflammatory effects of methanol and n-hexane extracts were exam-
ined using a protein denaturation assay, based on BSA (bovine serum albumin) (pH 7,
≥98%, Sigma-Aldrich), as reported by Suresh, P [68]. Briefly, 0.2% BSA in Tris-HCl buffer
(pH 6.8, Trizma® hydrochloride, >99%, Sigma-Aldrich) was combined with various extract
concentrations (250, 125, 62.50, 31.20, 15.62, and 7.81, 3 µg/mL) solubilized in distilled
water or the reference anti-inflammatory drug (diclofenac, DICLAMID®, 25 mg/mL). Mix-
tures were sealed and incubated at 37 ◦C in an oven for 15 min, followed by heating in
a water bath at 70 ◦C for 5 min. Turbidity absorbance was measured at 660 nm using a
UV–vis spectrophotometer (VIS-7220G). The protein denaturation inhibition percentage
was calculated using the formula (Equation (1)):

Protein denaturation inhibition (%) = (1 − At/Ac) × 100 (1)

where At is the absorbance of the test sample, and Ac is the absorbance of the control.

3.4. Protease Inhibition Activity

The protease inhibition activity analysis was carried out following a modified version
of the protocol described by Ahmad, S et al. [69]. The reaction mixture included 200 µL
of extract at various concentrations (500, 250, 125, 62.5, and 31.2 µg/mL) solubilized in
distilled water, 200 µL of 25 mM Tris-HCl buffer (Trizma® hydrochloride, >99%, Sigma-
Aldrich) at pH 7, and 12 µL of 0.6 mg trypsin (1000–2000 units/mg solid, Sigma-Aldrich).
After incubation at 37 ◦C for 5 min, 200 µL of 0.8% w/v ovalbumin (Sigma-Aldrich) was
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added to the mixtures that were then incubated at 37 ◦C for 20 min. The reaction was
stopped by adding 400 µL of 70% v/v hydrochloric acid (HCl, 37%, Sigma-Aldrich). This
was followed by centrifugation (refrigerated centrifuge 3–30 KS, Sigma-Aldrich, Darmstadt,
Germany) at 5000 rpm for 5 min to collect the supernatant, and absorbance was measured
at 280 nm with a UV–vis spectrophotometer (VIS-7220G). Diclofenac served as reference
standard. The percentage of protease inhibition percentage was calculated for each extract
and diclofenac using the following formula (Equation (2)):

Protease inhibition (%) = (1 − At/Ac) × 100 (2)

where At is the absorbance of the test sample, and Ac is the absorbance of the control.

3.5. In Silico Molecular Docking

To study the binding mechanisms of the compounds identified in the Ammodaucus
leucotrichus seed methanol extract, a molecular docking study was conducted targeting
the active sites of trypsin. The 3D coordinates for trypsin (ID: 2PTN) were obtained from
the Protein Data Bank (https://www.rcsb.org, accessed on 5 Septembre 2023). Trypsin
was prepared for docking using the LeadIT 2.1.8 software package (www.biosolveit.com,
accessed on 5 Septembre 2023)). Before the docking simulation, all water molecules were
removed, and polar hydrogen atoms were introduced [70]. Missing atoms were added, and
formal charges were computed. Then, the resulting structure underwent rigorous mini-
mization before being exported as mol2 files [71]. The 3D structure of each compound was
retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on
5 Septembre 2023) and prepared for docking simulations using Maestro, version 11.3, and
the LigPrep module (Schrödinger software company, New York, NY, USA) [72]. This mod-
ule streamlines the generation of all tautomeric forms, protonation states at pH = 7.4 ± 1,
and enantiomers for each ligand [73]. Molecular docking calculations were completed
with FlexX 2.1.8 and an incremental ligand construction approach [74]. Fragment selection
was set in automatic mode and the standard algorithm for fragment placement was used.
Phytochemicals in the extract were ranked using the FlexX scoring function, providing
scores in terms of changes in Gibbs free energy (∆G, in kJ/mol).

3.6. Prediction of Potential Protein Targets and Druglikeness Analysis

To estimate the biological activity of the 59 compounds detected in the methanol ex-
tract, the PASS Online tool (way2drug.com/passonline/predict.php, accessed on
6 Septembre 2023) was employed (average accuracy >95%). The structures of the com-
pounds were uploaded in “mol” format in PASS Online to obtain the probability to be
active (Pa) and the probability to be inactive (Pi) values [75]. Then, the bioavailability and
pharmacokinetic and toxicity properties of 2-hydroxyacetohydrazide were predicted using
the SwissADME, BOILED-Egg, and ProTox-II—Prediction of toxicity of chemicals tools.

4. Conclusions

The evaluation of Ammodaucus leucotrichus seed extracts as potential anti-inflammatory
and anti-arthritic agents involved employing methanol and n-hexane as solvents for the
extraction of bioactive compounds. The extracts underwent assessment through protease
(trypsin) and protein (BSA, bovine serum albumin) denaturation inhibition assays. The
methanol extract demonstrated trypsin inhibition of 85%, surpassing both the n-hexane
extract (30.0%) and diclofenac (64.67%) at 125 µg/mL. Conversely, the n-hexane extract
exhibited the highest BSA denaturation inhibition rate at 90.4%, in comparison to the
methanol extract (22.0%) and diclofenac (51.4%) at 62.5 µg/mL. GC–MS analysis revealed
59 and 58 secondary metabolites in the methanol and n-hexane extracts, respectively,
indicating diverse bioactive compounds. In silico docking studies identified 28 com-
pounds with negative binding energies, suggesting potential trypsin inhibition. Notably,
2-hydroxyacetohydrazide showed superior inhibitory effects (−17.13 Kj/mol) compared to
diclofenac (−13.01 Kj/mol). The methanol extract, particularly 2-hydroxyacetohydrazide,
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emerged as a promising candidate for rheumatoid arthritis (RA) treatment due to potent
trypsin inhibition. SwissADME analysis highlighted favorable bioavailability attributes,
with optimal size, polarity, solubility, and saturation for 2-hydroxyacetohydrazide. The
BOILED-Egg model predicted blood–brain barrier permeation and gastrointestinal absorp-
tion, providing insights into druglikeness and bioavailability. In summary, these findings
propose the methanol extract as a promising candidate for anti-inflammatory applications,
particularly in trypsin inhibition. However, we acknowledge the potential for alternative
therapeutic approaches with the n-hexane extract, necessitating further investigation. The
identified compound, 2-hydroxyacetohydrazide, shows promise as a potential drug candi-
date for rheumatoid arthritis treatment. Yet, rigorous mechanistic studies and validation
are crucial to enhance our understanding of its therapeutic potential within the field of
plant-based medicine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17030385/s1, Figure S1. Gas chromatography-mass spec-
trometry analysis of (A) the methanol and (B) n-hexane extracts of Ammodaucus leucotrichus seeds.
The chromatograms show the abundance of the different compounds in relation to their retention
time (in minutes); Figure S2. Data on the predicted target of the selected compounds identified in
the Ammodaucus leucotrichus methanol extract; Table S1. Comprehensive list of the phytochemicals
identified in the methanol extract by gas chromatography-mass spectrometry. The table includes
compound name, molecular formula, molecular weight, retention time, peak area, and PubChem
Compound Identifier (CID); Table S2. Comprehensive list of the phytochemicals identified in the
n-hexane extract by gas chromatography-mass spectrometry. The table includes compound name,
molecular formula, molecular weight, retention time, peak area, and PubChem Compound Iden-
tifier (CID); Table S3. Comparison of the key phytocomponents (with their peak area) present in
the methanol and n-hexane extracts, identified by gas chromatography/mass spectrometry; Table
S4: Impact of different concentrations of the methanol and n-hexane extracts from Ammodaucus
leucotrichus seeds on BSA denaturation. Comparison with diclofenac (reference anti-inflammatory
drug) in a BSA denaturation assay and IC50 values (µg/ml) for BSA denaturation inhibition. Data are
the mean ± standard error of the mean; Table S5: Trypsin inhibition by the methanol and n-hexane
extracts from Ammodaucus leucotrichus seeds compared with Diclofenac (reference drug) at different
concentrations, and IC50 values (µg/ml) for trypsin inhibition. Data are the mean ± standard error of
the mean; Table S6: Binding energies (in kJ/mol) of the 59 key compounds identified in the methanol
extract from Ammodaucus leucotrichus seeds and of diclofenac during their interactions with trypsin.
The different binding energy values reflect variations in the inhibitory potential of the compounds
against trypsin; Table S7. PASS prediction of the bioactivities of the 59 phytochemicals identified in
the methanol extract from Ammodaucus leucotrichus seeds.
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