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Abstract: Interest in cell-penetrating peptides (CPPs) as delivery agents has fuelled a large 
number of studies conducted on cultured cells and in mice. However, only a few studies 
have been devoted to the behaviour of CPPs in human tissues. Therefore, we performed 
ex vivo tissue-dipping experiments where we studied the distribution of CPP-protein 
complexes in samples of freshly harvested human tissue material. We used the carcinoma 
or hyperplasia-containing specimens of the uterus and the cervix, obtained as surgical 
waste from nine hysterectomies. Our aim was to evaluate the tissue of preference 
(epithelial versus muscular/connective tissue, carcinoma versus adjacent histologically 
normal tissue) for two well-studied CPPs, the transportan and the TAT-peptide. We 
complexed biotinylated CPPs with avidin-β-galactosidase (ABG), which enabled us to 
apply whole-mount X-gal staining as a robust detection method. Our results demonstrate 
that both peptides enhanced the tissue distribution of ABG. The enhancing effect of the 
tested CPPs was more obvious in the normal tissue and in some specimens we detected a 
striking selectivity of CPP-ABG complexes for the normal tissue. This unexpected finding 
encourages the evaluation of CPPs as local delivery agents in non-malignant situations, for 
example in the intrauterine gene therapy of benign gynaecological diseases. 
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Abbreviations: 

ABG   avidin-β-galactosidase 
ACE   adenocarcinoma of the endometrium 
bTAT   biotinyl-GRKKRRQRRRPPQamide 
{bTAT+ABG}  non-covalent complex between bTAT and ABG 
bTP  GWTLNSAGYLLGK(biotinyl) INLKALAALAKKILamide 
{bTP+ABG}  non-covalent complex between bTP and ABG 
CPP   cell-penetrating peptide 
FIGO   International Federation of Obstetrics and Gynecology 
G1    grade 1 tumour 
G3    grade 3 tumour 
TAT-peptide  HIV-1 Tat protein (48–60) amide 
o/n    overnight 
PBS   phosphate-buffered saline 
PFA   paraformaldehyde 
RLB   Reaction Lysis Buffer 
SCCC   squamous cell carcinoma of the cervix 
X-gal   5-bromo-4-chloro-3-indolyl β-D-galactopyranoside 

 

1. Introduction 

The discovery of the cell-penetrating ability of certain short cationic peptides (cell-penetrating 
peptides) has fuelled a large number of studies carried out over the last 20 years on both cultured cells 
and in mice. Despite the potential of cell-penetrating peptides (CPPs) as drug delivery agents, only a 
few studies have been devoted to the behaviour of CPPs in human tissue. To our knowledge, only the 
group lead by Roger Tsien has published data about their activatable CPPs in human tumour tissue 
samples [1–2]. Therefore, we decided to study the distribution of CPP-protein complexes in samples of 
freshly harvested human tissue material, obtained as surgical waste from hysterectomies. This material 
is gaining attention as a tissue source for translational research. For example, human fallopian tubes 
have recently been shown to be an excellent source of adult mesenchymal stem cells, able to be 
differentiated into muscle, fat, bone and cartilage cell lineages [3]. In addition, several groups have 
been using surgical waste from hysterectomies to set up ex vivo models. For example, cervical tissue 
from hysterectomies for benign reasons has been used in local delivery studies [4] and cervical tissue 
from hysterectomies for malign reasons has been used in anti-cancer activity studies [5].  

Our aim was to evaluate the tissue of preference (epithelial versus muscular/connective tissue, 
carcinoma versus adjacent histologically normal tissue) for two well-studied CPPs: the transportan and 
the TAT peptide. We complexed the biotinylated CPPs (bCPPs) with avidin-β-galactosidase (ABG), 
which enabled us to apply whole-mount X-gal staining as a robust detection method. Tissue samples 
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were an environment for us where CPP-protein complexes had the possibility to “choose” between the 
different cells. The heterogeneity of cells available in a freshly harvested surgical specimen is most 
likely very difficult to achieve in cell culture experiments. The TAT-peptide was chosen because it is 
one of the most widely used CPPs [6] and represents a subgroup of CPPs, which are non-amphipathic 
CPPs. The transportan, an efficient oligonucleotide delivery enhancer [7–9], is an amphipathic CPP. 
Amphipathic CPPs bear a structural resemblance to cationic amphipathic antimicrobial peptides, 
several of which have been shown to be selective towards cancer cells both in cultured cells as well as 
in mice [10]. Therefore, we were eager to elucidate the potential selectivity of the transportan toward 
human carcinoma tissue. 

Figure 1. Schematic overview of the experimental setup: specimen processing, tissue-
dipping assay and post-exposure treatment of tissue samples. 
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2. Results and Discussion 

2.1. Hysterectomy Specimens as a Tissue Source 

Our aim was to evaluate the possibility that the transportan and the TAT-peptide would differentiate 
between the different types of tissues, using a tissue-dipping assay. We defined tissue-dipping assay as 
the exposure of a tissue sample to the biotinylated transportan or the biotinylated TAT-peptide 
complexed with reporter cargo avidin-β-galactosidase (ABG) over 1–2 h at 37 °C in a well of a 12 or 
24-well plate. The optimal specimen for our tissue-dipping assay (Figure 1) had the following 
characteristics. First, the specimen contained two types of tissue and the visual discrimination of the 
tissues was possible even for a non-pathologist. Secondly, it was possible to cut the specimen so that 
each sample of the tissue-dipping assay contained approximately the same volume of each tissue type.  

Figure 2. Macrophotographs (at 7.5x magnification) of tissue samples exposed to 
uncomplexed ABG (a), {bTAT+ABG} (b) and {bTP+ABG} (c) in the experiment 
abbreviated as “ACE_1” (see Table 1 for details). The tissue samples were from the 
specimen diagnosed with stage IA adenocarcinoma of the endometrium (ACE). The 
myometrial parts of samples are directed to the left. The image of the negative control (“no 
drug”) is in panel d. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These criteria were met best in early-stage adenocarcinomas of the endometrium (ACE). ACE is 
also known as endometrial/endometrioid adenocarcinoma or simply uterine/endometrial cancer. As 
ACE is the most common gynaecological malignancy [11], specimens can be obtained relatively often. 

a b 

c d 
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In stage I ACE specimens, the adenocarcinoma-containing epithelial tissue (endometrium) was readily 
discriminated from the adjacent normal smooth muscle tissue (myometrium). The discrimination was 
even easier after the fixation steps as the soft adenocarcinoma areas stood out more strikingly against 
the firmer myometrium (Figure 2, panel d). The specimens were staged according to the current 
staging system of the International Federation of Obstetrics and Gynecology (FIGO). In the case of 
stage IA, the adenocarcinoma was limited to the endometrium (e.g., no invasions to the myometrium). 
In the case of stage IB, the adenocarcinoma invaded less than half the myometrium. However, the 
ACE specimens of stage IB were soft and some disaggregation occurred during the exposure step. 
Therefore, the exposure step was shortened to 1 h in the case of the ACE specimens of stage IB (as 
specified in Table 1). In addition, because of the softness of the specimen, we did not trim the samples 
of the stage IB specimen to fit into the wells of the 24-well plate (as we did for the samples of the stage 
IA specimen). Instead we increased the exposure solution volume to 2 mL and performed the exposure 
in the wells of the 12-well plate. The histological grade of most of the ACE specimens was grade 1 
(G1), meaning that the adenocarcinoma was well-differentiated and had a good prognosis.  

Only two ACE specimens of a higher grade or stage filled the criteria of the optimal specimen. The 
first specimen had the rare combination of G1 and stage IIIB and the second specimen had the 
combination of G3 and IB. Histological grade 3 (G3) means that the carcinoma is poorly differentiated 
and has a poor prognosis. Stage IIIB means that the carcinoma has spread to the vagina but not to 
lymph nodes or distant sites. 

ACE is a disease that predominantly affects post-menopausal women. This means that ideal 
controls—specimens from age-matched women containing normal endometria in their proliferative 
phase—do not exist. Unfortunately, the specimens from pre-menopausal women containing 
endometria in their proliferative phase were not available for this study. Therefore, we used a specimen 
from a patient who had been diagnosed with hyperplasia of the endometrium (excessive proliferation 
of the cells of the endometrium). The histological diagnosis of the specimen specified that the 
hyperplasia was without atypia, indicating a low probability for the development of cancer. The 
hyperplasia specimen filled the criteria of the optimal specimen: easily discriminated hyperplastic 
endometrium and adjacent normal myometrium and the possibility to cut the specimen so that each 
sample contained approximately the same volume of each tissue type. However, hysterectomies are 
routinely not performed in the case of endometrial hyperplasia, so hyperplasia specimens are rare. 

Hysterectomies in patients diagnosed with squamous cell carcinoma of the cervix (SCCC) provided 
the specimens carrying the combination of squamous cell carcinoma tissue (e.g., epithelial malignant 
tissue) and the adjacent normal cervical stroma. The cervical stroma is mainly composed of fibrous 
connective tissue with small amounts elastic fibres and smooth muscle [12]. The histological grade of 
both SCCC specimens was G3. The first SCCC specimen had stage IVB, meaning that the cancer had 
spread to distant organs beyond the pelvic area. The patient had also had previous chemotherapy. The 
second SCCC specimen had stage IB2, meaning that the cancer had grown into the cervix but had not 
spread anywhere else. This SCCC specimen had very little of the cervical stroma. In summary, the 
SCCC specimens were not fully optimal for the current study. However, the SCCC specimens were a 
valuable source of G3-carcinoma tissue and adjacent normal (mainly) connective tissue.  
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2.2. ABG (Avidin-β-Galactosidase) as a Reporter Cargo in Tissue-Dipping Experiments 

In this study we used ABG as a reporter cargo. In ABG the β-galactosidase from E. coli was 
labelled with avidin from egg white. The avidin part of ABG enabled complex formation with 
biotinylated CPPs (bCPPs). The β-galactosidase part enabled a robust detection system based on X-gal 
staining. The X-gal is the most widely used chromogenic substrate for β-galactosidase. The cleavage 
of the glycosidic linkage in X-gal by β-galactosidase produces colourless indoxyl moieties that are 
nonenzymatically dimerised and oxidised to halogenated indigo—A stable and insoluble blue 
compound. Dimerisation and oxidation require the presence of electron acceptors of the proper redox 
potential. We used the most widely used electron acceptors in the X-gal staining procedure—ferric and 
ferrous ions. The main concern when using β-galactosidase activity as a part of the reporter cargo is 
the endogenous β-galactosidase activity in tissues, a well-known problem in mice bearing the lacZ-
containing transgene [12]. However, we never detected the endogenous β-galactosidase activity when 
we performed the whole-mount X-gal staining at pH 7.4, optimal for E. coli β-galactosidase. In other 
words, we could not detect the blue indigo colour in our negative controls (“no drug”), or the tissue 
samples exposed to the protease inhibitor cocktail-containing RPMI medium only (panel d in Figures 
2, 3 and 4).  

Figure 3. Macrophotographs (at 10x magnification) of tissue samples exposed to 60 μg of 
uncomplexed ABG (a), to a complex of 60 μg ABG with 5 μM bTP (b) and to a complex 
of 5 μg ABG with 5 μM bTP (c) in the experiment abbreviated as “SCCC_1” (see Table 1 
for details). The tissue samples were from the specimen diagnosed with stage IVB 
squamous cell carcinoma of the cervix (SCCC). The cervical stromal parts of samples are 
directed to the left (a, b, c) or down (d). The image of the negative control (“no drug”) is in 
panel d. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 

c d 
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Figure 4. Macrophotographs (at 10x magnification) of tissue samples exposed to 
uncomplexed ABG (a), {bTAT+ABG} (b) and {bTP+ABG} (c) in the experiment 
abbreviated as “hyperplasia” (see Table 1 for the details). The tissue samples were from the 
specimen diagnosed with hyperplasia of the endometrium without atypia. The image of the 
negative control (“no drug”) is in panel d. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As expected, endogenous β-galactosidase activity could be readily detected when the pH was 
lowered to 6.1 (data not shown). The absence of endogenous β-galactosidase activity was the major 
factor that made us choose ABG as the reporter cargo in our study. In the preliminary experiments we 
also used fluorescence-based detection. In those experiments we complexed the bCPPs with mouse 
anti-biotin antibodies and studied the distribution of the complexes by immuno-fluorescence in the 
cryosections. However, the autofluorescence background was high throughout the visible spectrum, 
especially in the carcinoma tissue. This complicated the comparison of the distribution of the bCPP-
antibody complexes between the carcinoma and the adjacent normal tissue and required extensive 
image processing.  

In some experiments we noticed the development of green-yellow or brown colour in malignant 
epithelial tissue. Colour development was more intensive in the G3-carcinoma specimens than in the 
G1-carcinoma specimens or hyperplastic specimens. The colour development was detectable in all 
samples of those experiments, e.g., even in the negative control. The most striking example is 
visualised in Figure 3, panel d. This colour development is most likely due to the production of 
Prussian green or related products from the ferricyanide and ferrocyanide. The brown colour 
developed during the staining step and changed to green-yellow when 4% PFA in PBS was used as the 
post-fixation agent (experiment “ACE_6”, Table 1) and remained brown when glutaraldehyde was 

a b 

c d 
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used as a post-fixation agent (experiment “SCCC_1”, Table 1 and Figure 4). Whether or not the colour 
development correlates with the malignancy grade and reflects the redox state of the carcinoma 
remains to be studied. 

Whole-mount X-gal staining was readily detectable when the amount of bCPP-complexed ABG in 
the tissue-dipping assay well was 33–66 μg (0.025–0.1 μM, see Table 1 for details). When only 5 μg 
of ABG was complexed with bCPP, X-gal staining was remarkably weaker (Figure 3 panel c). The 
tissue-uptake-enhancing effect of the TAT-peptide and the transportan was readily seen at 
concentrations of 15–20 μM. The 5 μM bCPP concentration provided readily detectable X-gal staining 
in experiment “SCCC_1” (Figure 3), but only weak staining in experiments “ACE_3” and “SCCC_2” 
(see Table 1 for details). Surprisingly, the further lowering of the bCPP concentration to 3.25 μM 
provided readily detectable X-gal staining in experiments “ACE_4” (Figure 5), “ACE_5” and 
“ACE_6”. This could be due to the bCPP/ABG molar ratio, which was 50:1 in the experiments with 
overall weak staining (“ACE_3” and “SCCC_2”) and 55:1 or higher in the rest of the experiments.  

Figure 5. The macrophotograph (at 25x magnification) of the tissue sample exposed to 
{bTAT+ABG} in the experiment abbreviated as “ACE_4” (see Table 1 for details). The 
tissue sample was from the specimen diagnosed with stage IB adenocarcinoma of the 
endometrium (ACE). Note the blue X-gal staining in the myometrium and the absence of 
the staining in the adenocarcinoma and its invasions into the myometrium. 

 
 
 
 
 
 
 
 
 
 
 

 
 

2.3. Distribution of {bCPP+ABG} Complexes in Tissue Samples 

In every experiment we could readily detect the enhancing effect of the transportan and the TAT-
peptide (reflected in the last three columns in Table 1 and in Figures 2–4, panels a–c). In other words, 
the X-gal staining intensity of uncomplexed ABG was always lower than the X-gal staining intensity 
of {bTAT+ABG} and {bTP+ABG}. This was most prominent in the hyperplasia specimen (Figure 4). 

myometrium 

adenocarcinoma 
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Table 1. Results from the tissue-dipping experiments. 

Specimens Experiment  
abbreviation and 
comments 

Exposure solution parameters Malignancy 
grade,  
stage 

Character of X-gal staining, 
Figure number and panel 

[bCPP] 
μM 

ABG 
μg 

molar ratio 
bCPP/ABG 

ABG {bTAT+ABG} {bTP+ABG} 

ACE specimens: contained  
malignant epithelial tissue  
(malignant endometrium, E)  
and  
adjacent histologically normal 
smooth muscle tissue  
(normal myometrium, M)  
 

ACE_1 15 60 165:1 G1, stage IA even 
Figure 2a 

even  
Figure 2b 

M >> E 
Figure 2c 

ACE_2 15 66 150:1 G1, stage IA E > M even M > E 
ACE_3§ 5 66 50:1 G1, stage IB - even* even* 
ACE_4§¥ 3.25 33 65:1 G1, stage IB - M >> E 

Figure 5 
even* 

ACE_5§¥ 3.25 33 65:1 G1, stage IIIB - even* even 
ACE_6§¥ 3.25 33 65:1 G3, stage IB - M > E M > E 

SCCC specimens: contained  
malignant epithelial tissue (E)  
and adjacent histologically normal 
cervical stroma (C)  

SCCC_1 
post-fixation with 
glutaraldehyde 

5 
5 

60 
5 

55:1 
661:1 

G3, stage IVB 
previous 
chemotherapy 

C > E 
Figure 3a 

not tested C >> E 
Figure 3b-c 

SCCC_2 5 66 50:1 G3, stage IB2 - even* even* 
Hyperplasia of the endometrium: 
contained hyperplastic 
endometrium and adjacent histo-
logically normal myometrium 

hyperplasia 20 66 200:1 - - 
Figure 4a 

even 
Figure 4b 

even 
Figure 4c 

ACE: adenocarcinoma of the endometrium; SCCC: squamous cell carcinoma of the cervix; 
* denotes weak staining; § denotes soft specimen and 1 h exposure; ¥ denotes 2 mL exposure solution.
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We wanted to exclude the possibility that weak or non-detectable X-gal staining of uncomplexed 
ABG was due to its adherence to the walls of the wells, thereby diminishing the ABG available for the 
tissue. Therefore, we performed a quantitative luminescence-based analysis of the residual β-
galactosidase activity of the exposure solutions. We found that in the case of the non-detectable X-gal 
staining in the tissue samples exposed to uncomplexed ABG, the residual β-galactosidase activity 
value in the exposure solution was the same as the start value (e.g., before the immersion of the  
tissue sample). 

In four out of six ACE specimens, we could detect a difference in the X-gal staining intensities in 
the same tissue sample when exposed to the {bCPP+ABG} complexes. Surprisingly, it was the normal 
tissue that had more intensive X-gal staining (last two columns in Table 1). In two ACE specimens we 
detected a remarkable selectivity of either {bTAT+ABG} or {bTP+ABG} for the normal myometrium. 
In experiment “ACE_4” we detected a obvious selectivity of the {bTAT+ABG} complex for the 
normal myometrium and exclusion from the carcinoma area (Figure 5). In experiment “ACE_1” we 
detected an noticeable selectivity of the {bTP+ABG} complex for the normal myometrium and 
exclusion from the carcinoma area (Figure 2, panel c). The histological examination of the 
haematoxylin-eosin stained cryosections of these tissue samples could not point out any differences 
between the {bTP+ABG}-preferring myometrium and the {bTAT+ABG}-preferring myometrium, as 
both were histologically normal. The only difference between them was the stage of the adjacent 
carcinoma: the {bTP+ABG}-preferring myometrium was adjacent to stage IA carcinoma whereas the 
{bTAT+ABG}-preferring myometrium was adjacent to stage IB carcinoma. One common 
phenomenon of carcinomas is field cancerisation, which is the occurrence of molecular alterations in 
the histologically normal tissues surrounding the areas of an overt malignancy [13]. The highest 
number of markers of field cancerisation is specified for head and neck squamous cell carcinoma, 
followed by oesophageal cancer [14]. Unfortunately, the field cancerisation of adjacent and distant 
tissues has not been studied in the case of ACE. In other words, we did not have a set of established 
markers to evaluate the condition of the myometria of the tissue samples used in this study. 

In accordance with the results obtained in the ACE specimens, both CPPs enhanced ABG-uptake in 
the SCCC specimens. In experiment “SCCC_1” we detected a preferential localisation of {bTP+ABG} 
complexes in the normal cervical stroma (Figure 3 panel b). 

Our second aim was the comparison of the CPP-induced distribution of ABG in different normal 
tissues (epithelial versus connective versus muscular). Based on X-gal staining, the distribution was 
enhanced in all normal tissues tested. The quantification of the enhancing effect of CPPs in normal 
tissue was beyond the scope of this study. 

In most specimens used in our study, both tested CPPs showed a preference for histologically 
normal tissue. We do not currently have an explanation for such selectivity. However, in the light of 
some recent studies, the lower uptake of CPP-protein complexes in malignant cells is not fully 
surprising. The in vitro uptake of CPP-protein complexes consisting of avidin complexed with bTAT 
and bTP occurs dominantly via caveolin-mediated endocytosis [15]. The in vitro uptake of an albumin-
based magnetic resonance contrast medium is also suggested to occur via caveolin-mediated 
endocytosis [16]. When the albumin-based contrast medium was administered intravenously to mice 
bearing subcutaneous tumours, the histological analysis of the tumours revealed that the contrast 
medium was internalised by perivascular myofibroblasts and excluded from tumour nodules [17]. 



Pharmaceuticals 2010, 3                   
 

 

631

Myofibroblasts (also known as cancer-associated fibroblasts) are not malignant cells but are one the 
most abundant cell types in the tumour stroma [18]. One could conclude that the caveolin-based uptake 
of the albumin-based contrast medium was more efficient in non-malignant cells than in malignant 
cells. Whether or not this is the case for the CPP-protein complexes used in our study (e.g., the detailed 
analysis of their internalisation mechanisms in the presence of both malignant and non-malignant cells) 
remains to be studied. 

We believe that our findings encourage the evaluation of CPPs as local delivery agents in non-
malignant situations, for example in the intrauterine gene therapy of benign gynaecological diseases 
such as leiomyoma. Uterine leiomyomas (also known as uterine fibroids) are the most common benign 
tumours of the female genital tract [19] and a leading cause of hysterectomy in premenopausal women 
[20]. The development of a nonsurgical and localised treatment would greatly benefit many women 
[21]. Uterine leiomyomas are attractive targets for gene therapy because the disease is localised and 
well circumscribed in the uterus, making ultrasound-guided intratumoural injection simple [22]. 
Indeed, the adenovirus-mediated delivery of dominant-negative oestrogen receptor genes [21] and 
herpes simplex virus 1 thymidine kinase genes followed by Ganciclovir treatment [23] shrank the 
leiomyomas in Eker rats when administered intratumourally. As several CPPs have been shown to 
enhance adenovirus-mediated transduction [24], the application of the same approach in the context of 
intrauterine gene therapy is promising. 

3. Experimental  

3.1. Peptides 

The biotinylated transportan (bTP: GWTLNSAGYLLGK(biotinyl)INLKALAALAKKILamide) 
was purchased from Inbiolabs (Tallinn, Estonia). The biotinylated TAT-peptide (bTAT: biotinyl-GRK 
KRRQRRRPPQamide) was synthesised, purified and analysed as previously described [25]. Biotin 
labelling of both peptides was performed during solid-phase synthesis. 

3.2. Specimen-Processing 

The human tissue materials used in this study were obtained as surgical waste from patients 
undergoing hysterectomies at the Haematology and Oncology Clinic of the University of Tartu 
Hospital. This study was approved by the Ethics Review Committee on Human Research of the 
University of Tartu (protocol numbers 154/3, 20.11.2006 and 179/M-15 16.02.2009) and informed 
consents were obtained from the patients. The reasons for the hysterectomies were the following: ACE 
(adenocarcinoma of the endometrium), SCCC (squamous cell carcinoma of the cervix) and hyperplasia 
of the endometrium. The quality of the surgical specimen was maximised by close collaboration with 
the operating theatre. In other words, all measures were taken to minimise the time when the specimen 
sat unattended (a well-known problem in studies involving surgical resection specimens, [26]). 
Immediately after the surgical resection, the material was examined by a pathologist. Materials were 
considered suitable for the current study if the carcinomas or hyperplastic tissues were readily 
distinguishable upon visual inspection. Specimens were in cold RPMI-1640 medium (PAA 
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Laboratories GmbH, Pasching, Austria) during transport to the lab (e.g., until the cutting step; see 
Figure 1 for the overview of specimen-processing).  

3.3. Tissue-Dipping Assay 

Samples that could freely move in a well of a 12 or 24-well plate were cut using a Feather S35 
microtome blade and submerged in 1 mL of exposure solution. Each tissue sample cut from an ACE 
specimen contained both malignant epithelial tissue (endometrium) and adjacent normal myometrial 
tissue (myometrium). Each tissue sample cut from an SCCC specimen contained both malignant 
epithelial tissue and adjacent normal cervical stroma. Each tissue sample cut from the hyperplasia of 
the endometrium contained both hyperplastic endometrium and adjacent normal myometrium. The 
exposure was performed in the wells of a 12 or 24-well plate at 37 ºC on a shaking platform. The wells 
of the plates were pre-coated with 1% bovine serum albumin solution (in the 1:1 mixture of water and 
RPMI-1640 medium) in order to diminish the adhesion of the protein to the plastic. The wells were 
incubated with 2–3 ml of pre-coating solution. After 30 min. the pre-coating solution was aspirated and 
the wells were considered ready for the exposure step. 

The exposure solution was prepared as follows: first the bCPP was complexed with ABG (Sigma-
Aldrich Corp. St. Louis, MO, USA) by mixing the appropriate amounts of 1 mM bCPP and ABG  
(1.25 or 1 mg/ml) and incubating the obtained mixture for 10 min. at room temperature. In the case of 
biotinylated transportan (bTP), the peptide solution was first treated with L-leucine as described in [27] 
in order to dissociate the multimers of bTP. The {bCPP+ABG} complexes were diluted with 1 ml of 
RPMI-1640 medium (2 ml in the case of the tissue samples from the ACE specimens of stage IB) and 
transferred to the wells of a 24-well plate (12-well plate in the case of the tissue samples from the ACE 
specimens of stage IB). Then 10 μl of the protease inhibitor cocktail (Sigma-Aldrich Corp) was added 
in each well, followed by submersion of the tissue sample. The exposure was performed at 37 ºC in a 
Thermomixer Comfort (Eppendorf AG, Hamburg, Germany) using interval mixing mode (every 2 
min., the plate was shaken for 10 seconds at 300 RPM). 

3.4. Post-Exposure Treatment of Tissue Samples 

The samples were washed once with a phosphate-buffered saline (PBS) and then submerged in cold 
4% paraformaldehyde (PFA) in PBS and refrigerated for 90 min. The fixative was changed once after 
45 min. The fixative aliquots were stored at -20 ºC and always thawed on the day of the experiment. 
Then the samples were washed several times in a rinsing buffer (100 mM sodium phosphate (pH 7.4), 
150 mM NaCl, 2 mM MgCl2) and left overnight in the rinsing buffer in the refrigerator. The following 
day the samples were left to stand at room temperature for an hour, washed once more with the rinsing 
buffer and then stained for 4 h at 37 ºC in the dark using a Thermomixer Comfort (every 5 min., the 
plate was shaken for 10 seconds at 300 rpm). The stain solution had the following composition: 
100 mM sodium phosphate (pH 7.4), 150 mM NaCl, 2 mM MgCl2, 35 mM potassium ferricyanide, 
35 mM potassium ferrocyanide, and 1 mg/mL 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside  
(X-gal). After the staining procedure, the samples were washed several times with PBS and post-fixed 
in 4% PFA in PBS and refrigerated. Then the samples were washed several times with cold PBS, 
weighed, immersed in cold 30% sucrose (in PBS with 0.05% sodium azide) and stored in the 
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refrigerator until image recording and cryosectioning. The images of the samples were recorded using 
an Olympus SZX12 microscope system equipped with an Olympus XC50 camera.  

3.5. Cryosectioning 

The 25 μM-cryosections were cut using a Slee MNT Cryostat (Slee Medical GmbH, Mainz, 
Germany) using Feather S35 microtome blades. The optimal temperatures for the cryosectioning of the 
tissue samples were determined empirically and turned out to be the following: -26 ºC as the chamber 
temperature and -6 ºC as the specimen temperature. The tissue samples were surrounded by the Tissue-
Tek® O.C.T.™ Embedding Compound (Electron Microscopy Sciences, Hatfield, PA, USA) sectioned, 
applied to Superfrost®Plus slides (Menzel GmbH & Co, Braunschweig, Germany), air-dried and then 
stored at -20 ºC. Before standard haematoxylin and eosin staining, the slides were thawed, fixed with 
4% PFA in PBS (5 min. at room temperature) and then washed with water. 

3.6. Analysis of the Residual β-Galactosidase Activity in the Exposure Solutions 

The 50 μL samples of exposure solutions were mixed with 450 μL of Reaction Lysis Buffer (RLB, 
Promega) and stored at -20 ºC. On the assay day the samples were further diluted with RLB to obtain 
the 100-time dilution of the original samples. The 20 μL samples of the final dilution were mixed with 
100 μL of the Beta-Glo™ reagent (Promega Biotech AB) in a well of a white 96-well plate and after  
30 min, luminescence was recorded in a GENios Plus (Tecan Austria GmbH, Grödig, Austria). The 
standard curves of ABG ranged from 1 μg/mL to 0.01 μg/mL. 

4. Conclusions  

In this study we evaluated the tissue of preference for two well-studied CPPs—the transportan and 
the TAT-peptide, complexed with ABG. We described a robust assay based on whole-mount X-gal 
staining. Our results indicated that both the transportan and the TAT-peptide enhanced the tissue 
distribution of ABG. In some cases we could even detect a remarkable selectivity of {bTP+ABG} and 
{bTAT+ABG} for the histologically normal tissue. This unexpected finding encourages the evaluation 
of CPPs as local delivery agents in non-malignant situations, for example in the intrauterine gene 
therapy of benign gynaecological diseases. 
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