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Abstract: Affective and anxiety disorders are widely distributed disorders with severe 
social and economic effects. Evidence is emphatic that effective treatment helps to restore 
function and quality of life. Due to the action of most modern antidepressant drugs, 
serotonergic mechanisms have traditionally been suggested to play major roles in the 
pathophysiology of mood and stress-related disorders. However, a few clinical and several 
pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling 
pathway in these disorders. Moreover, several of the conventional neurotransmitters, 
including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct 
classes of antidepressants have been found to modulate the hippocampal NO level in vivo. 
The NO system is therefore a potential target for antidepressant and anxiolytic drug action 
in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating 
NO synthesis in anxiety and depression.  
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1. Introduction 

Recent data from Denmark and Europe [1,2], indicate that brain disorders account for 12% of all 
direct costs in the Danish health system and 9% of the total drug consumption was used for treatment 
of brain diseases. Expenses for brain diseases constituted 3% of the gross national product, and the 
total expenses for all investigated brain diseases were 37.3 billion DKK. Among brain disorders, 
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affective disorders were among the most costly diseases, and anxiety disorders among the  
most prevalent. 

The pathogenesis of mood disorders remains elusive, but it is evident that multiple factors, genetic 
and environmental, play a crucial role for adult psychopathology and neurobiology [3]. With regard to 
therapy, a significant proportion of affective disorder patients are partial or non responders, and there 
has been no major breakthrough in finding novel effective drug targets since the introduction of the 
current marketed antidepressant drugs in the 1950s to the 1980s, which all are based on 
monoaminergic pharmacological effects. Consequently, there exists a pressing need to develop novel 
treatment strategies and ultimately understand the etiology and pathophysiology of affective disorders. 

Nitric Oxide, originally termed Endothelial-Derived Relaxing Factor (EDRF) before it was 
discovered that NO and EDRF were the same substance, serves important roles in the cardiovascular 
system and macrophages [4,5]. In addition, NO has been shown also to have an important role in the 
nervous system [6,7], where NO serves as a messenger molecule in a number of physiological 
processes, including processes being linked to the major psychiatric diseases [8–11]. The present paper 
will review general aspects of the NO system, as well as focus on inhibitors of NO production as 
putative therapeutic agents towards anxiety and affective disorders. 

2. General aspects of Nitric Oxide 

NO is a small molecule (MW 30 Da), which in vitro is a colorless gas and a product from the 
breakdown of N2. NO is degraded into nitrites and nitrates, and depending on the environmental 
conditions, the half life ranges from minutes to years [12]. The combination of one atom of N and one 
atom of O, results in the presence of an unpaired electron. However, NO is less reactive than many 
other free radicals, and does not react with itself. Nevertheless, the compound is known to be an 
important mediator of cytotoxicity in the immune system [13].  

In biological systems the half-life of NO is estimated to be about 30 s or less [12]. The molecule is 
uncharged and is therefore freely diffusible across cell membranes and other structures. NO is 
produced and released by many different cells in multicellular organisms and can thus act as a tool for 
intercellular communication [14,15,16,17,18,19].  

2.1. The Nitric Oxide Synthase enzymes 

The enzyme responsible for the synthesis of NO, nitric oxide synthase (NOS), appears, in different 
isoforms which are constitutive or inducible. The activity of the constitutive NOS depends on Ca2+ and 
calmodulin, whereas the inducible NOS are independent from both Ca2+ and calmodulin. A distinction 
of the isoforms is also made based on the tissue where the NOS was identified the first time and 
primarily located. Of the constitutive isoforms, NOS in endothelial cells is mainly located in the cell 
membrane, and is termed eNOS. NOS in neuronal cells is located throughout the cell and termed 
nNOS. The inducible isoform, NOS in the immune system is located in macrophages is termed iNOS 
and consists of soluble and membrane bound NOS [19,20]. However, exceptions from this rule exist. 
nNOS has been found in a variety of non-neuronal cells and eNOS have been demonstrated in some 
neurons [21,22]. The present NOS classification thus consists of three classes, which does not specify 
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the cells in which they may occur or whether they are induced, but refers to the tissue where the NOS 
was identified the first time: 

• nNOS is the NOS first identified in neurons and which is dependent of elevated Ca2+. 
• iNOS is the NOS which is independent of elevated Ca2+. 
• eNOS is the NOS first identified in endothelial cells and which is dependent of elevated Ca2+. 

2.2. Synthesis of NO 

NO is synthesized in the brain by NOS from the amino-acid L-arginine. In brief, L-arginine is 
converted to Nω-hydroxy-L-arginine, which is further converted to NO and citrulline by NOS  
(Scheme 1). The process is rather complex and further discussion lies beyond the scope of this text. 
Briefly, the process involves five electrons, three co-substrates and five prostethic groups [19,23,24]. 

Scheme 1. Synthesis of Nitric Oxide. 

 

2.3. Localization of NOS in the CNS 

The NOS enzymes are widely distributed within the mammalian brain [25,26]. The neuronal 
isoform accounts for the majority of the NOS activity in the brain [27], and NOS positive neurons are 
located in the hippocampal layers CA1-CA3, the medial amygdaloid nucleus, the olfactory bulb, the 
layers II-VI in the cerebral cortex, the granular and deep molecular layers of the cerebellum and, with 
special interest regarding the serotonin system, in the dorsal and medial raphe nuclei [25]. 
Measurements of NOS activity in different brain regions have shown the highest activity in the 
cerebellum, the midbrain, the hypothalamus, the cortex, the striatum and the hippocampus [28,29]. 
Interestingly, NO has been shown to co-localize with several other known transmitters within the same 
neuron, e.g. serotonin (5-HT) in the medial and dorsal raphe nuclei [30], Norepinephrine (NE) in the 
solitarian tract nucleus [31], γ-aminobutyric acid (GABA) in the cerebral cortex [32] and Neuropeptide 
Y (NPY) and somatostatin in the striatum [33]. 

It is important to emphasize that certain neurons also contain the eNOS besides the nNOS [34]. The 
consequences of this finding remain to be determined, but it is likely that neuronal eNOS and nNOS 
serve different roles in the CNS [35]. Under normal physiological conditions, iNOS in the brain should 
have no role, in that the activity of iNOS is largely undetectable. However, under pathological 
conditions, such as trauma, ischemia or infection, iNOS may become important [36].  
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2.4. Regulation of NOS activity 

Regulation of the NOS enzyme expression has to be clarified in detail. Most of the studies 
performed have focused on the iNOS isoform. This isoform is not present in the cells under normal 
circumstances, but can be expressed following activation by different cytokines/endotoxines [37,38]. 
Less is known about the expression of nNOS and eNOS, but it has become evident that expression of 
nNOS in the brain and spinal-cord during the embryonic and post-natal period can change markedly, 
which is in line with evidence indicating that NO is implicated in synaptic plasticity in the adult and in 
regulating neurite outgrowth, as exemplified by the finding that NO donors enhance neurotrophin-
induced neurite outgrowth through a cGMP-dependent mechanism and [39–41].  

The co factors and especially the NOS-Ca2+-calmodulin interaction is a primary regulator for NO 
production. Following an action potential, increases in the intracellular Ca2+ environment (around 500 
nM [42]), triggers Ca2+-calmodulin to bind to NOS, activating the NOS enzymatic activity. As, the 
intracellular Ca2+ level can rapidly change, the catalytic activity can be turned on and off within a short 
time. These regulatory properties form basis of the understanding of NO as a neurotransmitter. 
Interestingly, iNOS binds calmodulin very tightly, and continue to synthesize NO thoughout the life of 
the enzyme, irrespectively of the intracellular Ca2+ concentration [19]. In addition to the co-factor and 
Ca2+ level regulations, phosphorylation is used to regulate the activity, as exemplified by the finding 
that nNOS phosphorylation by protein kinase C inhibits NO production [43]. Finally, NO itself has 
been shown to regulate NOS activity [44–46]. The nature of this inhibition needs to be fully clarified, 
but can be hypothesized to involve nitrosylation [47]. 

2.5. Targets of NO  

NO has multiple targets in the brain, with the soluble form of the guanylate Cyclase (sGC) the most 
extensively characterized [38,48,49]. Activation of sGC subsequently increases the production of 
cGMP, and the level of cGMP in the cerebellum, striatum and hippocampus has been shown to depend 
largely on the NOS activity [50–52].  

Some physiological effects of NO are, however, independent of sGC activation, and it has been 
demonstrated that NO, induced by NMDA receptor stimulation, activates the p21 (ras) pathway of 
signal transduction with a cascade involving extracellular signal-regulated kinases and 
phosphoinositide 3-kinase [53,54]. These pathways are known to be involved in transmission of 
signals to the cell nuclei and may therefore form a basis of a generation of long-lasting neuronal 
responses to NO. Other enzymes that constitute cellular targets for NO are cyclooxygenases, 
ribonucleotide reductase, some mitochondrial enzymes and NOS itself [55,56]. Finally, NO can 
nitrosylate proteins and damage the DNA [54,57–59]. 

3. NO and Psychiatric Disorders 

Patients suffering from depression have been shown to have a reduced number of NOS containing 
neurons in the hypothalamus [60,61] and hippocampus [62]. In samples from suicide attempters, 
increased NO metabolites (NO2 and NO3) have been observed [63]. Moreover, a decreased platelet 
NOS activity and plasma NO metabolites in depressed patients [64,65] and a changed L-arginine 
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metabolism in Bipolar Disorder have been reported [66]. In addition, human genetic association 
studies have repeatedly found association with NO signaling and psychiatric disorders [11,67]. 

4. NOS inhibitors: Evidence for Efficacy in Depression and Anxiety 

Over the past two decades, a number of preclinical studies have demonstrated that inhibition of 
NOS produces anxiolytic and antidepressant-like behavioral effects in a variety of animal paradigms. 
These studies include systemic injections as well as targeted infusions into the brain. The studies are 
primarily acute studies, and there is a great need for examination of the chronic effects. Only a few 
very limited clinical studies are available, which are confounded by the nonselectivity of the drug 
used. However, as already mentioned there are several human studies indicating an important role of 
elevated NO in the pathogenesis of affective disorders and anxiety, suggesting that a positive role of 
inhibition may be possible. Below, the results from the different NOS inhibitors used are reviewed. 
See also Table 1. 

4.1. NOS inhibiting amino acids. 

The typical NOS inhibiting amino acids associate with the substrate binding site for L-arginine [68]. 
The inhibitor will compete with L-arginine, and usually extra arginine will reverse the NOS inhibition 
produced by the inhibitor. 

The best investigated compounds in this family are L-NNA (L-NG-nitroarginine), its methyl ester 
L-NAME), L-NMMA (L-NG-monomethylarginine) and NG-propyl-L-arginine. L-NAME requires 
hydrolysis of the methyl ester by cellular esterases to become a fully functional inhibitor [68]. Acute 
antidepressant effects have been found in both rats and mice models. L-NNA and L-NAME have thus 
been reported to be effective in both the Forced Swim Test (FST) and Tail Suspension Test (TST) in 
mice [69, 70], and in the FST in rats [71,72]. The effect of the drugs seems to display a U-shaped 
pharmacology, where both low and high doses have no effect [69,70,73]. Pretreatment with L-Arg has 
the ability to counteract the behavioral effects of the L-NAME and L-NNA [69,70,71,74], but has also 
been reported in some studies to have an antidepressant-like effect by itself [69].  

 
Table 1. NOS inhibitors and studies in paradigms of depression and anxiety based on chemical class. 

INHIBITOR 

AMINO ACIDS 

ENZYME/ 

POTENCY 
DRUG STRUCTURE 

DEPRES-

SION 
ANXIETY 

DRUG 

REF 

L-NMMA or L-NANA 

(L-NG-Methyl-L-
arginine) 

nNOS=eNOS>>iNOS  [70] -  [68] 

N-PLA 

(L-NG-Propyl-L-
arginine) 

nNOS>>eNOS>>iNOS 
 

- -  [75] 

L-NNA 

(L-NG-Nitroarginine ) nNOS>eNOS>>>iNOS 
 [69, 70, 72, 

76, 77, 78]  [79, 80, 81]  [68] 
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Table 1. Cont. 

L-NAME 

(L-NG-Nitroarginine 

methyl ester) 
nNOS>eNOS>iNOS 

 

 [70, 71, 82, 

83, 84, 85, 

86] 

 [81, 87, 88, 

89, 90]  [68] 

L-NAA 

NG-Amino-L-arginine nNOS>eNOS>iNOS - -  [91] 

ADMA 

(NG,NG-Dimethyl-L-
arginine) 

 
SDMA 

(NG,NG′-Dimethyl-L-
arginine) 

- 

 

 

 

- 

 

  [92] - 

 [93, 94] 

 

 

L-NIL 

(L-N6-(1-Imino-

ethyl)lysine) 
iNOS>>nNOS - - 

 [95] 

 

L-Thiocitrulline nNOS>iNOS>eNOS - - 

 [96] 

 

 

S-Methyl-L-
Thiocitrulline nNOS>eNOS>iNOS - -  [97] 

Agmatine 

(1-Amino-4-

guanidinobutane) 

Unspecific NOS 

inhibitor and ligand at 

imidazoline receptors  

 [98, 99, 

100, 101, 

102, 103, 

104, 105] 

[102, 106, 

107]  [108] 

L-Canavanine 

 
iNOS - -  [109] 

AMIDINES      

L-NIO 

Nδ-(Iminoethyl)-L-

ornithine 

nNOS>eNOS=iNOS - -  [110] 

Ethyl-L-NIO nNOS>iNOS>eNOS - - 
 [111] 

 

Vinyl-L-NIO nNOS>>eNOS>iNOS - -  [111] 

1400W (N-(3-

(Aminomethyl)benzyl)

acetamidine) 
iNOS>>>nNOS>eNOS 

 

- -  [112] 
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Table 1. Cont. 

INDAZOLE DERIVATES     

7-NI  

(7-Nitroindazole) nNOS=eNOS>>iNOS 

  [72, 89, 

113, 114, 

115, 116, 

117, 118] 

 [89, 119, 

120, 121, 

122, 123] 

 [124, 

125] 

7-NI-Br 

 (7-Bromonitroindazole) nNOS>eNOS>iNOS 

 

IMIDAZOLE DERIVATES     
TRIM (1-[2-

(Trifluoromethyl)phenyl-

imidazole 

 

iNOS=nNOS>eNOS 
 [115, 126, 

127] 
 [128].  [129] 

2-IMINOPIPERIDINE DERIVATES     

2-Imino-4-

methylpiperidine iNOS>nNOS>eNOS 

 

- -  [130] 

HYDRAZINE DERIVATES     

Aminoguanidine iNOS>>nNOS 
 

 [98, 131] 

 [132]  [133] 
 [134] 

 

ISOTHIOUREAS      

S-(2-Aminoethyl) 

isothiourea iNOS=nNOS=eNOS 
 

- -  [135] 

1,3-PBIT 

(S,S'-(1,3-Phenylene-

bis(1,2-ethanediyl))bis-

isothiourea) 

iNOS>>nNOS>eNOS 
 

- -  [135] 

1,4-PBIT 

(S,S'-(1,4-Phenylene-

bis(1,2-ethanediyl))bis-

isothiourea) 

iNOS>nNOS>>eNOS 
 

- -  [135] 
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Table 1. Cont. 

α-Guanidinoglutaric 

Acid 
- 

 

- - 
 [136] 

 

OTHER/MIXED      

Methylene blue 

NNOS=eNOS=iNOS 

sGC 

MAO 

 [118, 137, 

138, 139, 

140] 

 [137, 141]  

ODQ ( [1H-

[1,2,4]Oxadiazole[4,3-

a]quinoxalin-1-one] - 

Inhibits NO sensitive 

cGMP formation 

 

 [116, 142].  [121]  

 
The clinically important features in depression, cognition and memory, have been extensively 

examined, and a major role for NO in the formation of memory and as a mediator in synaptic plasticity 
has been suggested [143,144]. A majority of studies support a facilatory role of NO in learning 
processes, and nNOS has been proposed to be the principal source of this retrograde messenger during 
long-term potentiation (LTP) [22,145], a highly important process for memory formation [146–148]. 
However, some controversy about this finding exist, as LTP in hippocampus and cerebellum were 
reported to be normal in nNOS transgenic mice [34,149]. The involvement of NOS in memory has also 
been confirmed in studies with NOS inhibitors. For example it was shown that systemic administration 
L-NAME and L-NNA impairs acquisition but not retention of spatial learning in rats [76,83,84], and  
L-NA reduces hippocampal mediation of place learning in the rat [77,78]. Similarly, intrahippocampal 
administration of L-NAME impairs working memory on a runway task without affecting reference 
memory [85, 86], and L-NAME has been shown to disrupt learning of an associative memory task, the 
conditioned eyeblink response in rabbits [83]. However, in a well-learned operant task–a delayed non-
match-to-position, no effect of L-NAME was found [150], and similarly, it was also shown that  
L-NAME did not affect learning in a Morris Water Maze paradigm [151]. In agreement with these 
observations, central and systemic administration of the NO precursor, L-Arginine has been found to 
significantly prolong the latency time in the passive avoidance test without inhibition of locomotor and 
exploratory activity [152]. The interpretation of the overall neurobiological consequences of these 
findings remains to be established. The findings with NOS inhibitors do not initially seem correspond 
well with results published about other clinically relevant antidepressants, such as the SSRIs, where 
cognitive performance in patients have been shown to be unaffected [153] and independent from 
clinical recovery [154]. However, in a recent rodent study, it was reported that acute administration of 
imipramine and paroxetine to rats, impaired the discrimination of old from the recent objects [155]. 
Interestingly, following chronic administration, the imipramine-treated rats were unable to 
differentiate between the two objects, whereas paroxetine treated rats, as controls, spent more time 
exploring the old object [155]. Similarly it is, important to note that the studies with NOS inhibitors 
and cognitive testing predominantly have been carried out following one acute dose. The relevance for 
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this paradigm related to a clinical context is, as it also is the case with the other depression and anxiety 
tests, questionable. Only limited information is available concerning chronic administration of NOS 
inhibitors. However, It has been shown that L-NAME in the drinking water over 14 days impairs 
working memory in rats [156]. On the other hand, it has also been demonstrated that only acute, but 
not chronic administration of L-NAME impairs LTP formation induced by a weak near-threshold 
tetanus [157]. Further studies must be carried out to conclude on the overall effects of NOS inhibition 
on cognition. 

Some of the amino-acids require special attention, as they may be considered as endogenous 
inhibitors. These inhibitors include L-citrulline, agmatine, NG, NG-dimethyl-L-arginine (ADMA), and 
argininosuccinic acid. While L-citrulline is a very weak inhibitor, a derivate, L-thiocitrulline is much 
more powerful [96]. Agmatine is de-carboxylated arginine [158], and has gained significant attention 
as there is evidence of antidepressant effects in preclinical animal models of depression [99,101–103], 
as well as studies suggesting a key role of agmatine in humans [98,105,159,160]. It is here, however, 
noteworthy to mention that agmatine also has been conceptualized as an endogenous clonidine-
displacing substance of imidazoline receptors [161,162], and to have affinity for several 
transmembrane receptors, such as α2-adrenergic [163], imidazoline I1 and glutamatergic NMDA 
receptors [108]. Therefore, the effects observed in the preclinical studies may be mediated via these 
pathways, and not linked to NOS.  

No solid preclinical data exist for the other endogenous inhibitors, although there are reports of 
their presence in animals [164]. Several human association studies have been published, especially 
regarding NG-monomethyl-L-arginine (SDMA) and ADMA [165, 166, 167]. Indeed, reports have 
shown an increased level of ADMA concentration in sepression, schizophrenia and Alzheimer’s 
disease [92,168,169]; however, it is not clear whether this association is clinically important. Taken 
together, despite the human studies predominantly are studies carried out on peripheral tissue samples 
(e.g. plasma or serum), a role for the NO system in psychiatric disease is supported.  

Within the field of anxiety, several interesting—but contradictory—findings have been observed, 
using different paradigms and drugs. For example, it has been suggested that NO has an anxiolytic-like 
action in the elevated plus maze (EPM) following administration of L-NNA [79,80], and also that 
inhibition with L-NNA caused an anxiolytic-like effect, and—in the same study—an anxiogenic-like 
effect with L-NAME [81]. In contrast, some other studies have reported potent anxiolytic-like effects 
of L-NAME in EPM [87–89]. Moreover, microinjections of L-NAME and L-NA into the 
periaqueductal grey were shown to produce anxiolytic-like-effects in EPM, an effect which was 
typically bell-shaped, and could be abolished by pre-treatment with L-arginine [90].  

4.2. Indazoles and Imidazole derivates 

Similar to the findings with the amino acids, antidepressant-like properties have also been 
demonstrated with the non-amino acid compounds. The primary benefit with the Indazoles and 
Imidazole derivates is a potential superiority in selectivity among the different isoforms of the NOS 
enzymes. This was first clear when 7-nitroindazole (7-NI) was discovered [170], as it did not have a 
profound effect on the blood pressure [124] as most of the amino acid inhibitors. Studies suggest that 
7-NI not only interacts competitively at the substrate binding site in the NOS enzyme [170], but also 
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competitive regarding the co-factor tetrahydrobiopterin (BH4) [171]. As 7-NI is also a potent inhibitor 
of bovine aortic endothelial eNOS in vitro, regardless of the lack of cardiovascular side-effects of this 
compound in vivo [170], other more selective isoform inhibitors have been screened. Such a compound 
is 1-(2-trifluoromethyphenyl)imidazole (TRIM), which is described as a potent and relatively selective 
inhibitor of nNOS both in vitro and in vivo [172,173]. The selectivity of this compound seems to be 
centered around the co-factor BH4, and the availability of BH4 in the tissues [129].  

In the FST, 7-NI and TRIM has been found to be active [72,89,113,115,116] when administered 
acutely. There are no effects on locomotion following administration of the compounds. Interestingly, 
the effects of 7-NI have been shown to be centrally based, since intrahippocampal administration of  
7-NI have been shown to cause a dose-dependent antidepressant-like effect in the FST, an effect which 
could be prevented following intra-hippocampal co-administration of L-arginine [114]. On the other 
depression related domains, 7-NI have been found to induce amnesia in a passive avoidance task in the 
chick [117], and impair learning and memory in different tasks such as the Morris water maze, radial 
maze, passive avoidance and elevated plus maze tests [123,174–177]. 7-NI have also been found to 
produce taste aversions, and enhance the lithium based taste aversion learning in a conditioned taste 
aversion paradigm, an effect that was counteracted with simultaneous administration of L-arginine [118].  

Within the field of anxiety, there is more agreement on the findings with the indazoles and 
imidazole derivates, than with the amino acid inhibitors. It was thus shown that inhibition with 7-NI 
caused an anxiolytic-like effect in the EPM [89,120,122,123]. Also the selective nNOS inhibitor TRIM 
has been shown to possess anxiolytic-like effects in EPM [115], and has been found to modulate 
anxiety related behavior following the unpredictable chronic mild stress procedure in mice [128]. 

4.3. Hydrazine derivates and amidines 

These compounds have been extensively studied in relation to cardiovascular [178–182] and 
endocrinological diseases [183–186]. The compounds are predominantly inhibitors of iNOS, with 
much less activity on the other isoforms. Aminoguanidine (AG) is a hydrazine derivate and the best 
characterized compound [187–189], which selectively decreases cGMP levels produced by iNOS 
[190]. Furthermore, AG has been observed to protect against neurodegeneration produced by chronic 
stress in rats [191], and to prevent the impairment of learning behavior and hippocampal long-term 
potentiation following transient cerebral ischemia in rats [192]. Interestingly, intracerebroventricular 
infusion of AG prevents the depression-like behavior following a chronic unpredictable stress 
paradigm [131]. Supporting these findings, a model of Post Traumatic Stress Disorder (PTSD) seems 
to involve exclusively the iNOS isoform, as only aminoguanidine, but not 7-NI, was effective in 
attenuating neurobiological readouts [132]. Together, these findings highlight the possible 
involvement of an inflammatory nature in depression and anxiety, which is not surprising due to the 
significant involvement of stress in the pathophysiology of the disorders. AG has also recently been 
demonstrated to display anxiolytic-like effects in EPM, open field test, light/dark test and social 
interaction test in stressed mice [133]. Whether these effects are present in the absence of stress 
remains to be established. 
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4.4. Other compounds/mixed 

Within this group we find the only compounds proven to be effective in patients [139,140,193]. 
Methylene Blue (MB) oxidizes protein-bound heme and non-heme ferrous iron [194], inhibiting the 
stimulation of soluble guanylyl cyclase (sGC) by NO and nitrovasodilators [195]. MB was as early as 
1899 described to have a calming—probably antipsychotic—effect in patients [196]. However, more 
recent work has focused on the beneficial effects of MB in manic-depressive disorder, where a 
response of 63% among 24 lithium refractory patients was found [138]. The studies were 
supplemented and expanded, confirming this action [139,140,193]. At the time of the study, the 
mechanistic hypotheses were based on changes in the vanadium ion [197–200]. Unfortunately, the 
studies cited above were not fully randomized, but luckily such trials are being carried out in these 
years [201]. It was in 1993 demonstrated that MB potently inhibited NOS both in vitro [202,203] and 
in vivo [204]. 

Several preclinical studies confirm a positive effect of MB in the FST and EPM [137], however 
with a U-shaped dose-response efficacy curve. Metylene blue have been demonstrated to produce taste 
aversions in a conditioned taste aversion paradigm, an effect comparable to the effects of 7-NI, which 
also could be cunteracted with simultaneous administration of L-arginine [118]. As indicated by the 
mode of action, MB is expected to be a very non-selective compound. Indeed, MB not only inhits NOS 
and sGC, but also several other heme containing enzymes, like mono-amine oxidase. In agreement 
with this, MB has been characterized as a potent inhibitor Monoamine Oxidase (MAO) [205–207] and 
various cytochromes. This effect is probably the explanation of case-reports suggesting a 
hyperserotonergic state following use of MB [206,208], and can be an explanation for the  
clinical efficacy. 

Since MB also affects the NO downstream signaling pathway, including sGC, it is here worth to 
mention a few compounds mediating the, which affect sGC, but not NOS. Studies with selective (i.e. 
non-NOS) inhibitors of NO dependent cGMP formation with [1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-
1-one] (ODQ) have proven to produce antidepressant-like effects in the FST [116], as well as 
prevention of pro-depressant effect of L-arginine in the FST [142]. Similarly, ODQ have been shown 
to have anxiolytic-like properties, with an increase in the % time spent on the open arm in EPM 
following administration of the drug [121]. These findings are in agreement with other studies showing 
that an increase in cGMP, following inhibition of phosphodiesterase type V, using sildenafil, can 
produce anxiogenic-like responses in the EPM [209,210]. The mechanisms regarding cGMP may, 
however, not be easily understood, as also antidepressant actions of sildenafil have been shown 
following central muscarinic receptor blockade [211]. 

5. Interactions between NO and the Conventional Neurotransmitters 

Several in vivo studies have demonstrated that NO may modulate the extracellular level of various 
neurotransmitters in the central nervous system, e.g. serotonin (5-HT), dopamine (DA), γ-aminobutyric 
acid (GABA), and glutamate [212–218]. In addition, NO can inactivate the rate limiting enzyme in the 
synthesis of 5-HT, tryptophan hydroxylase [219,220] and it has been suggested to stimulate synaptic 
vesicle release from hippocampal synaptosomes [221,222]. Furthermore, NO regulates 5-HT reuptake 
[223–225], inhibits uptake of [3H] DA by striatal synaptosomes [226,227] and transforms 5-HT into 
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an inactive form [228] . More recently, it was demonstrated that a physical interaction between the 
serotonin transporter and neuronal nitric oxide synthase may underlie reciprocal modulation of their 
activity [229]. The connection between NO and 5-HT is substantiated by observations from neurology, 
where studies has shown that NO as well as 5-HT is involved in the pathophysiology of  
migraine [230–233].  

Interestingly, it has also been reported that L-Arg antagonizes the effects of the classic tricyclic 
antidepressant, imipramine [70]. This observation has led to hypotheses regarding the potential 
contribution of serotonergic/noradrenergic mechanisms in the observed antidepressant-like effects of 
the NOS inhibitors. Subsequently, it has been demonstrated that low and ineffective doses of L-NAME 
were able to potentiate the behavioral effects of imipramine and fluoxetine but not reboxetine, a 
norepinephrin reuptake inhibitor, in the FST [72,234]. In addition, it was shown that a serotonergic 
mediation of the antidepressant-like effects of L-NA, 7-NI was present, since serotonergic depletion 
abolished the antidepressant-like effect of the inhibitors [72]. Not all inhibitors seem to display this 
profile, as it also was demonstrated that the effect of agmatine was independent of 5-HT depletion 
[99]. However, as already discussed, agmatine may have multiple effects on several receptorsystems. 
Finally, NO have also been implicated in the antidepressant role of several other substances, like 
tramadol [235], bupropion [236], and lithium [237]. Similarly, established antidepressants, like 
imipramine, paroxetine, citalopram and tianeptine have all been shown to inhibit hippocampal NOS 
activity in vivo when applied locally in the brain [238]. 

6. Conclusions 

Although the studies cited in the current review utilize several different compounds, affecting the 
different isoforms of NOS differently, the physiological role of NOS inhibition remain relatively clear. 
Therefore, the conclusion of the current review is that despite significant challenges in developing 
compounds which may differentially inhibit the ‘right’ isoform at the right place, NOS inhibition 
continue to be an interesting novel approach in the future development of antidepressants.  
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