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Abstract: We have developed a computational method that predicts the positions of active 

compounds, making it possible to increase activity as a fragment evolution strategy. We 

refer to the positions of these compounds as the active position. When an active fragment 

compound is found, the following lead generation process is performed, primarily to 

increase activity. In the current method, to predict the location of the active position, 

hydrogen atoms are replaced by small side chains, generating virtual compounds. These 

virtual compounds are docked to a target protein, and the docking scores (affinities) are 

examined. The hydrogen atom that gives the virtual compound with good affinity should 

correspond to the active position and it should be replaced to generate a lead compound. 

This method was found to work well, with the prediction of the active position being 2 times 

more efficient than random synthesis. In the current study, 15 examples of lead generation 

were examined. The probability of finding active positions among all hydrogen atoms was 

26%, and the current method accurately predicted 60% of the active positions. 

Keywords: FBDD; protein-compound docking; drug design; fragment growth; virtual 

screening; structure-based drug screening 
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1. Introduction  

In the drug-development process, after getting a set of seed compounds, the next step is lead 

generation. The major purpose of the lead generation is enhancement of the affinity of the seed 

compound to the target protein. In the lead generation process, the useless portion of the seed 

compound is reduced, while the necessary part is attached to the seed compound. In some cases, the 

scaffold is replaced by another scaffold. Usually, the QSAR method is applied to the seed and its 

derivatives to increase the affinity. The protein-compound complex structure is also analyzed in the 

lead generation. 

Recently, fragment-based drug development (FBDD) has become popular. In FBDD, the most 

frequently used techniques are fragment linking, fragment evolution, fragment merging, and fragment 

growth [1-7]. In the fragment growth technique, which is the most popular method, additional 

fragments are attached to the seed compound by chemical modification. In the FBDD process, 

reducing the size of the seed compound is not the main tactic. Similar to conventional lead generation, 

the QSAR method is applied to the seed and its derivatives to increase the affinity, and the protein-

compound complex structure is also analyzed in the lead generation. 

In fragment evolution, one of the most important issues is predicting the position that can increase 

the affinity by chemical modification. In the lead generation process, the number of atoms is increased 

by 1.5 times from the seed compound to the lead compound, and the hydrophobicity is increased by 

the addition of hydrophobic groups to the seed compound [1]. If the protein-ligand complex structure 

is predicted by a docking study, the information can be helpful in designing the lead compound. 

However, prediction of the protein-ligand complex structure is difficult. Usually, the prediction 

accuracy of the cross-docking test by docking programs is approximately 20-30% [8, 9].  

Especially in the case of the FBDD, a docking study of fragments is difficult, since the fragments 

are too small to obtain a stable protein-compound complex structure by docking study. Previously, we 

proposed the FSRG (fragment screening by replica generation) method, in which virtual side chains 

are attached to the fragments to enable the docking study [10]. In the current study, we developed a 

computational method that can predict position and increase the affinity by chemical modification for 

the fragment evolution method. 

There have been many de novo design programs reported, such as LEGEND [11], LUDI [12], 

SPROUT [13], HOOK [14], GrowMol [15], PRO-LIGAND [16], CONCERT [17], LEA3D [18] and 

AutoGrow [19]. The differences between the current study and the previous studies are two points. The 

first point is that the previous studies reported the successful designed compounds for only one or two 

targets and the success rate was unclear. In the current study, the software was applied to the 15 targets 

and the success rate was evaluated. The second point is that the previous de novo studies overspecify 

the designed ligands. The designed compounds frequently meet the problem of synthetic accessibility. 

Some programs generate the compounds based on the known active compounds and these programs 

added chemical modification onto the given scaffolds. In some cases, medicinal chemists want to 

design ligands considering the availability of reagents and just want to know which position of 

compound must be modified. Thus, in the current study, the program was designed to suggest only the 

position of compound, which should be modified. 
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2. Method 

Starting from an active fragment (seed compound) and the 3D structure of the target protein, we try 

to predict which atom should be modified chemically to increase the activity. In the current study, only 

hydrogen atoms and fluorine atoms were modified. While there are numerous varieties of chemical 

modifications, only a limited number of side chains (less than 80) were used in the current study for 

chemical modification. A set of virtual compounds were generated from the active fragment by 

artificial chemical modification, and the subsequent docking study was carried out to rank the virtual 

compounds according to the docking score. The modified position of the top-ranked virtual compound 

was predicted as the active position. The details of this method are described below. 

All hydrogen atoms and fluorine atoms of the active fragment were replaced by side chains, one by 

one. The side chains are small groups (methyl, ethyl, phenyl, etc) and their derivatives. Three sets of 

side chains (sets A, B and C) were prepared, and these sets, A, B, and C, consisted of 78, 38, and 25 

side chains, respectively. These side chains, which are summarized in Figure 1, are small hydrocarbons 

including up to two aromatic rings, and they do not include heteroatoms. The side chains are prepared 

manually and arbitrary. These side chains were summarized in the supporting information. 

 

Figure 1. Side chain sets A, B, and C. All sets consist of the compounds 1-9 and their 

derivatives. Set A: For compound 1-9, R or one of the Ris is directly attached to the active 

fragment and the other Ris are replaced by H. In addition, for compound 8-9, R or one of 

the Ris is replaced by -CH2-R, -CH2-CH2-R, -CH=CH-R (R is the active fragment) and the 

other Ris are replaced by H. Set B: For compound 1-9, R or one of the Ris is directly 

attached to the active fragment and the other Ris are replaced by H. In addition, for 

compound 8-9, R or one of the Ris is replaced by -CH2-R, -CH2-CH2-R (R is the active 

fragment) and the other Ris are replaced by H. Set C: For compound 1-9, R or one of the 

Ris is directly attached to the active fragment and the other Ris are replaced by H. In 

addition, for compound 8-9, R or one of the Ris is replaced by -CH2-R (R is the active 

fragment) and the other Ris are replaced by H.  
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These side chains are introduced into the active fragment by the BindMol program, which is an in-

house program. If the attached side chain comes into contact with an atom of the seed compound 

(intra-molecular atomic conflict), such a compound is not generated. The atomic coordinates of the 

generated virtual compound are optimized by an energy minimization calculation in vacuum. The 

Cosgene/myPresto program is used for energy minimization with a general AMBER force field, and 

the dielectric constant is set to 4R, where R is the inter-atomic distance [20]. The atomic charges are 

calculated by the Gasteiger method [21, 22]. 

The protein-compound docking simulation is performed with the Sievgene/myPresto program [23]. 

Each generated virtual compound is docked to the target protein by the flexible docking method and 

the affinity of each virtual compound is evaluated by the docking score. The docking pocket of each 

protein was indicated by the coordinates of the original ligand. Hydrogen atoms were added to the 

coordinates by tplgene/myPresto. The atomic charges of the proteins were the same as those of 

AMBER parm99 [24]. For flexible docking, the Sievgene program generated up to 100 conformers for 

each compound, and a 120x120x120 grid is applied to the scoring grid. The atomic coordinates of the 

target protein were fixed. The protonated states of the proteins and compounds are the dominant ion 

forms at pH 7. Finally, the virtual compounds are sorted according to their docking scores. The 

modified position of the top ranked compound among the all virtual compounds is the predicted active 

position. 

3. Results  

3.1. Single target protein structure was used 

We collected 15 FBDD examples from literature reports [25-39]. Each example consisted of a seed 

compound, lead compounds derived from the seed compound, and 3D coordinates of the target protein. 

The seed compounds were suggested by the literature [1,40]. The current procedure was applied to 

these 15 target proteins. These target names are summarized in Table 1, along with the number of 

virtual compounds generated for each target. Figure 2 shows the seed compounds of these target 

proteins. The active positions of these compounds are also shown in Figure 2. Figure 2 also shows the 

predicted active positions by the current calculation. The probability of predicting accurate active 

positions is summarized in Table 2. On average, the probability of finding active positions among all 

hydrogen atoms was 26.32% by random prediction. On the other hand, the current method predicted 

60.0% of the active positions when side chain set A was used. The prediction is approximately two 

times more efficient than a random selection of active positions. As far as the second top predicted 

position is considered in addition to the top ranked position, the probability of finding active positions 

among all hydrogen atoms was 45.71% by random prediction. On the other hand, the current method 

predicted 66.67%, 46.67% and 46.67% of the active positions when side chain sets A, B and C were 

used, respectively. These values were bigger than the probability by the random prediction, but the 

advantage of the current method is not significant anymore. 

The prediction accuracy increased with increases the number of attached side chains. The prediction 

accuracy obtained with set A was better than that with sets B and C. Thus, the prediction accuracy 

should be improved by increasing the number of side chains or the variety of side chains. 

 



Pharmaceuticals 2011, 4                            

 

 

762

Table 1. Active position prediction accuracy by the current method. 

Target protein 
PDB 
ID 

Active fragment Set  A Set B Set C 

No. of 
H/Fa 

No. of 
active 
sitesb 

No. of 
compdsc Rankd No. of 

compds 
Rank 

No. of 
compds

Rank 

Akt 2UZT 17 3 1311 2 647 2 425 2
Bcl-XL 1YS1 10 1 726 1 373 2 245 2
CDK2 1VYZ 12 8 859 1 419 1 274 1
DNHA 2NM2 8 1 618 63 302 12 196 12
ERK2 2OJG 17 8 1159 1 583 1 386 1
HSP90 1BYQ 10 3 695 1 344 3 225 3
IMPDH 1NF7 7 3 469 1 230 1 150 1
Janus kinase 3JY9 10 1 777 28 380 17 248 17
KDR 1T46 10 3 757 1 379 1 249 1
Lactate 
dehydrogenase 

1ARZ 10 1 701 1 344 9 225 9

MetAP2 1YW7 16 2 1273 36 627 10 407 10
MMP12 1Y93 6 3 392 1 192 1 125 1
NADP 2F10 13 6 839 1 404 3 256 3
PDE4 1MKD 14 1 1094 134 534 33 350 33
Urokinase 1ETF 11 1 727 43 338 31 209 28
Average     26.32%   60.00%   33.33% 33.33%

a number of H/F atoms of active fragment; b number of true active positions of active fragment; 
c number of generated virtual compounds; d rank of the virtual compound that precisely predict 
the true active position  

 

Figure 2. True active positions and predicted active positions. “R” represents the true 

active position, and the arrow represents the predicted active position by the current 

method by using side chain set A. 
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Figure 2. Cont.  

 
 

Table 2. Prediction results with multiple target protein structures. 

Target PDB ID Ranka 

Bcl-XL 1YS1 1YSG 1YSN 1YSW 2YXJ   1 

ERK2 2OJG 2OJI 2OJJ 2OK1     1 

LFA-1 1XDD 1XDG         1 

MetAP2 1YW7 1YW8         58 

NADP 2F10 3JSX         1 

PDE4 1MKD 1Q9M         28 

 Average 66.67% 
a rank of the virtual compound that precisely predicts the true active position 

 

The used virtual side chains (sets A, B and C) were not hydrophilic groups but hydrophobic groups 

that were hydrocarbons. In the fragment evolution process, hydrophobic groups are usually added to 

the active fragment compound to increase the activity [40]. It appears reasonable to use simple 

hydrophobic groups for chemical modification, while the variations of chemical modification  

are infinite.  

 

3.2. Multiple target structures were used 

In addition to the single target protein, multiple target protein structures were examined. These 

proteins were extracted from the PDB. The used protein structures are summarized in Table 2. Each 

protein was prepared for docking in the same manner described in the Methods section. The docking 
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scores for all protein structures were merged and re-ranked based on the docking score. The results are 

summarized in Table 2. When side chain set A was used, the prediction accuracy was 66%, which is 

the same value obtained from the single target protein structure.  

3.3. Ranking of true lead compounds 

To estimate the limitations of the prediction accuracy, the true lead compounds were added to the 

virtual compounds. A single target protein structure was used. The compounds were docked to the 

target protein, and these compounds were ranked according to the docking score. If the docking scores 

are accurate, the true lead compounds should be ranked at the first positions. The results are 

summarized in Table 3. The true lead compounds appeared at the first rank with a probability of 60%, 

while this probability would be 2.8% by random selection. The docking study actually worked, but the 

prediction was not perfect. This 60% probability should be considered the upper limit of the current 

prediction method. 

 

Table 3. Rank of the true lead compounds. 

Target protein 
PDB 

ID 

No. of 

compoundsa 

No. of 

true leads 
Rankb 

Akt 2UZT 1361 50 41 

Bcl-XL 1YS1 727 1 1 

CDK2 1VYZ 900 41 1 

DNHA 2NM2 634 16 1 

ERK2 2OJG 1192 33 334 

HSP90 1BYQ 699 4 1 

IMPDH 1NF7 497 28 1 

JanusKinase 3JY9 778 1 343 

KDR 1T46 805 48 1 

Lactatedehydrogenase 1ARZ 704 3 1 

MetAP2 1YW7 1381 108 1 

MMP12 1Y93 393 1 8 

NADP 2F10 867 28 298 

PDE4 1MKD 1102 8 303 

Urokinase 1ETF 754 27 1 

Average 2.80% 60.00% 
a number of generated virtual compounds; b rank of the virtual compound that 
precisely predicts the true active position  

 

4. Discussion  

 

On average, the probability of active positions among all hydrogen atoms was 26.32%, and the 

current method predicted 60.0% of the active positions. Considering that the accuracy of cross-docking 

by Sievgene is only 25%, the prediction accuracy of the current method is high. Our previous study 
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shows that the virtual screening of fragment is difficult by docking study but that if a virtual side chain 

is added to the fragment compound, virtual screening of the modified fragment compound becomes 

easy [10]. As such, the accuracy is improved by the addition of a virtual side chain to fragment 

compounds. In the current study, the prediction accuracy would have been improved by the addition of 

virtual side chains to the active fragment compound. 

The prediction accuracy obtained by side chain with set C was much better than that with sets A and 

B. The difference between the sets was that the side chains of set A included a C=C structure. This 

structure mimics that of amide or ester structures. Since the major contribution of the sievgene docking 

score is the ASA term and the electrostatic interaction is not as important, the size and shape of the 

group/compound is important in the sievgene docking score [10].  

The prediction accuracy reached 60%, but no higher. Even if multiple structures were used, the 

prediction accuracy was not improved. In in-silico drug screening, the ensemble docking method has 

been used to consider features of protein flexibility such as induced-fitting. In an ensemble docking 

study, many protein structures are prepared for the docking study and each structure gives an in-silico 

drug screening result. We can obtain many screening results, but only a limited number of them can be 

reliable. How to select the reliable screening result from the many results is a serious problem. 

Ensemble docking studies have shown that the docking score does not consistently provide reliable 

results or true hit (active) compounds [41-44]. The same phenomenon should have occurred in the 

current study, and the docking scores were not good enough to predict the active positions. 

Since comprehensive chemical modification is almost impossible, the reported active positions 

should correspond to one of the registered active positions. The same as the probability of true active 

positions, the accuracy of prediction should be underestimated. That is, even though a true active 

position is predicted, if the position is not reported (the position is not included in the registered active 

positions), the prediction is judged to be a failure. These chemical modifications are restricted by the 

synthetic accessibility, and the analysis of this current study is somewhat ambiguous.  

5. Conclusions 

We have developed a computational method that predicts the positions of seed compounds that 

should be chemically modified in the fragment evolution method. In the current method, to predict the 

active position, all hydrogen atoms are replaced by small side chains. Three sets of side chains were 

prepared manually. These virtual compounds were docked to a target protein, and the docking scores 

(affinities) were examined. The hydrogen atom that gave the virtual compound with good affinity was 

determined to be the active position that should be replaced to generate a lead compound. This method 

worked well. The prediction of active position was two times more efficient than random synthesis. In 

the current study, 15 examples of lead generation were examined. The probability of active positions 

among all hydrogen atoms was 26%, and the current method predicted 60% of the active positions. 
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