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Abstract: Nanobodies (Nbs or VHHs) are single-domain antibodies (sdAbs) derived from camelid
heavy-chain antibodies. Nbs have special and unique characteristics, such as small size, good tissue
penetration, and cost-effective production, making Nbs a good candidate for the diagnosis and
treatment of viruses and other pathologies. Identifying effective Nbs against COVID-19 would help
us control this dangerous virus or other unknown variants in the future. Herein, we introduce an in
silico screening strategy for optimizing stable conformation of anti-SARS-CoV-2 Nbs. Firstly, various
complexes containing nanobodies were downloaded from the RCSB database, which were identified
from immunized llamas. The primary docking between Nbs and the SARS-CoV-2 spike protein
receptor-binding domain was performed through the ClusPro program, with the manual screening
leaving the reasonable conformation to the next step. Then, the binding distances of atoms between
the antigen–antibody interfaces were measured through the NeighborSearch algorithm. Finally,
filtered nanobodies were acquired according to HADDOCK scores through HADDOCK docking the
COVID-19 spike protein with nanobodies under restrictions of calculated molecular distance between
active residues and antigenic epitopes less than 4.5 Å. In this way, those nanobodies with more
reasonable conformation and stronger neutralizing efficacy were acquired. To validate the efficacy
ranking of the nanobodies we obtained, we calculated the binding affinities (∆G) and dissociation
constants (Kd) of all screened nanobodies using the PRODIGY web tool and predicted the stability
changes induced by all possible point mutations in nanobodies using the MAESTROWeb server.
Furthermore, we examined the performance of the relationship between nanobodies’ ranking and
their number of mutation-sensitive sites (Spearman correlation > 0.68); the results revealed a robust
correlation, indicating that the superior nanobodies identified through our screening process exhibited
fewer mutation hotspots and higher stability. This correlation analysis demonstrates the validity of
our screening criteria, underscoring the suitability of these nanobodies for future development and
practical implementation. In conclusion, this three-step screening strategy iteratively in silico greatly
improved the accuracy of screening desired nanobodies compared to using only ClusPro docking or
default HADDOCK docking settings. It provides new ideas for the screening of novel antibodies and
computer-aided screening methods.

Keywords: nanobody; in silico screening; protein docking; COVID-19

1. Introduction

When it broke out in late 2019, COVID-19 was a major health problem worldwide,
owing to the lack of effective treatment methods. With the rapid global spread of Omicron
and other notable variants, the development of more potent antibodies and antiviral
drugs has been a global concern. For instance, one approach is the yeast display VHH
library construction method, which involves extracting peripheral blood lymphocytes
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from immunized alpacas [1]. Another method utilizes antibody modeling applications to
construct nanobody models, focusing on regions such as the Fv region of an antibody [2].

There are three main proteins on the surface of the SARS-CoV-2 virus, namely spike
protein (S), envelope protein (E), and membrane protein (M) [3,4]. Among them, S protein
has a key role in virus entry into host cells and is an important target for SARS-CoV-2
infection. The S protein is a class of trimeric transmembrane glycoproteins, which has a
full size of 1273 amino acid residues and consists of two functional subunits (S1 and S2) [5].
The S1 subunit is responsible for binding to the host cell receptor, and the S2 subunit can
fuse with the viral and cellular membranes. The S1 subunit can be further divided into two
functional domains, an N-terminal domain and a C-terminal domain (CTD) involving the
receptor-binding domain (RBD), which is the main receptor used by SARS-Cov-2 for cell
entry and directly binds to the receptor angiotensin-converting enzyme 2 (ACE2) on host
cells [6,7]. The C-terminal domain is involved in the assembly and release of viral particles.
Thus, S protein is a key molecule for viral infection of host cells by decorating the virion
surface as a major antigen and inducing neutralizing antibody responses.

Tremendous progress in the structure and function of SARS-CoV-2 spike protein has
been made since the initial outbreak of COVID-19. Some treatments have shown some
benefits in certain patients to date [8–10]; however, there are no generally proven effective
therapies for antivirals against SARS-CoV-2. Studies reported that specific monoclonal
antibody therapy is an effective immunotherapy for SARS-CoV-2 infection [11], and vacci-
nation is the most effective method for a long-term strategy for the prevention and control
of COVID-19 [12,13]. However, the wide application of therapeutic monoclonal antibodies
may be restricted by the high cost and limited capacity of manufacturing, as well as the
problem of bioavailability. Screening, validation, and large-scale production of neutralizing
antibodies take a long time to test, making it difficult to function at critical windows early
in the outbreak. Herein, the engineering of nanobodies emerges as a positive solution.

Nanobodies (Nbs) are special types of antibodies with no light chains (L) in their
structure and are composed of only heavy chains (H). They possess a significantly smaller
molecular weight of only 14 kDa, which is approximately one-tenth the size of a conven-
tional antibody (Figure 1). They are derived from the peripheral blood of Camelidae family
animals, including alpacas. The peculiar properties of Nbs include nanoscale size, stabil-
ity, high affinity and specificity, water solubility, and high tissue penetration [14]. These
Nbs have attracted considerable interest, and the applications of Nbs depend on reliable,
cost-effective, and high-volume production. These unique properties of Nbs over conven-
tional antibodies make them powerful therapies against SARS-CoV-2 [15,16]. Effective
nanobodies have been successfully generated in biological experiments [1,17], which could
be used for targeting the SARS-CoV-2 virus for the diagnosis and treatment of COVID-19.
Computational studies on Nbs targeting SARS-CoV-2 S protein have attracted enormous
attention [18]. However, there is a lack of in silico screening techniques to promptly identify
a large number of nanobodies that can effectively neutralize the SARS-CoV-2 virus.

In this paper, we highlight an iterative screening strategy: the flowchart in Figure 2
depicts the methodology used to predict the molecular docking and binding free energy
between nanobodies and the SARS-CoV-2 spike protein RBD using ClusPro [19] and
HADDOCK [20] molecular docking servers with the algorithm of NeighborSearch, which
predicted the active binding sites for HADDOCK to calculate the final results. Notably,
we identified the active residues on both the antigen and nanobody and subsequently
integrated them into HADDOCK to enhance the performance of the in silico screening.
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Figure 2. The flowchart of the three-step in silico screening strategy. (Left) panel: the first screen-
ing step by ClusPro. (Middle) panel: identifying active residues of spike by the NeighborSearch
algorithm. (Right) panel: further screening by HADDOCK with active residue information.

2. Results

We preprocessed the Nbs and spike proteins using PyMOL [21] and removed un-
wanted molecules such as water and chloride ions, as well as impurities such as small-
molecule ligands or other proteins. We also checked structural issues and then used ClusPro
to dock them. Multiple sets of predictive conformations were obtained by docking each
pair of spike proteins and nanobodies. However, some predicted conformations did not
exhibit nanobody binding within the RBD region of the spike protein, which is a critical
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area to screen for nanobodies capable of effectively competing with ACE2 for binding to
the RBD domain [22] (Figure 3).
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Figure 3. A comparison of two ClusPro-predicted models for nanobody binding sites, nanobodies
were colored in green and the spike protein of SARS- CoV-2 was in three other colors, representing
different structures. (a) Nanobodies bind outside the SARS- CoV-2 RBD domain. (b) Nanobodies
bind within the SARS-CoV-2 RBD domain (shaded area).

Further screening was then performed using HADDOCK, active residues were added
for precise localization, and the conformation of the binding site within the RBD region
was obtained. The active residues are situated on the interface of interaction between the
nanobody and S protein. We set the distance threshold (4.5 Å) between the molecules
at the antigen–antibody interface to clarify if these regions are active residues. Within
this 4.5 Å distance range, the residue interactions between protein chains are regarded
as strong interactions. Active residues play a crucial role in maintaining the stability of
the protein complex and conferring binding specificity [23]. Figure 4 shows the predicted
active residues in the docking of the S protein and nanobody, indicating the positions and
corresponding residue IDs of active residues.
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Finally, HADDOCK docking was completed, and each predicted conformation was
assigned an evaluation score. The HADDOCK score is calculated using a linear function
that combines various energies and buried surface area [20]. The lower the score, the better
the conformation. Moreover, with the ClusPro pre-screening step, the binding sites of the
antibodies are reasonably located within the RBD region. Based on the best score ranking
from each predicted conformation, we selected the top 30 excellent nanobodies. In Table 1,
we listed the source PDBID, the best HADDOCK score, and the HADDOCK score error
range for each nanobody.

Table 1. Results of nanobodies screened by HADDOCK scores. (Full list can be downloaded at
https://www.nanolas.cloud/download/Screening%20Nano%20Full.csv (accessed on 20 March 2024)).

Source
Nanobody Name Best HADDOCK Score Error Range

(PDB ID)

7tpr Nanobody 8A2 −175.8 ±5.9
7tpr Nanobody 7A3 −162.2 ±5.1
7rby Nanobody nb-112 −154 ±2.9
7rxd Nb_RBD −153.9 ±3.3
7vq0 Nanobody P86 −149.4 ±13.2
7vnb n3113 −148.8 ±1.9
8cyb Nanobody 1–8 −148.7 ±1.2
7a25 Sybody 23 −148 ±5.2
8cy7 Nanobody 2–38 −143.9 ±4.8
7r4r Nanobody 1.10 −141.5 ±0.6
7r4q Nanobody 1.29 −141.3 ±3.0
7x4i Nanobody aSA3 −140.1 ±2.6
8cyc Nanobody 2–34 −137.7 ±9.2
7b14 Nanobody −137.7 ±4.3
8bev Nanobody W25 −137.5 ±4.6
7whi Bn03_nano2 −136.1 ±3.0
8cy9 Nanobody 1–23 −133.7 ±4.3
7x2j Nb70 −133.5 ±2.2
7whi Bn03_nano1 −133.1 ±5.9
7zf4 Nanobody F2 −132.5 ±3.4
7wpf Nanobody −132.2 ±4.6
8dqu Nanobody −130.9 ±2.2
8cya Nanobody 2–67 −130.8 ±3.2
7xrp C5G2 nanobody −129.4 ±7.7
8cwu VHH 1–21 −128.3 ±4.8
7xod Nanobody −128.1 ±7.9
7voa Nanobody −127.9 ±2.3
7wd2 Nanobody −125 ±3.7
7r98 Nanobody B6 −124.1 ±4.7
7z85 Nanobody H11-B5 −123.6 ±3.2

To validate our findings, we used Spearman correlation to assess the correlation be-
tween the rankings of nanobodies and the number of mutation-sensitive positions they
exhibited (Figure 5). In PRODIGY [24], our findings indicate that the top-ranking nanobod-
ies also displayed concurrent high binding affinities (Table 2).

https://www.nanolas.cloud/download/Screening%20Nano%20Full.csv
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Table 2. Affinity of top-ranking nanobodies against spike protein.

Source PDB ∆G (kcal mol−1)

8cy7 −15.8
7tpr2 −15.4
8cyb −13.6
7tpr −13.4
7vnb −13.1

3. Discussion

COVID-19 is an infectious disease caused by the novel coronavirus known as SARS-
CoV-2. As the COVID-19 pandemic erupted globally in late 2019, it caused tremendous im-
pacts on human health, economies, and other various aspects in many countries. As of May
2023, there have been over 760 million confirmed cases and more than 69,000 deaths [25].

The rapid spread of the COVID-19 pandemic can be attributed to the primary modes
of transmission of the SARS-CoV-2 virus, which are airborne and contact transmission. The
virus can spread through respiratory secretions, droplets, and aerosols. Simply being in
contact with an individual infected with SARS-CoV-2 poses a risk of transmission. People
may experience various symptoms, including fever, cough, shortness of breath, fatigue,
muscle pain, sore throat, loss of taste or smell, and others. Severe cases may require
hospitalization and even respiratory support with ventilators.

The COVID-19 pandemic has had profound implications. Over the past four years,
extensive research has been conducted on various antiviral antibodies or drugs for the pre-
vention and treatment of COVID-19. To date, the World Health Organization’s International
Clinical Trials Registry Platform (https://clinicaltrials.gov/ct2 (accessed on 20 March 2024))
has listed 9581 ongoing and completed COVID-19 studies. However, only half of these
study statuses indicate ‘completed’, highlighting the ongoing research needs regarding
the availability and accessibility of antibodies. During the early stages of the COVID-19

https://clinicaltrials.gov/ct2
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pandemic, researchers extensively collected and screened neutralizing antibodies (NAbs),
obtained from convalescent patients [26]. However, the rapid and iterative emergence of
variants, such as Omicron and Delta, has adversely affected the therapeutic efficacy of
natural antibodies.

In the context of the continuously emerging highly contagious variants, in silico ap-
proaches have played a crucial role by offering a rapid and cost-effective alternative to the
widely used trial-and-error approach in experimental research. This allows researchers
to efficiently study mutation sites to discover design strategies to overcome immune eva-
sion and screen for effective antibodies while saving valuable time. In recent times, in
silico screening methods have not only been employed in docking studies for chemical
drug design [27] but have also been successfully utilized to identify various effective im-
munotherapeutic agents. These agents include vaccines [28], chimeric antibodies, and
nanobodies [29], which have been utilized for the treatment of various infectious and in-
flammatory diseases in humans. Moreover, nanobodies have attracted significant attention
because of their small size, ability to recognize hidden epitopes, and ease of production.
Several of these nanobodies have been developed for identifying or inhibiting viruses, such
as hepatitis E virus (HEV) [30], influenza virus, and respiratory syncytial virus. The use of
nanobodies may be one of the most effective approaches for protecting against COVID-19.

For the reasons above, we hope to combine the advantages of in silico screening
methods and nanobodies and extend the design of this computational screening method
to identify a variety of effective antibodies, especially nanobodies. This study aimed to
improve the accuracy of docking predictions for the spike protein and nanobody complex
by introducing HADDOCK for iterative filtering of ClusPro pre-screened docking results.
The calculated active residues were used as a constraint output to refine the ClusPro
docking predictions and reduce computational complexity.

This approach not only increased the accuracy of ClusPro/HADDOCK docking but
also addressed the issue of how to filter out unrealistic binding sites that might result from
pure rigid docking. Then, the HADDOCK score was used as a comprehensive evaluation
index to compare the quality and accuracy of different docking conformations, with a lower
score indicating a more stable and reliable docking conformation.

In future studies, we aim to employ this iterative filtering approach to dock a wider
range of viral variants and identify high-quality nanobodies to specific pathogens.

In the next step, we would also integrate this iterative filtering module into our
NanoLAS online platform [31], providing an integrated and efficient service for screening
nanobodies. In NanoLAS 2.0, we will incorporate additional rigid docking programs,
including ZDOCK [32], GRAMM-X [33], pyDOCK [34], and FTDock [35]. These programs
exhibit comparable performance to ClusPro and can serve as alternative options for the
initial screening step. After the initial rigid docking, if further precise screening of higher-
quality nanobodies is required, the user can directly input the output of the first screening
step into the next module. The module will calculate the active residues of the antigen–
antibody binding site and use it for more precise and targeted screening via algorithms
such as HADDOCK or RosettaDOCK [36].

Furthermore, the residue IDs of binding sites on the spike protein chain in the models
may provide important information on potentially binding epitopes. In our experience,
it is crucial to find nanobody structures that match the epitopes with the active residue
information. We expect our method to be extended to nanobodies screening of other
diseases, especially in related neoplastic diseases such as lung cancers and brain tumors.

Currently, when screening for reasonable conformations from ClusPro, we still rely
on manual selection based on our experience. Manual screening could also be replaced
by programs with appropriate algorithms in the future. This technological progress will
further standardize the screening flow and improve efficiency.
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4. Materials and Methods
4.1. Data Mining

In this study, we searched for PDB files containing nanobody complexes related to
SARS viruses in the RCSB [37] database (https://www.rcsb.org/ (accessed on 20 March
2024)). We selected nanobodies obtained through biological experiments, especially utiliz-
ing cryo-electron microscopy, as these experimental-derived nanobodies are more reliable
in terms of stability and affinity when compared to nanobodies synthesized using modeling
software. Additionally, we also retrieved a PDB file containing the natural spike protein of
the SARS-CoV-2 from the RCSB database (PDB id 7ddn [38]).

4.2. Molecular Docking and Determination of Biophysical Interactions
4.2.1. Pre-Docking with ClusPro 2.0

Molecular docking [39] was used to determine protein–protein interactions, which is a
useful and validated technique for antibody screening.

We first employed ClusPro 2.0 [19,40–42] (https://cluspro.org/ (accessed on 20 March
2024), Vajda Lab and ABC Group, Boston University (Boston, MA, USA) and Stony Brook
University (Stony Brook, NY, USA)) for docking. ClusPro is a computational tool for
molecular docking of diverse molecular interactions, including protein–protein, protein–
nucleic acid, and protein–small molecule complexes. Information including interaction
force, binding free energies, and combined modes between molecules can be predicted by
molecular mechanics and Monte Carlo simulation techniques. For each antigen–antibody
complex, ClusPro retained 1000 lowest energy models and evaluated the top 30 models
(centers of the 30 largest clusters) using the DockQ program [43]. When some complexes
have fewer than 30 clusters, a DockQ result of 0.23 (acceptable) and above (better) would
be considered a good solution (ClusPro considers a DockQ result of 0.23 and above as a
good solution [40]). The top 15 predictions of each docking conformation were considered
for the next manual selection step.

4.2.2. Manual Screening Step

However, when only ClusPro was employed, we noticed that some predicted antibody
binding sites were not within the virus’s RBD. Although they displayed good stability,
these protein pairing confirmations are not useful and should be filtered out manually.
So, we added a manual screening step hereafter ClusPro docking to filter out the docking
results that docked outside the virus’s RBD region.

4.3. Identifying Active Residues

The stability of antigen–antibody binding can be evaluated by factors such as the
interface area of interaction, hydrogen bonds, van der Waals interactions, etc., at the
interface. In addition, the distance between atoms at the antigen–antibody interface is
also an important indicator for evaluating binding stability. Bio.PDB.NeighborSearch is a
powerful Python module that is part of the Biopython [44] library. It seamlessly integrates
with other protein structure analysis tools and data structures. It can interact with objects
such as Structure, Model, Chain, and Residue from Bio.PDB, providing a fast and efficient
method to search for neighboring atoms or residues in protein structures.

The Bio.PDB.NeighborSearch accomplishes rapid nearest neighbor search by con-
structing k-d trees [45]. A k-d tree (k-dimensional tree) is a binary tree data structure used
for partitioning and organizing points in k-dimensional space. In the context of protein
structures, each atom can be represented as a k-dimensional vector, where k is the di-
mensionality of the space (typically 3, representing three-dimensional spatial coordinates).
The k-d tree divides the space into multiple hyper-rectangular regions, where each node
represents a hyper-rectangular region and is stored in the tree nodes.

The algorithm steps are as follows: Firstly, a partitioning dimension is selected (typi-
cally the dimension exhibiting the highest variance), and a partitioning value is chosen to
segregate the data into left and right subtrees. This partitioning process is recursively ap-

https://www.rcsb.org/
https://cluspro.org/


Pharmaceuticals 2024, 17, 424 9 of 13

plied to the left and right subtrees until each leaf node exclusively encompasses a singular
atom or residue.

The search commences from the root node. By comparing the query point with the
partitioning value of the current node, the direction of the search, whether within the left
subtree or the right subtree, is determined. The same search process is repeatedly executed
within the selected subtree until the nearest neighbor atom is identified, and finally, the
program returns the neighboring atoms found.

For antigen–antibody, we used the NeighborSearch algorithm to traverse the atoms of
both chains. For each pair of atoms, the program uses the NeighborSearch algorithm to find
the distance between chains. If the distance found is not greater than the set threshold, it
predicates that the atom in the antibody chain is a “close atom”. The residue, composed of
multiple atoms, is the fundamental structural unit of a protein. We identified key residues
as active residues at the binding interfaces of the antigen–nanobody from the close atoms
and saved its ID for the HADDOCK step.

(The code of active residue identification can be downloaded at: https://github.
com/WangLabforComputationalBiology/SARS-COV-nanobody-screening (accessed on
20 March 2024)).

4.4. Further Docking with HADDOCK 2.4

We employed HADDOCK [20,46] for the next step iterative screening, which can
perform rigid, semi-flexible, and fully flexible docking (https://wenmr.science.uu.nl/
haddock2.4/ (accessed on 20 March 2024), Bonvinlab, Utrecht University, Utrecht, The
Netherlands). The screening steps of HADDOCK provide several advantages for further
docking and screening.

Firstly, HADDOCK incorporates information from identified or predicted protein
interfaces, utilizing ambiguous interaction restraints (AIRs) to guide the docking process.
This allows for a more informed and targeted exploration of the protein–protein interaction
space. Additionally, HADDOCK enables the inclusion of specific unambiguous distance
restraints, such as those derived from Mass Spectrometry cross-links, as well as various
other experimental data sources, including NMR residual dipolar couplings and cryo-EM
maps. This integration of diverse experimental data enhances the accuracy and reliability
of the docking predictions [47].

Moreover, by incorporating active residues to constrain the prediction range, the
accuracy of docking prediction results can be improved, and the computational complexity
can be reduced.

By first using ClusPro for primary screening, we were able to quickly select reasonable
conformations to calculate their active residue. Then, with the active residue information
acquired by Method C, HADDOCK could be used to further evaluate the performance of
the docking more precisely.

4.5. Determination of Binding Affinity and Stability Validation of Screening

The energy of protein–protein interactions between the spike protein fragment and
nanobodies is an important factor in evaluating the stability of different nanobodies upon
binding. Binding affinity represents the strength of protein–protein interactions and is asso-
ciated with the cellular functions of these proteins. This binding energy can be quantified
as a physicochemical parameter known as the dissociation constant (Kd), which provides a
quantitative measure of the affinity between a ligand and its target molecule. Kd represents
the equilibrium concentration of the unbound ligand when the ligand–target complex is in
dynamic equilibrium. A smaller Kd value indicates a higher binding affinity, suggesting a
more stable and favored binding interaction.

In parallel, the thermodynamic parameter Gibbs free energy (∆G) is directly related
to Kd through the equation ∆G = −RT ln(Kd), where R is the gas constant, and T is
the temperature [48]. Therefore, a lower Kd value corresponds to a more negative ∆G,

https://github.com/WangLabforComputationalBiology/SARS-COV-nanobody-screening
https://github.com/WangLabforComputationalBiology/SARS-COV-nanobody-screening
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
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indicating a stronger binding affinity and a more thermodynamically stable formation of
the ligand–target complex.

The prediction of binding affinity between nanobodies and the spike protein was
performed using the PRODIGY server, which is based on an intermolecular contacts
prediction method for protein–protein complex binding affinity.

In addition to evaluating the binding affinity in diverse conformations, assessing the
robustness of nanobodies is a crucial factor in determining their suitability for industrial
production. While protein mutations can have beneficial effects on physicochemical or
biological properties, they can also result in structural variations and loss of function. There-
fore, estimating the stability changes caused by all possible point mutations can provide an
additional validation of the exceptional quality of the screened nanobodies. For prediction,
we used the ‘Calculate a mutation sensitivity profile’ module on the MAESTROweb [49]
server, which shares similarities with the PoPMuSiC [50] web server.

In the MAESTROweb server, the stability changes resulting from point mutations are
denoted as ∆∆G (sw, sm), which are used to estimate the folding free energy change when
residue sw is mutated to sm. It is calculated based on the wild-type protein structure and a
set of energy functions:

∆∆Gp =
13

∑
i=1

αi(A)∆∆Wi + α14(A)∆V+ + α15(A)∆V− + α16 (A)

The coefficients αi depend on the solvent accessibility A of the wild-type amino acid
sw. ∆∆Wi is a linear combination of 13 statistical potentials, which describe the torsional
angles of amino acid type s, defined backbone conformation t, solvent accessibility a, and
the correlation between the spatial distance d of the average geometric centers of each
residue pair and their side chains. ∆V± is related to the difference in volume between the
mutant amino acid and the wild-type amino acid: ∆V = Vm − Vw. They are defined as
∆V± = ∆VH (± ∆V), where H represents the Heaviside function. They offer a depiction of
the effects associated with the formation of a cavity (when ∆V < 0) or the accommodation
of a larger side chain within the protein structure (when ∆V > 0).

For each position i in the protein, ∆∆G can be calculated for all 19 possible mutations.
(∆∆Gpred < 0.0 indicates a confirmed stabilizing mutation.) Mutations occurring at positions
with lower ∆∆Gpred values have a lesser impact, indicating a reduced sensitivity to muta-
tion. We conducted a statistical analysis of the MAESTROweb results for each nanobody,
counting the number of sensitive positions where ∆∆Gpred exceeded 1.8 (kcal/mol). Addi-
tionally, the MAESTROweb server provides a visualization service, which can show us the
impact of each mutation at all potential positions (Figure 6).
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Figure 6. Mutation sensitivity profile of Nbs (PDBID: 7tpr). The vertical axis represents ∆∆G, and the
horizontal axis depicts amino acid residues, with red color represents residues with more mutations.

5. Conclusions

Compared to using only ClusPro docking or only default HADDOCK docking settings,
this three-step approach provided a more comprehensive and efficient way of analyzing
the molecular interactions between the S protein and the nanobodies. This strategy not only
provides a valuable tool for the selection of nanobodies but also presents new ideas for the
screening of novel antibodies and the development of computer-aided screening methods.
The iterative process and the incorporation of multiple algorithms with customized settings
can be applied to other antibody screening projects and may lead to the identification of
more effective therapeutic antibodies.
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Moreover, we conducted a comprehensive investigation on the stability of nanobodies
in relation to their rankings. To accomplish this, we used the MAESTROWeb server to
predict the stability changes resulting from point mutations in nanobodies. We performed
a statistical analysis to quantify the number of potential mutation sites. Our analysis
demonstrated a significant correlation between the number of mutation-sensitive sites that
exhibited significant energy fluctuations and the rankings of the nanobodies. In conclusion,
our three-step screening strategy effectively identifies nanobodies with superior mutation
resistance, rendering them highly suitable for practical production applications.
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