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Abstract: Cyclooxygenase and lipoxygenase, two important enzymes involved in 
arachidonic acid metabolism, are major targets of non-steroidal anti-inflammatory drugs 
(NSAIDs). Recent investigations suggest that arachidonic cascades and their metabolites 
may be involved in maintaining inner ear functions. The excessive use of aspirin may 
cause tinnitus in humans and impairment of the outer hair cell functions in experimental 
animals. On the other hand, NSAIDs reportedly exhibit protective effects against various 
kinds of inner ear disorder. The present review summarizes the effects of NSAIDs on 
cochlear pathophysiology. NSAIDs are a useful ameliorative adjunct in the management of 
inner ear disorders. 
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1. Introduction 

Non-steroidal anti-inflammatory drugs (NSAIDs) are some of the most commonly used drugs in 
daily clinical practice. They are usually used as painkillers, antipyretics, etc.. In the arachidonic 
cascade, membrane phospholipids are metabolized into various mediators. Classic NSAIDs inhibit 
activity of cyclooxygenase (COX) that is responsible for the cyclic endoperoxide of prostaglandin 
(PG) G2 and PGH2. COX is divided into three subgroups: COX-1, COX-2, and COX-3 [1,2]. COX-1 
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is constitutively expressed in many mammalian tissues. On the other hand, COX-2 is induced in 
response to various stimuli, such as cytokines, bacterial lipopolysaccharide, and growth factors [3,4]. 
Furthermore, high expression of COX-2 is typical for prenatal period [5,6]. COX-3 is a splicing 
variant derived from the Cox1 gene. This protein is expressed in the central nervous system and 
involved in sensitive neuronal pathway [2]. Use of COX-2 selective NSAISDs reduces incidence of 
gastrointestinal side effects. However, typical complications induced by COX-2 inhibitors were also 
found, such as cardio-vascular complications. Therefore, it is important to clarify the characteristics of 
the subtypes of NSAIDs and their usage. 

The arachidonic cascade is made up of several enzymes, such as a phospholipase A2 (PLA2), a 
lipoxygenase (LOX), and a monooxygenase pathway, as well as COX. In the first step of the 
arachidonic cascade, arachidonic acid (AA) is generated from membrane phospholipid precursors by 
PLA2. The next stage of this cascade involves two main pathways: the COX pathway that produces 
prostaglandins (PGs) and thromboxanes (TXs), and the LOX pathway that produces leukotrienes 
(LTs). In the monooxygenase pathway, AA is primarily metabolized by cytochrome P450 (CYP) 
enzymes to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) [7]. In this 
review, we summarized the involvement of COX and COX inhibitors in cochlear pathophysiology. 
The effects of inhibitors of other arachidonic cascade enzymes on the cochlea are also reviewed. 

2. Ototoxicity Induced by NSAIDs 

NSAIDs are used in the clinical practice of various departments; e.g., in the otolaryngological 
department, they are used as analgesic agents for otitis media, sinusitis, tonsillitis, and other diseases. 
Although no problem occurs due to their usage in most cases, side effects of NSAIDs do occur in 
some cases. Common side effects are gastric mucosal injury, renal function impairment, allergic 
reactions, and cardio-vascular complications. In addition to these side effects, high-dose treatments of 
NSAIDs, especially aspirin and its active metabolite salicylate, occasionally induce ototoxicity, 
including tinnitus, and hearing loss [8–10]. In such cases, tinnitus is often the first subjective symptom. 
Subsequently, mild to moderate hearing loss, usually reversible tends to occur. The severity of hearing 
loss is reportedly correlated with the plasma salicylate level [10]. 

Many animal studies have been conducted to clarify the mechanisms of the otological side effects 
of NSAIDs. Otoacoustic emission (OAE) is a useful test to monitor outer hair cell function. In animal 
examinations, a reduction of the OAE level was observed after the administration of high-dose 
salicylate [11,12]. Additionally, thresholds of both an eighth nerve compound action potential (CAP) 
and an auditory brainstem response (ABR), indicators of the hearing level, decreased transiently after 
high-dose sodium salicylate medication [13,14]. The perilymphatic perfusion of a high concentration 
of salicylate decreased the CAP threshold in guinea pigs, inducing mild to moderate hearing loss [15]. 

Although the systemic administration of NSAIDs does not affect cochlear movement because the 
inhibitory concentration is considered to be much higher than the physiological level achieved by 
systemic administration, high-dose NSAID medication inhibits cochlear movement, which can be 
measured by laser interferometry [16,17]. On the other hand, the endocochlear potential (EP), an 
indicator of the function of the stria vascularis, did not change after NSAID treatment [18–20]. All 
these data obtained from animal studies seem to reflect the impairment of the active process of the 
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cochlea, the mechano-sensory function of the outer hair cells, caused by high-dose NSAIDs. 
Regarding the morphological aspect, electron microscopic examinations have demonstrated that minor 
changes in the stereocilia of hair cells occur after high-dose NSAID treatment, although light 
microscopic examinations did not show any abnormality of stereocilia [21]. This phenomenon is also 
observed in humans. Namely, NSAID ototoxicity also reportedly leads to a reduction of the  
OAE level [22,23]. 

Although mild to moderate sensorineural hearing loss induced by salicylate has been attributed to 
impaired sound amplification by outer hair cells through its direct action on their motility, there is a 
disparity in salicylate concentrations between clinical and animal studies, i.e., extremely high 
extracellular concentrations of salicylate are required to induce a significant reduction of 
electromotility in animal studies. Wu et al. [24] recently reported that the clinical concentration range 
of salicylate caused concentration-dependent and reversible reductions in IK,n (KCNQ4) and the 
subsequent depolarization of outer hair cells. They suggested that this reversible IK,n reduction might 
cause the otologic side effects of salicylate. 

In addition to the reports that an excessive amount of salicylate induces the dysfunction of hair cells, 
as described above, recent studies have demonstrated that high doses of salicylate also induce the 
degeneration of cochlear spiral ganglion neurons [25], and impair auditory neural activity of the 
cochlea [26]. It has been demonstrated that arachidonic acid potentiates NMDA receptor currents [27]. 
The spiral ganglion neurons express NMDA receptors [28]. Although fast excitatory synaptic 
neurotransmission is predominantly mediated by AMPA receptors in the cochlea [29–30],  

Guitton et al. [31] suggested that salicylate induced tinnitus through the activation of these cochlear 
NMDA receptors. Furthermore, salicylate induces the abnormal excitability of neurons in the 
brainstem, subcortical area, and auditory cortex [32–34]. Based on recent evidence from both evoked 
potentials and neuron-pair synchrony measures, it is unlikely that tinnitus is the expression of a set of 
independently firing neurons, and more likely that it is the result of a pathologically increased 
synchrony between sets of neurons [35]. Thus, in addition to the impairment of outer hair cells, 
changes in the excitability of auditory peripheral or central neurons may be the cause of the otological 
side effects of salicylate. 

Cazals [10] reviewed the existence of numerous types of metabolic interference by salicylate: the 
inhibition of several enzymes including NADPH oxydase, phospholipase C, cholesterol ester synthase, 
and ATPase, the inhibition of antigen-antibody interactions, insertion into membranes and interference 
with ion transport, uncoupling of oxidative phosphorylation, hyperglycemia, activation of heat shock 
transcription factor, and the inhibition of free radicals in addition to inhibition of prostaglandin 
synthesis. After Cazals’s review, several studies demonstrated the enhanced expression of TRP1 [36], 
prestin [37] and brain-derived neurotrophic factor (BDNF) [38,39], and morphological changes [40,41]. 
Prestin is a motor protein involved in the motility of outer hair cells [42]. Although functional testing 
of the cochlea showed that the impairment of outer hair cell motility transiently occurred after high-
dose salicylate treatment, recent research demonstrated that the long-term administration of salicylate 
inversely increased the expression of prestin in the cochlea [37,43]. Although some evidence has been 
accumulated, the precise origin and mechanism(s) of NSAID-induced ototoxicity has not been fully 
clarified. 
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3. The Protective Effects of NSAIDs against Cochlear Injury 

Although we reviewed the ototoxicity of NSAIDs in the previous section, we will describe their 
protective effects on cochlear injury in this section. Various protective effects of NSAIDs on cochlear 
injury have been reported in animal studies. Several NSAIDs reportedly exhibit protective effects on 
the inner ear against acoustic injury in rodents [44,45]. Furthermore, salicylate protects the cochlea 
against ototoxicity induced by aminoglycoside or cisplatin [46–48]. It has been demonstrated in 
animals subjected to acoustic injury that there is a window of opportunity for rescue from noise-related 
trauma by delayed pharmacological intervention with salicylate after the onset of this type  
of injury [49]. 

Regarding the subtypes of COX, Stjernschantz et al. [50] reported that COX-1 is expressed in the 
cochlea, but COX-2 is not. On the other hand, Ziegler et al. [51] demonstrated that both COX-1 and 
COX-2 are expressed in several types of inner ear cells. Although COX-2 is generally known to be an 
inducible enzyme responding to various stimuli, Heinrich et al. [52] demonstrated that COX-2 
constitutively exists in the normal inner ear and that sound exposure down-regulates COX-2 
expression in the inner ear. This finding suggests that COX-2 may show a different response pattern on 
receiving stimuli in the cochlea compared to other organs. On the other hand, little is known about 
LOX expression. However, there is a report that mRNA of LOX was detected in an organ of Corti-
derived immortalized cell line [53].  

In our previous paper [54], the differences of NSAIDs were focused in terms of inhibitory enzymes 
regarding the protective effect. Namely, it was examined which subtypes of NSAID protected the 
cochlea against acoustic injury. For this purpose, the effects of non-selective NSAID (indomethacin), 
semi-selective COX-2 inhibitor (meloxicam), selective COX-2 inhibitors (SC58125 and CAY10404), 
and LOX inhibitor (nordihydroguaiaretic acid) were tested in mice subjected to acoustic overexposure 
of 128 dB SPL (sound pressure level) for 4 hours. All the tested non-selective NSAID and LOX 
inhibitors protected the cochlear hair cells against acoustic injury, whereas COX-2 semi-selective and 
selective inhibitors did not exhibit any protective effect [54]. Based on this finding, it is assumed that 
it is important to consider subtypes of NSAID for cochlear protection [54]. 

PLA2, the first-step enzyme of the arachidonic cascade, is reportedly involved in the generation of 
cochlear ischemic [55] and acoustic [56] injury. Although quinacrine, a general PLA2 inhibitor, 
ameliorated the cochlear ischemia-reperfusion and acoustic injury [55,56], the precise protective 
mechanisms are largely unknown. As described above, the protective effects of inhibitors of COX-1 
and LOX as well as PLA2 have been demonstrated in various kinds of cochlear injury. Further studies 
on the arachidonic cascade in the cochlea and its inhibitors (or modulators) will shed light on the 
understanding of the generation mechanisms of various cochlear injuries. 

In clinical practice, sensorineural hearing loss often arises from cochlear impairment due to several 
causes: some kinds of drug including aminoglycoside antibiotics and anti-cancer drugs, loud sounds, 
ischemia, and aging. Several researchers have demonstrated that glucocorticoids exhibit protective 
effects against cochlear injuries in animal studies [56–58]. Considering that glucocorticoids regulate 
the arachidonic cascade by inhibiting the PLA2 [59], it can be speculated that one of the protective 
mechanisms of glucocorticoids against cochlear injury is derived from modulation of the arachidonic 
cascade, although glucocorticoids are multi-functional agents. 
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4. Protective Mechanisms of NSAIDs in Cochlear Injury 

Little is known regarding the protective mechanisms of NSAIDs against inner ear injury. However, 
given that NSAIDs exhibit both anti-inflammatory and anti-oxidant actions, these actions might also 
be related to their protective effects in the inner ear. 

Regarding the anti-inflammatory actions of NSAIDs, several products of the arachidonic cascade 
are related to inflammation. For example, PGs are very well-known inflammatory agents, which have 
potent effects on vasodilatation and vascular permeability [60]. Additionally, it has been demonstrated 
that the over-production of TXs and LTs induces inner ear injury [61,62]. Based on these findings, 
there is a possibility that NSAIDs are able to protect against inner ear injury by inhibiting the over-
production of these metabolites. 

Another possible mechanism of cochlear protection is the anti-oxidant actions of NSAIDs. It has 
been reported that reactive oxygen species (ROS) are involved in several inner ear injuries including 
drug-mediated ototoxicity [63,64], loud sound [65–68], ischemia [69–71], and aging [72]. Dinis  
et al. [73] firstly demonstrated that salicylate was a radical scavenger. In regard to ROS production via 
the arachidonic cascade, ROS are produced during the conversion of PG-G2 to PG-H2 in the COX 
pathway and hydroperoxy-eicosatetraenoic acid to hydroxy-eicosatetraenoic acid in the LOX  
pathway [74]. COX and LOX inhibitors, namely NSAIDs, can therefore block ROS production. 

Furthermore, in addition to the anti-inflammatory and anti-oxidant actions of NSAIDs, salicylate is 
known to regulate the transcriptional factor nuclear factor kappa B (NF-κB), thereby intervening in an 
apoptotic pathway [75,76]. The translocation of NF-κB from the cytosol to nucleus increases in the 
presence of ototoxic stimuli including exposure to an excessively loud sound [77], cisplatin [78], and 
aminoglycosides [79]. Salicylate has a capacity to inhibit the translocation of NF-κB to the nucleus 
based on its action on IκB kinase [76], and may thus intervene in the apoptotic pathway. These 
mechanisms have also been proposed to explain the protective effect of NSAIDs.  

5. Conclusions 

The usage of NSAIDs at excessively high doses will induce inner ear disturbances, causing tinnitus 
and mild to moderate sensorineural hearing loss. These otological side effects are often transient and 
reversible after the cessation of NSAID consumption. Although these precise mechanisms of these side 
effects have not been fully clarified, impairment of the outer hair cell function seems to be one of the 
main causes of side effects. Another possible mechanism of these otological side effects of NSAIDs is 
their excitation of the central auditory nervous system.  

On the other hand, recent studies have demonstrated that NSAIDs exhibit protective effects on 
cochlear injuries in animal studies. Although glucocorticoids are widely used for inner ear disorders in 
humans today, the treatment results are not fully satisfactory, and, thus, there is presently no effective 
therapy for inner ear hearing loss. Basic experimental findings suggest that NSAIDs are potential 
agents for inner ear disturbances in humans.  Further investigations regarding NSAIDs are necessary to 
clarify the mechanisms of their side effects and their potential protective actions.  
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