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Abstract: The growing worldwide obesity epidemic and obesity-related disorders present 
a huge unmet medical need for safe and effective anti-obesity medications. The discovery 
of leptin in 1994 was rapidly succeeded by a wave of related discoveries leading to the 
elaboration of a hypothalamic melanocortinergic neuronal circuit regulated by leptin and 
other central and peripheral signaling molecules to control energy homeostasis. The 
identification of specific neuronal subtypes along with their unique connections and 
expression products generated a rich target menu for anti-obesity drug discovery programs. 
Over the course of the last decade, several new chemical entities aimed at these targets 
have reached various stages or successfully completed the drug discovery/regulatory 
process only to be dropped or taken off the market. There are now in fact fewer options for 
anti-obesity drug therapies in late 2010 than were available in 2000. The challenge to 
discover safe and effective anti-obesity drugs is alive and well. 
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1. Introduction 

Obesity is a major health problem that results when energy intake exceeds energy output with the 
excess being stored as fat in adipose tissue and ectopically in other tissues. Developing in an 
environment of nutritional scarcity, humans evolved to ingest available nutrients and to store and 
process them efficiently. Consequently, in modern societies marked by nutrient excess with ubiquitous 
food of high palatability and caloric density and life styles requiring low energy output, obesity has 
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become a growing affliction such that there are now more than 109 overweight people (body mass 
index, BMI = weight in kg/height in m2 > 25) and 300 million of these are obese (BMI > 30) [1]. 

Excess fat storage is typically accompanied by a low-grade inflammation which, in conjunction 
with lipotoxicity, leads to insulin resistance of insulin-sensitive tissues such as muscle and liver [2-4]. 
Obesity is therefore a major risk factor for Type 2 diabetes along with other serious pathologies such 
as dyslipidemias, cardiovascular disease, certain cancers, sleep apnea and stroke. The good news is 
that obesity can be treated by diet and exercise but the bad news shows that these therapies have poor 
patient compliance. Bariatric surgery seems effective but is costly and not without risk [5,6]. In the 
face of this gaping unmet medical need each new potential anti-obesity drug is announced in the media 
with great fanfare as the next miracle pill although these have rarely been translated into effective anti-
obesity therapies. 

Effective anti-obesity drug therapies would either restrict energy intake or increase energy 
expenditure by acting either centrally or peripherally. The US Food and Drug Administration (FDA) 
and the European Medicines Agency (EMA) have set guidelines for what constitutes a minimally 
effective anti-obesity therapy. In brief the FDA requires a drug to produce a ≥5% placebo-subtracted 
reduction from baseline body weight due to loss of body fat after one year of treatment and the EMA 
requires a ≥10% body weight reduction that also must be ≥5% greater than obtained in the placebo 
group [7,8]. Additional secondary endpoints indicating improvements in cardiovascular and metabolic 
indices are also expected [7,8]. In addition, anti-obesity drugs must be relatively risk-free since they 
are administered chronically and both the FDA and EMA have emphasized the importance for the 
absence of psychiatric and cardiovascular adverse side effects [9,10]. 

2. Anti-Obesity Drug Targets in the 1990s 

During the 1990s some of the more promising areas for the pharmacotherapy of obesity included 
central and/or peripheral neurochemical mechanisms involving serotonin (5-hydroxytryptamine, 5-HT), 
catecholamines and certain neuropeptides. Serotonergic and catecholaminergic mechanisms were 
targeted by the effective combination therapy, Fen-Phen, composed of the 5-HT releasers fenfluramine 
or dexfenfluramine combined with phentermine, a noradrenergic releaser [11]. The combination 
therapy was adopted because the drugs acted on separate monoaminergic systems and therefore might 
synergize, allowing for reduced dosing and, consequently, fewer side effects [12]. These expectations 
were met and the effective dose of each of the combined drugs was lower than either of the drugs 
given alone [12]. Unfortunately, even the lower dose of fenfluramine was associated with the serious 
side effect of cardiac vulvulopathy and this therapy was removed from the market [13].  

Another target of promise was the peripheral β-3 adrenergic receptor. This receptor was targeted using 
selective agonists to increase energy expenditure through the activation of brown fat but these compounds 
lacked efficacy and the less selective compounds produced adverse side effects in humans [14-16]. 

At the preclinical level, a variety of neuropeptides were studied for effects on feeding with the most 
encouraging of these being neuropeptide-Y (NPY) which was shown to be expressed in the 
hypothalamus, a brain region known to control appetite. In addition, hypothalamic NPY stimulated 
feeding and its expression was shown to be responsive to hormonal and metabolic state indicated by 
induction with fasting and streptozotocin diabetes and suppression by insulin [17]. Drug discovery 
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efforts in search of selective NPY antagonists were launched although the abundance of NPY in the 
brain suggested its involvement in multiple brain functions and therefore the potential for adverse side 
effects of NPY-based drugs. 

This scarcity of potential pharmacotherapies to treat obesity was suddenly reversed with the 
discovery of leptin and leptin-regulated networks within the CNS. These discoveries produced a rich 
menu of potential anti-obesity targets (Table 1) and were pursued by all major pharmaceutical 
companies during the past decade. 

Table 1. Anti-obesity Drugs. 

Drugs available in 2000 
 

New anti-obesity drug targets 
since the discovery of leptin

Drugs available in 2010 
 

Orlistat Leptin Orlistat 
Sibutramine Leptin receptors  
 MC4 receptor  
 NPY receptors  
 PYY receptor  
 5-HT2c receptor  
 AgRP binding  
 MCH  
 Orexins  
 Incretins  
 Ghrelin  
 Endocannabinoid receptors  

3. The Discovery of Leptin and the Hypothalamic Circuit for Energy Homeostasis 

3.1. Mouse Genetics Lead the Way 

The discovery of leptin and its receptor in the brain [18,19] in conjunction with discoveries of the 
melanocortinergic pathways in the hypothalamus [20] established, for the first time, a defined 
hypothalamic neural circuit of feeding and satiety neurons regulated by metabolic state through the 
actions of hormones and nutrients [21,22]. These discoveries were made directly from monogenic 
mouse models. Leptin was discovered through reverse genetics and the leptin receptor by functional 
cloning in the pursuit of the mutations responsible for the obese, hyperphagic phenotypes of the ob/ob 
and db/db mouse mutants, respectively. The cellular and molecular components of the 
melanocortinergic pathways were discovered through studies aimed at understanding the coat color 
and obese, hyperphagic phenotype of the mouse Ay mutant. The basic circuit, composed of three 
distinct neuronal subtypes, elevated analysis of energy homeostasic control by the hypothalamus from 
the gross anatomical level of hypothalamic areas (e.g. lateral, ventromedial, etc.) to defined, 
interacting cell phenotypes responding to defined molecular inputs with defined molecular outputs. 

In both mouse and man, monogenic models of obesity, in which a spontaneous mutation in a single 
gene results in obesity, have been described [23,24]. All of the involved genes are either expressed in 
the brain or the brain serves as the major site of action of the gene products and virtually all of the 
genes are known to function within the defined hypothalamic neural network composed of identified 
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interacting neuronal subtypes. As discussed below, a main function of this neural network involves the 
synaptic regulation of the central melanocortin receptors (MCRs) by the hormonally controlled 
production and release of endogenous ligands that activate or inhibit MCR activity [21,25]. This 
hypothalamic circuitry has been validated in rodents by genetic manipulations, anatomical studies and 
a large set of physiological and pharmacological studies that all strongly support the notion of a core 
neural network composed of hypothalamic neurons controlling body weight through the regulation of 
central melanocortinergic systems. 

3.2. The Melanocortinergic System 

Appreciation for the melanocortinergic regulation of body weight began with the discovery that the 
yellow, hyperphagic and obese mouse phenotype carrying the agouti lethal yellow (Ay) mutation was 
due to ectopic expression of Agouti protein. Normally confined to the skin as a paracrine competitive 
antagonist at the melanocyte melanocortin-1 receptor (MC1R), Agouti protein is ubiquitously 
expressed in Ay mice [26] suggesting that its ectopic expression might disrupt signaling at a MC1R-like 
receptor in a tissue involved in the regulation of body weight. This led to a search for MC1R-like 
receptors in the brain by reverse transcriptase-polymerase chain reaction (RT-PCR) using degenerate 
primers which led to the cloning of the brain-specific MC4R and MC3R G-protein coupled receptors 
(GPCRs) [27,28]. Heterologous expression of MC4R showed that it activates the heterotrimeric GTP-
binding protein that stimulates adenylyl cyclase (Gs) to promote intracellular cAMP formation [27]. 
The endogenous MC4R agonist ligand was shown to be the pro-opiomelanocortin (POMC) product, 
a-melanocyte stimulating hormone (MSH) and Agouti protein proved to be a potent competitive 
MC4R antagonist [29]. The above results suggested that ectopic expression of the antagonist Agouti 
protein in Ay mice might produce hyperphagia and obesity if MC4R was involved in the central 
control of energy homeostasis.  

The role of MC4R in the central regulation of body weight in mice was demonstrated by the 
MC4R-knockout mice, which displayed an obesity phenotype identical to that of Ay mice [30]. 
Importantly, MC4R heterozygotes displayed an intermediate obesity phenotype [30]. Overexpression 
of Agouti protein also reproduced the Ay phenotype and data mining for Agouti protein homologs 
revealed an agouti-related peptide (AgRP) uniquely expressed in the brain, which, like Agouti protein, 
was shown to be a highly potent MC4R antagonist [31,32]. Also, like Agouti protein, overexpression 
of AgRP in transgenic mice reproduced the Ay obesity profile [31]. In addition, syndecan-3, a cell-
surface heparin sulfate proteoglycan expressed in the hypothalamus and regulated by metabolic state 
has been suggested to function as a co-receptor for AgRP and to facilitate AgRP binding to 
MC4R [33] although this has been recently questioned by additional data [34].  

Identification of the neurons, which synthesized MC4R and its agonist and antagonist peptide 
ligands resulted in the mapping of a hypothalamic neural circuit composed of three distinct neuronal 
subtypes. Transcripts for AgRP were found to be co-localized with the orexigenic neuropeptide-Y 
(NPY) in neurons of the arcuate nucleus of the hypothalamus [35]. POMC-expressing neurons were 
found in close proximity to the AgRP/NPY neurons and both of these neuronal subtypes were found to 
project rostrally to the hypothalamic paraventricular nucleus (PVN), which contains MC4R-expressing 
cells [36]. Disruption of the POMC gene results in an obesity phenotype in mouse and man [37,38]. 
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Appreciation of the neuroanatomical relationships of AgRP/NPY-, POMC- and MC4R-expressing 
neurons coupled with results from transgenic mouse studies [39] suggest a core hypothalamic circuit 
regulating energy homeostasis in which neuropeptides made in the arcuate nucleus determine MC4R 
activity through the interplay of MC4R agonist or antagonist neuropeptide ligands released at MC4R-
expressing PVN neurons (Figure 1). 

Figure 1. The core hypothalamic energy homeostatic circuit and the dopamine reward 
pathway. Neuronal subtypes expressing neuropeptide-Y and agouti related peptide 
(NPY/AGRP), proopiomelanocortin (POMC), the melanocortin-4 receptor (MC4R) and 
dopamine (DA) are in yellow. Rectangles indicate various anatomical loci: ARC = arcuate 
nucleus, PVN = paraventricular nucleus, VMH = ventromedial hypothalamus, LH = lateral 
hypothalamus, VTA = ventral tegmental area, NUC. ACC. = nucleus accumbens. Other 
abbreviations: MCH = melanocyte stimulating hormone. ORX = orexins. (+) = excitatory 
input. (−) = inhibitory input. 

 

 

 

 

 

 

 

 

 

3.3. Hormonal Inputs to the Hypothalamic Circuit 

The role of the melanocortinergic hypothalamic circuit in body weight regulation is further 
supported by the strong control over neuropeptide expression and neuronal activity of the arcuate 
neurons by metabolic hormones [20,21]. Both the AgRP/NPY and POMC arcuate neurons have been 
shown to express receptors for the hormone leptin, which is synthesized and secreted from fat cells and 
circulates in the blood to activate leptin sensitive tissues [40,41]. In the arcuate nucleus, leptin 
suppresses AgRP/NPY expression and inhibits firing of AgRP/NPY neurons while stimulating POMC 
expression and the firing of POMC neurons [42]. This combination of actions would be expected to 
promote activation of MC4R which appears to be a major mechanism for leptin’s anorectic effects as 
leptin suppression of feeding is compromised in MC4R knockout mice [43]. Conversely, mice devoid 
of leptin (ob/ob) or without a functioning leptin receptor (db/db) exhibit increased expression of AgRP 
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and NPY and decreased expression of POMC. Under these conditions, the consequent reduction in 
MC4R activity likely promotes the hyperphagia and massive obesity of these mice although leptin also 
acts at other sites in the brain to suppress feeding [44]. In addition to its effects on hypothalamic 
neurons, leptin might also reduce the pleasure of eating by direct action on neurons of the dopamine 
reward pathways in the ventral tegmental area [45] (Figure 1). 

Another important metabolic hormone with differential actions on the AgRP/NPY and POMC 
arcuate neurons is ghrelin, which is secreted from the stomach during fasting to stimulate hunger [46]. 
Ghrelin receptors on AgRP/NPY neurons mediate the stimulatory action of the hormone on the firing 
of AgRP/NPY neurons (Figure 1) that make inhibitory synapses on arcuate POMC neurons [47]. 
Ghrelin-induced stimulation of AgRP/NPY neurons would result in decreased MC4R activity by 
increased antagonist and decreased agonist release. These actions are thought to mediate ghrelin-
induced feeding because mice in which both AgRP and NPY are knocked out do not exhibit feeding in 
response to ghrelin [48]. 

Plasma glucocorticoids also increase during fasting and could potentiate hunger through rapid 
effects on synaptic connections of POMC and AgRP/NPY neurons. In this regard, adrenalectomy is 
effective in reversing the genetic obesity of ob/ob mice [49]. Recently, glucocorticoids have been 
shown to decrease inhibitory synaptic inputs to POMC neurons and to promote the formation of 
excitatory inputs to AgRP/NPY neurons [50]. Alternatively, or in conjunction with these effects, 
glucocorticoids could influence feeding through actions on neurons of the PVN [51,52]. Indeed, by 
virtue of the widespread expression of the glucocorticoid receptor, all areas represented in Figure 1 
could potentially exhibit important regulation by glucocorticoids [53]. 

Appreciation of this hypothalamic neuronal circuit (Figure 1) defined by its metabolically sensitive 
expression and release of neuropeptides and receptors generated an extensive menu of anti-obesity 
drug targets of great potential for effective anti-obesity therapies. The following is a list of these 
targets and the current status of associated drug discovery efforts. 

4. CNS Anti-Obesity Drug Targets Since the Discovery of Leptin 

4.1. Leptin 

The absence of the fat cell-derived hormone leptin, in both mice and humans with loss-of-function 
leptin mutations, signals to the brain that energy stores of fat are depleted and the organism should 
decrease metabolism, activity and reproductive behavior and increase energy (food) intake [54]. As a 
result, animals without leptin become grossly obese. Initial hope that obese patients suffered from 
hypoleptinemia and that obesity might be treated by leptin replacement therapy was quickly discarded 
when obese rodents and humans were found to be hyperleptinemic. The concept of “leptin resistance” 
was developed in light of experiments showing that rodents fed a high fat diet (HFD) for one week 
showed reduced behavioral responsiveness (i.e. reduced suppression of feeding) and reduced molecular 
effects in the hypothalamus (i.e. a reduction in the phosphorylation of a key signaling molecule of leptin, 
signal transducer and activator of transcription-3, Stat3) in response to leptin administration [55]. In this 
obesity model, high fat feeding promoted leptin resistance either through desensitization due to 
hyperleptinemia from HFD-induced expansion of adipose tissue or by direct action of overnutrition on 
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leptin-sensitive cells. Once leptin resistance set in, energy homeostasis would be further compromised. In 
this view, leptin resistance, marked by hyperleptinemia and the inability of leptin to act, would be 
analogous to insulin resistance and hyperinsulinemia of Type II diabetes. As such, the potential 
mechanisms of leptin resistance have been a major target of anti-obesity research much as overcoming 
insulin resistance has been the focus of research to reverse Type II diabetes.  

One view of leptin resistance states that the excess nutrients of a HFD can generate an 
inflammatory response in hypothalamic neurons which renders them resistance to leptin [56,57]. A 
recent study shows a clear dissociation between HFD-induced obesity and leptin resistance. In this 
study, mice prevented from developing HFD-induced hyperleptinemia, did not develop HFD-induced 
leptin resistance but showed the normal HFD-induced obesity indicating that hyperleptinemia is 
required for leptin resistance [58]. Whether the hyperleptinemia then initiates a hypothalamic 
inflammatory response or whether the inflammation is not involved in leptin resistance remains to be 
determined. Nonetheless, if leptin sensitivity could be preserved in the obese, hyperleptinemic state it 
is possible that endogenous or exogenous leptin might limit or reverse the obesity. In this regard, the 
minimal weight loss effects of a methionyl recombinant human leptin, metreleptin, has been shown to 
be potentiated by pramlintide (Amylin Pharmaceuticals, Inc., San Diego, CA, USA), an analog of the 
β-cell hormone, amylin, that has been shown to reverse HFD-induced leptin resistance in mice [59]. 
Importantly, pramlintide/metreleptin treatment has been shown to effectively reduce weight in 
humans [60] and Amylin Pharmaceuticals, in collaboration with Takeda Pharmaceutical Co., Ltd (Osaka, 
Japan), are currently planning phase III clinical trials for the anti-obesity combination therapy [61]. In 
addition, sensitivity to leptin is heightened in mice treated with the PTP(protein tyrosine phosphatase)-
1B inhibitor trodusquemine (MSI-1436, Genaera Corp., Plymouth Meeting, PA, USA) and this 
compound is presently in phase II clinical trials [62]. The phosphatase is thought to remove the 
phosphates from tyrosine activation sites of the leptin receptor and the PTP-1B inhibitor would 
therefore potentiate leptin action. To date, however, the promise of leptin as an anti-obesity therapy 
remains to be realized. 

4.2. NPY and AgRP 

Central administration of NPY and AgRP induce vigorous feeding responses in rodents and the 
modulation of their actions by drugs might be expected to affect appetite. Although the deletion of 
NPY and AgRP genes did not result in robust metabolic phenotypes, subtle effects were noted in obese 
and ageing mice [63-65] Each of these neuropeptides presents unique drug discovery challenges.  

NPY is widely expressed in the brain and is therefore involved in diverse brain systems subserving 
a variety of functions [66]. NPY effects are mediated by at least five different G-protein coupled 
receptor (GPCR) subtypes with Y-1 and Y-5 subtypes identified as mediating the orexigenic effects of 
NPY [67-69]. Conversely, activation of the presynapticY-2 and Y-4 receptors by selective agonists has 
been shown to inhibit appetite, presumably by inhibiting release of orexigenic factors although Y-2 
antagonism has been shown to act in fat tissue to block fat accumulation [70]. Y-2 and Y-4 receptors 
are also thought to mediate the anorexic effects of the gut hormone peptide-YY (PYY) and pancreatic 
polypeptide (PP), respectively. After disappointing clinical trials, at least one company (Merck & Co., 
Inc., Whitehouse Station, NJ, USA) has abandoned its Y-5 antagonist (MK-0557) as an antiobesity 
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therapy [71] but Shionogi (Osaka, Japan) is continuing to test its Y-5 antagonist, velneperit, for use in 
combination with an intestinal lipase inhibitor [72,73]. 

AgRP presents a different challenge since it operates as an endogenous antagonist, competitively 
blocking the binding of the anorexigenic neuropeptide, α-MSH, to the MC4R. An effective anti-
obesity AgRP antagonist would have to prevent AgRP binding without blocking the binding of α-
MSH. This is conceivable given the apparent accessory binding to a syndecan co-receptor required by 
AgRP for binding to MC4R [33] although a recent report questions whether this binding occurs when 
AgRP is fully processed in vivo [34] Selective antagonism of AgRP with a co-receptor could reduce 
AgRP binding to MC4R without affecting α-MSH binding. Transtech Pharma, Inc. (High Point, NC, 
USA) has reported the development of a selective AgRP antagonist, TTP-435, that has recently 
completed Phase II clinical trials [74]. 

4.3. MC4R 

Deletion or haploinsufficiency of MC4R results in obesity in mouse and man [75-78]. Indeed, loss-of-
function mutations of MC4R in humans can result in obesity that is resistant to bariatric surgery [79]. 
Pharmacological administration of MC4R agonist and antagonist ligands have been shown to, 
respectively, suppress and stimulate feeding behavior in rodents. Acute activation of MC4R by central 
administration of α-MSH or the synthetic agonist MTII have been shown to suppress feeding and 
blockade of MC4R by AgRP (see above) or the synthetic antagonist SHU9119 have been shown to 
promote feeding [36,80,81]. These ligands do not discriminate between MC4R and MC3R, and 
therefore some of the effects could be mediated via MC3R although, based on gene knockout and 
association studies, it would appear that MC4R is the major MCR controlling appetite [30,82,83]. 

Up to 6% of patients with early onset obesity have been reported to carry loss-of-function mutations 
of MC4R [75,77,84,85]. Pharmacological approaches to rescue certain genetically defective MC4R 
receptors have involved the synthesis of novel agonists or compounds that serve as endoplasmic 
reticular (ER) chaperones or modulate ER protein degradation [86-89]. The strong association of 
MC4R mutations with obesity across a wide variety of human populations genetically validates the 
critical role of this receptor in human energy homeostasis. Indeed, the association of 
haploinsufficiency of MC4R with obesity suggests that the receptor is a bottleneck for the flow of 
metabolic information within the energy homeostatic system. As such, much effort has been expended 
in the search for effective MC4R agonists as anti-obesity therapies. 

There are at least three important challenges that arise in the search for effective MC4R anti-obesity 
drugs. First, the search is for agonists, which must bind and then activate the receptor unlike 
antagonists, where only receptor binding is required. Also, given the obesity phenotype associated with 
loss-of-function of a single MC4R allele, it would appear that full agonists might be required and that 
partial agonists with low enough intrinsic activity could actually oppose the desired effects. Second, as 
the name implies, MC4R is a member of the melanocortinergic subgroup of GPCRs which consists of 
five family members with diverse physiological functions and therefore raising the requirement for 
subtype selectivity [75]. Third, MC4R is widely expressed within the central nervous system and is, 
itself, involved in a variety of physiological functions, raising the specter of adverse side effects even 
if the agonist and selectivity requirements for an anti-obesity MC4R-targeted activator were met. 
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Recently, the overall drug discovery approach for anti-obesity MC4R agonists has been 
complicated by studies linking MC4R activation with therapeutic effects for erectile dysfunction, 
sexual libido and inflammation on the one hand and adverse elevations in blood pressure [90-94]. 
Although effects on sexual function and inflammation could prove problematic, it is clear that the 
major threat to the use of MC4R anti-obesity agonists is posed by their likely hypertensive effects. It 
remains to be seen whether this serious concern can be obviated. If MC4R control over energy 
homeostasis proved more sensitive to agonist activation, body weight and cardiovascular effects might 
be dissociable by calibration of agonist dosing as recently tested on sexual dysfunction and blood 
pressure effects of the melanocortin agonist, bremelanotide [95]. If sites for MC4R energy homeostatic 
control are anatomically distinct from those affecting cardiovascular functions, differential modulation 
of MC4R activation could be attempted through targeting of accessory proteins such as mahogunin and 
β-defensins if expression of these proteins were site-specific [96-98]. Alternatively, the different sites 
could be mined for signaling molecules downstream of MC4R by transcriptome analysis [99] and 
targeted if expressed in a site-specific manner. 

4.4. 5-HT 

Although Fen-Phen was removed from the market in light of its adverse side effects, the combined 
action of fenfluramine and phentermine, to release serotonin and catecholamines, respectively, proved 
to be an effective weight loss treatment. It is not surprising, therefore, that sibutramine, a non-selective 
5-HT and noradrenergic re-uptake inhibitor proved to have some weight-reducing efficacy [100]. 
However, after nine years of sales, this drug has been removed from the European market due to 
elevated risk for nonfatal stroke and myocardial infarction and has received a contraindication for use 
in patients with cardiovascular disease from the US Food and Drug Administration [101-103] and this 
has led to its withdrawal from the US market by Abbott Laboratories [104]. Nonetheless, serotinergic 
mechanisms continue to be targeted in the search for anti-obesity therapies. Indeed, tesofensine, a 
5-HT-norepinephrine/dopamine re-uptake inhibitor (NeuroSearch A/S, Ballerup, DK), has shown 
efficacy in early clinical studies [105] and phase III clinical trials are scheduled to begin in late 2010. 

Data from a variety of transgenic mouse experiments show that the 5-HT receptor subtypes, 
5-HT1b and 5-HT2c, control the activity of key neurons within the energy homeostasis circuit of the 
hypothalamus. Activation of these receptors, like activation of the leptin receptor on these cells, either 
stimulate the release of the anorectic neuropeptide, α-MSH or inhibit activity in orexigenic 
AgRP/NPYneurons [106,107]. The targeting of specific 5-HT receptor subtypes that may not subserve 
cardiovascular functions is likely to avoid cardiovascular liability. In this regard, a new potential anti-
obesity 5-HT2c agonist, lorcaserin (Arena Pharmaceuticals, Inc., San Diego, CA, USA) has recently 
been shown to have modest efficacy (≥5 kg weight loss over placebo after one year) in obese or 
overweight patients with no cardiovascular involvement reported [108]. However, due to concerns over 
possible cancer risks, an FDA advisory panel recently recommended against advancing locarserin to the 
market [109]. 
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4.5. Melanin Concentrating Hormone (MCH) and Orexins 

Neurons expressing either MCH or orexins are abundant in several hypothalamic sites including the 
lateral hypothalamus and exhibit reciprocal connectivity with POMC and AgRP/NPY neurons in the 
arcuate nucleus (Figure 1) although the specific impact of these connections on neuropeptide synthesis 
and release remains unresolved [110,111]. Administration of MCH or orexins to rodents stimulates 
feeding and it is thought that blockade of specific receptor subtypes for these neuropeptides could 
serve to inhibit appetite. In mice, administration of an MCH-1 receptor antagonist decreased body 
weight through decreased feeding and increased energy output [112].  

AMRI (Albany, NY) has recently begun a Phase I clinical trial for ALB-127158(a), an MCH-1 
receptor antagonist, for anti-obesity therapy [113]. Actelion Pharmaceuticals, Ltd (San Francisco, CA, 
USA), in collaboration with GlaxoSmithKline plc (Brentford, UK) has recently announced completion 
of short term Phase III clinical trials for almorexant, a non-selective orexin-receptor antagonist, for the 
treatment of sleep disorders [114] and Merck & Co., Inc. has also begun clinical trials for its orexin 
receptor antagonist, MK-4305, also targeting sleep disorders [115,116] yet it would seem that these 
compounds could have anti-appetite actions as well [117]. In addition, MCH and the orexins also 
promote mechanisms of drug addiction [118-121] with predicted anti-addiction properties for 
antagonists although blockade of reward pathways could entail liability for mood disorders and 
depression (see Endocannabinoids below). 

4.6. Ghrelin 

The orexigenic AgRP/NPY neurons are directly activated by ghrelin, a hormone synthesized and 
released from the stomach in response to fasting [122]. Ghrelin stimulates feeding in rodents and it has 
been shown to induce expression of c-fos (a marker of neuronal activity) in AgRP/NPY 
neurons [123,124]. Receptors for ghrelin are present in AgRP/NPY neurons and electrophysiological 
experiments have shown direct activation of AgRP/NPY neurons by this hormone [125,126]. As 
mentioned above, rodents without AgRP and NPY do not increase feeding in response to ghrelin [48]. 
The fact that ghrelin levels correlate with hunger, rising during fasting and just prior to a meal [123,127], 
suggest that blockade of ghrelin action could be an effective appetite suppressant [128]. This view is 
strengthened by evidence of a potential link between the success of bariatric surgery to decrease body 
weight and lowered postoperative ghrelin levels [129]. 

Although ghrelin interacts with other physiological systems in addition to energy homeostasis [128], it 
is possible that a ghrelin antagonist could serve as an effective anti-obesity therapy without adverse 
side effects. The ghrelin knock-out mouse has no obvious phenotype with discrepant reports on 
whether loss of the ghrelin gene produces resistance to a HFD [130,131] although a more recent report 
indicates a generally improved metabolic profile of high-fat fed ghrelin knockout mice [132]. Elixir 
Pharmaceuticals, Inc. (Cambridge, MA, USA) has developed a small molecule ghrelin receptor 
antagonist currently in early stage human trials. Another approach would be to target the enzyme, 
ghrelin O-acyltransferase (GOAT), responsible for the post-translational activation of ghrelin. 
Biological activity of ghrelin is entirely dependent upon its acylation with an eight-carbon fatty acid 
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and this reaction is uniquely catalyzed by GOAT [133]. An enzyme inhibitor directed at GOAT would 
decrease the levels of biologically active ghrelin. 

4.7. Incretins 

The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic 
polypeptide (GIP), are posttranslational proteolytic products of the proglucagon gene and are released 
from the intestinal mucosa in response to nutrient intake [133]. GLP-1 activation of its GPCR 
receptors in a variety of tissues results in delayed gastric empyting, increased glucose-stimulated 
insulin release from pancreatic β-cells, decreased release of glucagon from pancreatic α-cells and 
suppression of appetite [134]. The satiety induced by peripheral administration of GLP-1 or GLP-1 
analogues might be mediated through decreased gastric emptying or other peripheral mechanisms or 
by central action on the hypothalamic circuit for energy homeostasis or brainstem [135-138].  

GLP-1 is rapidly inactivated in the blood by dipeptidyl peptidase IV (DPP-4) and this challenge has 
been addressed by the development of GLP-1 analogues that are DPP-4 resistant, such as exenatide 
(Amylin Pharmaceuticals, San Diego, CA and Eli Lilly & Co., Indianapolis, IN, USA) and liraglutide 
(Novo Nordisk, Inc., Princeton, NJ, USA) and by the development of DPP-4 inhibitors such as 
sitagliptin (Merck & Co., Inc) and saxagliptin (Bristol Myers Squibb, New York, NY, USA) to elevate 
endogenous level incretin levels. Only the GLP-1 analogues have been shown to reduce weight while 
DPP-4 inhibitors are weight neutral and GIP is either weight neutral or promotes adiposity through 
lipogenic action on adipocytes [139-142]. 

Both GLP-1 analogues are approved as anti-Type2 diabetes mellitus (T2DM) drugs and are 
typically prescribed in conjunction with other anti-T2DM medications. They are not used as weight 
reduction medications per se although the weight-reducing effects of these agents likely play an 
important role in their overall anti-diabetic profile [139,140]. A post-operative rise in GLP-1 has been 
attributed to the efficacy of bariatric surgery to produce weight loss and improve glucose control in 
morbidly obese patients [143-145]. Another proglucagon gene processing product from intestinal 
mucosa cells is oxyntomodulin which has also been shown to inhibit appetite and may also be involved 
in positive outcomes of bariatric surgery [146,147]. A oxyntomodulin analogue, TKS1225 (Thiakis 
Limited, London, UK) was advanced to Phase I clinical trials and acquired by Wyeth (Madison, NJ, 
USA) which is now part of Pfizer, Inc. (New York, NY, USA). Other gut peptides such as PYY and 
cholecystokinin remain to be translated into effective anti-obesity therapies. 

4.8. Endocannabinoids 

Efforts to understand the mechanisms of action of the exogenous cannabinoid, 
Δ9-tetrahydrocannbinoid (Δ9-THC) resulted in the elaboration of the endocannabinoid (EC) system 
composed of EC ligands, synthetic and catabolic enzymes and EC ligand receptors [148,149]. One 
effect of Δ9-THC is to stimulate feeding and the EC system has been shown to interact with the 
hypothalamic circuit for energy homeostasis with a profile suggesting a direct relationship between 
energy intake and EC system activation [150-154]. The CB1 receptor subtype was shown to mediate 
effects on feeding [155] leading to the development of CB1 receptor antagonists to inhibit feeding. 
Further, recent work, in high fat-fed mice, has shown that chronic treatment with the CB1 receptor 
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antagonist, rimonabant (Sanofi-Aventis, Paris, France), produces weight loss and other metabolic 
improvements that are independent of decreased intake [156,157]. 

Thus, selective CB1 antagonists were highly promising anti-obesity therapies. Such expectations 
were validated as rimonabant was shown to reduce body weight and improve metabolic parameters in 
a number of clinical trials leading to the successful marketing of the drug in Europe as an anti-obesity 
therapy in 2006 [158]. However, in 2007, the FDA failed to approve rimonabant over concerns of 
association of the drug with psychiatric adverse events and suicidality [159]. This decision led to 
increased monitoring of the drug in Europe, restricting indications to exclude patients with a history of 
psychiatric disorders, and its eventual removal from the European market in 2008 [158,160].  

The involvement of central CB1 receptors in the functioning of central motivational pathways most 
likely underlies the adverse psychiatric effects seen with rimonabant [161-164]. This result does not 
necessarily rule out the CB1 receptor as an anti-obesity drug target; the receptor antagonism achieved by 
rimonabant, an inverse agonist, could be overkill and a neutral antagonist or partial agonist, which would 
not silence constitutively active CB1 receptors, might reduce weight without adverse side effects [158]. 
Alternatively, it is possible that blocking peripheral CB1 receptors, thereby avoiding direct central 
action, could have anti-obesity benefits in humans since peripherally acting CB1 antagonists have 
recently been shown to reverse several unfavorable metabolic indices induced by HFD in 
mice [165,166]. Nonetheless, the failure of rimonabant serves as a cautionary lesson that centrally acting 
drugs run the risk of producing adverse psychiatric side effects especially if their mechanism of action is 
inextricably linked to the functioning of midbrain dopamine reward pathways [167-169].  

4.9. New Combination Therapies 

In light of the above considerations, Qnexa, the combination anti-obesity therapy consisting of 
phentermine and the anti-convulsant topiramate, put forth by Vivus, Inc. (Mountain View, CA, USA) 
was recently rejected for marketing by an FDA advisory panel [170]. It remains to be seen what the 
future holds for a new anti-obesity combination therapy of naltrexone, an opiate antagonist, and 
bupropion, a catecholamine re-uptake inhibitor and nicotinic antagonist, known as Contrave (Orexigen 
Therapeutics, Inc., La Jolla, CA, USA) which targets both hypothalamic POMC neurons and the 
midbrain dopamine neuron reward pathway. [171,172]. Empatic, also from Orexigen Therapeutics, a 
combination anti-obesity therapy of bupropion and the anti-convulsant, zonisamide, has shown 
promise in phase II clinical trials and phase III trials are being planned [173,174]. The rationale for 
combination therapy is based on the likelihood that mechanisms of energy homeostasis might defeat a 
single monotherapy whereas affecting multiple targets would stand a better chance at blocking 
homeostatic responses by reducing the activity in compensatory pathways and/or through synergistic 
effects on separate but ultimately converging pathways [12]. 

5. Peripheral Anti-Obesity Drug Targets Since the Discovery of Leptin 

CNS anti-obesity drug targets present major hurdles to drug development programs. To gain access to 
central neurons, a compound must navigate the blood brain barrier and then act selectively amidst a 
complex and interconnected target-rich tissue to produce its effect without adverse side effects 
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[175,176]. Peripheral targets are far more likely to be successfully modulated by drugs, or, in the 
parlance of drug discovery, they are more “druggable”. 

5.1. Pancreatic Lipase 

Pancreatic lipase is an enzyme made in the exocrine pancreas that is secreted into the intestinal 
lumen to breakdown ingested triaglycerides to fatty acids and 2-monoglycerides for absorption by the 
gut. To date, only one peripherally-targeted drug, Orlistat, has been developed as an anti-obesity 
therapy although other compounds, such as the incretins and endocannabinoid antagonists, could 
produce at least part of their anti-obesity effects at peripheral sites. Orlistat (Orlistat, F. Hoffmann-
LaRoche, Basel, Switzerland and Alli, GlaxoSmithKline plc, Brentford, UK) is a lipase inhibitor 
which prevents the breakdown of triglycerides in the intestine and therefore decreases fat absorption. 
Orlistat is the ultimate peripherally-acting compound in that the drug, itself, is minimally absorbed, 
having its action in the lumen of the gut. However, the drug is, at best, only modestly effective and its 
use is accompanied by unpleasant gastrointestinal side effects which limit its long-term use [177] and 
reduce patient compliance [178]. The FDA has recently revised the label for Orlistat to include reports 
of rare cases of severe liver injury in patients on this medication [179]. A related lipase inhibitor, 
Cetilistat (Norgine BV, Amsterdam, The Netherlands, in collaboration with Takeda Pharmaceutical 
Co., Ltd., Osaka, Japan), that may be better tolerated, is currently in phase III clinical trials [180]. 

5.2. 11β-Hydroxysteroid Type 1 

Despite strong evidence from rodent models for the permissive role of glucocorticoids in a variety 
of obesity models, there is little evidence for elevated plasma glucocorticoid levels in common forms 
of human obesity [181]. These observations have led to interest in 11β-hydroxysteroid type 1, the 
enzyme required for the reactivation of cortisol from cortisone. Increased reactivation of cortisol by 
the enzyme could promote glucocorticoid action in cells without elevated plasma levels of the 
hormone. Overexpression of the enzyme specifically in mouse adipose tissue resulted in increased 
corticosterone levels in fat tissue without elevations in plasma glucocorticoids while increasing 
visceral fat mass and generating other obesity-associated metabolic complications [182]. As such, 
there is great interest in the development of 11β-hydroxysteroid type 1 inhibitors and a large array of 
small molecule inhibitors have been generated by a number of pharmaceutical companies [183]. Early-
stage clinical trials are underway for several of these compounds. 

5.3. Human Brown Adipose Tissue (BAT) 

Anti-obesity therapies are typically aimed at reducing energy intake although some might also have 
the additional effect of increasing expenditure. The targeting of BAT represents an effort to uniquely 
target energy expenditure by driving the metabolic activity of this tissue; an approach that has been 
shown to have powerful anti-obesity effects in rodents [184]. Drug discovery efforts in the 1990s 
included the targeting of BAT via β-3 adrenergic receptor activation since activation of this receptor in 
rodents promotes a powerful anti-obesity effect through the induction of lipolysis in white adipose 
tissue and the oxidation of free fatty acids in BAT [16]. However, selective β-3 adrenergic receptor 
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agonists did not prove efficacious in humans and this failure was most likely due to the paucity of this 
receptor subtype in human adipose tissue relative to that found in rodents [185,186]. Much has been 
made of the recent validation of the presence of BAT in humans [187-191] but it still remains to be 
demonstrated that activation of this tissue in adult humans would produce clinically beneficial effects 
on body weight. Investigation into the molecular determinants of the BAT phenotype could provide 
clues for the potential expansion of BAT mass for future anti-obesity therapies [184]. 

5.4. Targets That Could Limit Consequences of Obesity 

Even if efficacious anti-obesity drug therapies are developed there will likely be many obese 
patients that will require treatment for their existing obesity. Therefore natural or synthetic products 
will be necessary to combat the consequences of obesity, such as inflammation and insulin resistance 
to limit obesity-induced pathologies such as Type 2 diabetes and dyslipidemias. Among these targets 
are adiponectin and its receptors [192,193], the metabolic regulator AMP-activated protein kinase 
(AMPK) [194-196], PPARs [197], sirtuin-1 [198] and GPCR 120 [199]. Although drugs for these targets 
would most likely not be indicated for obesity prevention per se, and, in some cases such as peroxisome-
profilerator-activated receptors γ (PPARγ) agonists, could even increase adiposity [200,201], they could 
be used to maintain insulin sensitivity and limit inflammation in the obese state. On the other hand, 
compounds such as PPARα and PPARδ agonists could actively decrease fat stores through induction 
of fatty acid oxidative pathways [196,202]. To date, few drugs for these targets have been adopted for 
long-term effective treatment of obese patients and recently, use of the PPARγ agonist, rosiglitazone, 
has been suspended in Europe and sharply restricted in the US [203,204]. 

6. Concluding Remarks 

At least 10 years is typically required to go from target discovery/validation to regulatory agency 
approval of a new drug therapy. From this perspective, it is not surprising that many new drug 
discovery programs for anti-obesity targets discovered since the discovery of leptin have not led to 
new drug therapies. Far more troubling is the fact that several new chemical entities have successfully 
navigated through to various stages of the process, with some actually being approved, only to be 
dropped or restricted in light of new evidence regarding safety or lack of efficacy. Among these are 
sibutramine, MC4R agonists, lorcaserin, rimonabant and Qnexa. Moreover, several of the new 
compounds nearing evaluation by regulatory agencies are similar to those already rejected. The GLP-1 
agonists, which appear to have both central and peripheral appetite reducing effects, are primarily 
Type 2 diabetes drugs given their powerful promotion of glucose-stimulated insulin release and may 
not be prescribed as anti-obesity drugs per se.  

Thus, at 2000, the choice of approved long-term anti-obesity drug therapies was between Orlistat 
and sibutramine (Table 1). Now, a decade later at 2010, there is only Orlistat (Table 1). At present, the 
obesity epidemic grows unabated generating more cases of Type 2 diabetes, dyslipidemias, 
cardiovascular disease and other obesity-related disorders. Diet and exercise remain effective but have 
poor compliance. Expensive bariatric surgery is effective for cases of morbid obesity but is not an 
option for 300 million obese patients. It is hoped that the next decade will produce effective anti-
obesity drug therapies to at least partially fill this expanding unmet medical need. Whether the failures 
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of the last ten years will provide sufficient feedback for course correction, or whether the last ten years 
will be considered a “lost decade” for anti-obesity drug discovery remains to be seen. 
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