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Abstract: We present a self-organizing map (SOM) approach to predicting 
macromolecular targets for combinatorial compound libraries. The aim was to study the 
usefulness of the SOM in combination with a topological pharmacophore representation 
(CATS) for selecting biologically active compounds from a virtual combinatorial 
compound collection, taking the multi-component Biginelli dihydropyrimidine reaction as 
an example. We synthesized a candidate compound from this library, for which the SOM 
model suggested inhibitory activity against cyclin-dependent kinase 2 (CDK2) and other 
kinases. The prediction was confirmed in an in vitro panel assay comprising 48 human 
kinases. We conclude that the computational technique may be used for ligand-based  
in silico pharmacology studies, off-target prediction, and drug re-purposing, thereby 
complementing receptor-based approaches. 
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1. Introduction 

Combinatorial fragment-based approaches have become state-of-the-art in computer-assisted lead 
identification and drug design, with many successful case studies reported [1-3]. Recently, the 
reaction-based enumeration of virtual compounds has been successfully applied to de novo  
design [4,5]. This concept is thought to result in chemically meaningful and synthetically feasible 
compounds with desired properties. Following this design concept, two pivotal questions must be 
answered prior to the virtual synthesis of potentially bioactive compounds, namely: (i) which reaction 
scheme(s); and (ii) which molecular representation(s) are suited for a given molecular design task? 
Multi-component reactions and pharmacophore feature representations have been broadly applied in 
both computational and practical drug design studies [6,7]. For example, a large array of  
four-component Ugi-reaction products was investigated for serine protease inhibition [8], and  
three-component Ugi-type products served as an early proof-of-concept study using a genetic 
algorithm for compound optimization [9].  

Reaction-driven, fragment-based de novo design of bioactive compounds starts from a set of 
molecular building blocks and one or more suitable reactions for virtual product formation [10]. The 
actual fragment assembly step is carried out in silico, where two strategies may be pursued:  
(i) stepwise fragment assembly and iterative optimization of the virtual products; or (ii) full virtual 
library enumeration and exhaustive screening. The first approach is preferable when very large 
combinatorial compound libraries prohibit exhaustive enumeration. Steadily increasing computer 
power and fast virtual screening techniques continue to access full combinatorial libraries by the 
second approach [11]. Here, we investigate the multi-component Biginelli dihydropyrimidine 
formation [12,13] as a candidate reaction for virtual screening and hit finding by full library 
enumeration. We use the self-organizing map (SOM [14]) technique as a ‘pharmacophore dictionary’ 
that helps prioritize virtual compounds for synthesis and testing [15]. The SOM approach has already 
demonstrated its predictive ability for combinatorial compound library profiling [16-18], as well as 
target prediction with drug re-purposing as a prominent application [19-21]. This computational 
method is ‘unsupervised’ and as such it complements ‘supervised’, model-based prediction systems for 
in silico pharmacology [22-24]. Specifically, we evaluate the applicability of a topological 
pharmacophore descriptor (CATS [25]) in combination with the SOM-based ‘pharmacophore 
dictionary’ for target class prediction. By synthesizing and testing a compound from the virtual 
combinatorial library we were able to confirm its predicted target class. 

2. Experimental Section 

2.1. Virtual Compound Library 

Biginelli reaction products were enumerated using the ReactionMQL toolkit with the reaction 
represented as ‘reaction string’ (Scheme 1) [26]. Standardization of the virtual educts was done with 
the software suite MOE (Molecular Operating Environment, v.2010, The Chemical Computing Group, 
Montreal, QC, Canada) using the ‘wash’ function with default settings. We used the chemical database 
EXPEREACT (Swiss Federal Institute of Technology, Zurich, Switzerland) as a stock of readily 
available molecular building blocks for virtual library construction. Building block selection  
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(MW < 300 Da, alogP < 2, lack of {Br, I}, single functionality) for the Biginelli reaction yielded 78 
aldehydes and 56 diketones. Computational full enumeration resulted in combinatorial library of 4,368 
virtual products. 

Scheme 1. Customized form of the Biginelli reaction and its representation as a 
ReactionMQL string. Blue atom labels indicate the virtual reaction center. Note that the 
urea is not explicitly listed as one of the educts but appears on the product side. 

 

2.2. Target Profile Prediction 

Topological CATS descriptors [25] were computed for each compound using bin-value scaling by 
relative frequencies of pharmacophore types [27,28]. This resulted in a 150-dimensional descriptor 
vector for each molecule, accounting for topological distances between zero and nine bonds, as 
described elsewhere [28]. The data were projected onto a two-dimensional, toroidal SOM grid. Our 
SOM implementation molmap [29] was used to cluster the COBRA collection of bioactive reference 
compounds (version 10.3; 11,294 molecules [30]), as described in detail elsewhere (106 training 
cycles, initial Gaussian neighborhood σ = 7) [20]. The virtual combinatorial compound library was 
projected onto the trained SOM. Known targets of the COBRA compounds co-located with compound 
1 served as a motivation for activity testing. 

2.3. Synthesis of (N-(4-methoxyphenyl)-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-
carboxamide)(1) 

The Biginelli reaction starts with an acid-catalyzed condensation of the carbamide with the 
aldehyde. This results in a N-acyliminium ion intermediate, which is attacked by the ketone, and 
through a subsequent cyclization, the dihydropyrimidine product is formed [31,32]. We adapted the 
synthesis protocol suggested by Stadler and Kappe (Scheme 2) [33]. A 4 M urea (Acros Organics) 
solution (1 mL, 243.12 mg in 1 mL anhydrous acetic acid) was placed in a microwave vial (size:  
2–5 mL, Biotage), and 4 M HCl in dioxane (0.1 mL, 0.4 M) was added as a catalyst. A 10 M 
benzaldehyde (Acros Organics) solution (0.4 mL, 1.016 mL in 1 mL anhydrous acetic acid) and a  
3.3 M p-acetoacetaniside (Tokyo Chemical Industry) solution (1.2 mL, 1,370 mg in 2 mL anhydrous 
acetic acid) were added. The vial was irradiated in the microwave for 40 minutes at 120 °C and stored 
at 4 °C for 72 hours. The clear colorless solution changed after microwave irradiation to a yellow 
precipitation. During cooling the precipitation increased. 
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Scheme 2. Synthesis of compound 1. 

 

After vacuum filtration and drying, the raw product was obtained as bright yellow crystals, 
dissolved in MeOH (4 mL, ultrasonic bath), stored at 4 °C for 18 hours, vacuum filtered and dried in a 
desiccator over night. The obtained raw product (120.29 mg, yield = 18%) was dissolved in 98% ethyl 
acetate (3 mL) and MeOH (1 mL). Flash chromatography (flow-rate = 12 mL/min, linear 0–90% ethyl 
ester/n-hexane gradient) was performed on a SNAP cartridge column (KP-SIL 10 g, Biotage). Final 
product (50.19 mg, yield = 4%) was collected and the solvent was evaporated with nitrogen gas. Purity 
(area normalization) = 94% (rt = 3.14 min), mp = 210 °C, m/z = 338 (Shimadzu LC-MS2020; HPLC: 
H2O + 0.1% trifluorocetic acid (TFA)/50–95% MeOH + 0.1% TFA, RP18, 250 nm, ESI+);  
HR-MALDI-MS (Varian IonSpec FT-ICR, 3-HPA): m/z = 338.15 (100%, [M+H]+); 1H-NMR (Bruker 
Avance 400; 516 MHz, DMSO-d6, proton-proton coupling constants (J) are given in Hertz (Hz), 1H 
NMR peak multiplicity is given as s (singlet), d (doublet), t (triplet), m (unresolved multiplet): δ = 9.41 
(br. s, 1H), 8.65 (d, J = 1.5, 1H), 7.53 (t, J = 2.5, 1H), 7.46–7.40 (m, 2H), 7.35–7.20 (m, 5H),  
6.84–6.79 (m, 2H), 5.38 (s, 1H), 3.69 (s, 3H), 2.02 ppm (s, 3H). 

2.4. In Vitro Kinase Panel Assay 

Compound 1 was analyzed for inhibitory activity against 48 human kinases by Cerep (Cerep, Le 
Bois l’Evêque, B.P. 30001, 86600 Celle l’Evescault, France; www.cerep.com), Express Diversity 
Kinase Profile, study no. 20507. Two independent assay repetitions (n = 2) were performed at a 
compound concentration of 10 µM. 

3. Results and Discussion 

We started the project by constructing a representation of ‘druglike’ chemical space by training a 
SOM using the known drugs and lead compounds from the COBRA database. Compounds were 
encoded by their topological (graph-based, two-dimensional) pharmacophore as computed by the 
CATS descriptor. Then, we projected a virtual dihydropyrimidine library (4,368 compounds), which 
we constructed and fully enumerated from available building blocks (78 aldehydes, 56 diketones), onto 
the SOM. Apparently, the combinatorial products do not fill the whole chemical space defined by the 
COBRA compounds equally, but seem to be enriched in several patches on the pharmacophore map 
[Figure 1(A)]. This observation implies that these multi-component reaction products might be suited 
for distinct target classes rather than binding to all 677 individual drug targets covered by COBRA.  
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Figure 1. SOM projection of drug-like bioactive compounds (COBRA), with individual 
target classes highlighted. The SOM grid contains 15 × 20 neurons. In (A) the density 
distribution of Biginelli-type dihydropyrimidines is shown. In (B)–(E) ligand locations for 
selected target classes (‘activity islands’) are highlighted. 
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To get a first idea about potential targets for the combinatorial library, we analyzed distributions of 
target classes on the SOM. It became evident that known kinase inhibitors and ion channel blockers 
tend to be co-located with the virtual dihydropyrimidines [Figures 1(B,C)], while for example nuclear 
receptor modulators [Figure 1(D)] and protease inhibitors [Figure 1(D)] might not represent preferred 
target classes. The observation of ‘activity islands’ in chemical space spanned by topological 
pharmacophore descriptors is in line with our earlier studies using SOMs for combinatorial library 
design [34,35].  

The distribution of known kinase inhibitors from COBRA is color-coded in the SOM presented in 
Figure 1. The cluster most densely populated with these reference inhibitors [no. (5/6)] was chosen as 
target cluster for picking a candidate compound (compound 1) from the virtual combinatorial Biginelli 
library for synthesis. Cluster (5/6) contains 29 COBRA compounds with the following target class 
distribution: 55% kinases, 28% G-protein coupled receptors (GPCR), and 5% proteases. COBRA as a 
whole contains ligands for 677 individual targets, among which 8% are kinase inhibitors, 33% GPCR 
ligands, and 15% protease inhibitors. Based on this background distribution we computed a  
55/8 ≈ 7-fold over-representation of kinase targets in cluster (5/6), and consequently considerable 
potential for compounds from this cluster to inhibit kinases. As a check of this prediction, we trained a 
smaller SOM projection with only 10 × 10 clusters. This means, that all 11,294 COBRA reference 
compounds were forced into 100 clusters (Figure 2). This compression was performed to reduce the 
risk of potentially erroneous target predictions due to partially poor sampling in the large SOM. In the 
small SOM, compound 1 is again located in the dominant ‘kinase-inhibitor like’ field [cluster (7/3), 
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Figure 2], for which kinases are the predicted prevalent targets (4.4-fold over-representation). We 
conclude that the results from both SOM predictions are consistent.  

Figure 2. Distribution of known kinase inhibitors on a SOM that was trained with 11,294 
drugs and lead compounds (COBRA collection). Coloring indicates prevalence of kinase 
inhibitors in the 10 × 10 data clusters (cf. legend in Figure 1). Compound 1 is located in the 
most ‘kinase-inhibitor like’ cluster (7/3), marked by an asterisk. Compound 2 is located 
closest to the cluster centroid represented by the neuron vector. 
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To obtain a more precise idea of potential kinase targets for compound 1, we extracted compound 2 
as the reference compound from COBRA that is representative for both target clusters [centroid 
compound for cluster (5/6) in the large SOM, and cluster (7/3) in the small SOM]. Compound 2 is 
known to potently block cyclin-dependent kinase 2 (CDK2) with an IC50 of 10 nM [36].  

In order to see whether this hypothesis is correct, we subjected compound 1 to a preliminary 
activity testing against a panel of 48 activated human kinases (Cerep’s Express Diversity Kinase 
Profile). At a concentration of 10 µM compound 1 actually exhibits inhibitory activity against CDK2 
(15% of reference inhibitor staurosporine at a concentration of 3.9 nM), MAP/microtubule  
affinity-regulating kinase 1 (MARK1, 14% of reference inhibitor staurosporine at a concentration of 
17 nM), and protein kinase A (PKA, 18% of reference inhibitor staurosporine at a concentration of  
6.9 nM), albeit with only moderate activity.  

Overall, these results support the usefulness of SOM-based target class prediction based on the 
CATS descriptor. Inhibitory activity against several human kinases was measured in direct enzyme 
inhibition assays. Apparently, for the example of CDK2 inhibition, the most confident prediction could 
be confirmed. It is noteworthy that the chemical structures of compounds 1 and 2 are remakably 
different, from which it may be rather difficult to deduce a functional relationship (i.e., the same  
target protein). 

In addition to cluster visualization and target prediction, the SOM projection offers the possibility to 
highlight the prevalence of individual pharmacophoric features among the clustered compounds, which 
can help the medicinal chemist to gain a better understanding of the compound clusters and their 
relationships, and function as a visual aid (‘pharmacophore dictionary’) for building block selection 
and molecular design [35]. In Figure 3, the pharmacophore atom-typing for compound 1 is shown, so 
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that CATS descriptors can be matched with the underlying chemical structure. For example, the 
feature “hydrogen-bond donor” (HDon) is present in the majority of the drug-like COBRA compounds 
and the Biginelli-type dihydropyrimidines (blue regions in Figure 3B). Evidently, this feature alone is 
insufficient explanation for cluster formation. Additional features are needed, like ‘hydrogen-bond 
acceptor spaced two bonds apart from a lipophilic center’ (HAcc-Lipo 2 bonds, Figure 3C), 
‘hydrogen-bond donor spaced three bonds apart from a lipophilic center’ (HDon-Lipo 3 bonds,  
Figure 3D), or ‘hydrogen-bond donor spaced four bonds apart from a hydrogen-bond acceptor’ 
(HDon-HAcc 4 bonds, Figure 3E). Such CATS descriptors can now serve as a guideline for identifying 
preferred function-determining pharmacophoric features for selected clusters and local areas of the map.  

Figure 3. SOM projection of drug-like bioactive compounds (COBRA), with individual 
CATS features displayed (HDon: hydrogen-bond donor, HAcc: hydrogen-bond acceptor, 
Lipo: lipophilic). The SOM grid contains 15 × 20 neurons. (A) Binary distribution of 
Biginelli-type dihydropyrimidines. Below, compound 1 from cluster (5/6) is shown with its 
potential pharmacophoric points highlighted (blue: HDon, red: HAcc, green: Lipo); (B)–(E) 
show occurrences of selected CATS descriptors on the SOM. 
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The success of our prediction system may be attributed in part to the ‘fuzzy’ or ambiguous nature of 
the CATS pharmacophore descriptor. CATS was originally conceived as a molecular representation to 
facilitate scaffold-hopping in virtual screening and de novo design [37]. While such a fuzzy molecular 
representation appears to be well suited for finding bioisosters and alternative molecular scaffolds, it 
might not be the appropriate choice for individual target prediction in general [38,39]. This impression 
is actually supported by comparably poor enrichment of actives in retrospective virtual screening 
studies with the CATS descriptor [27,39]. Still, due to its coarse-grained nature, it apparently 
represents a decent choice for first-pass compound library profiling and ligand-based library design as 
it is sufficiently permissive to accept multiple chemotypes in a target- or target-family focused 
compound collection [16,30]. 
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The SOM virtual screening approach presented here belongs to the class of ligand-based similarity 
searching methods [17,24,40]. In contrast to using reference compounds as queries and ranking the 
combinatorial screening compounds by some pharmacophore similarity index, the SOM offers the 
potential advantage of performing similarity searching using a ‘common pharmacophore’ model  
(i.e., the neuron vector) as query. This avoids the necessity for comparing and merging ranked lists of 
candidate compounds [41,42]. Despite its appeal, the SOM approach used in this study has several 
disadvantages compared to other ligand-based vistual screening techniques. Most importantly, the 
choice of the SOM grid layout and topology critically influences compound clustering. Different 
training runs bear the additional danger of delivering slightly different results due to the stochastic 
nature of SOM optimization. Several variations and extensions of Kohonen's original SOM algorithm 
have been published and applied to drug discovery [43]. Recent developments include self-organizing 
networks with an adapting grid size [44], cascaded SOMs [45], and hybrid neural networks [46,47]. 
These systems might provide alternative approaches to virtual compound screening, although their 
practical usefulness and applicability to hit and lead finding still needs to be rigorously assessed. There 
is no doubt, however, that visualizing compound distributions by two-dimensional graphical displays 
helps decision making for compound library design and screening candidate selection [48-50].  

4. Conclusions 

The SOM approach to chemical library analysis has been confirmed as a practically applicable tool 
for compound prioritization and hit identification. The CATS topological pharmacophore descriptor 
could be corroborated as a molecular representation that allows for valid hypotheses generation about 
target profiles. The outcome of our study also confirms the concept of topological auto-correlation or 
properties as a pharmacologically meaningful molecular representation [51,52]. Most likely, less 
abstract molecular representations than the CATS descriptor, e.g., substructure fingerprints, will be 
needed to convert the preliminary hit into a validated lead compound by means of computer-assisted 
design and structure optimization. As compound 1 is relatively small (MW = 337 Da) it qualifies for 
further optimization [53]. No ADMET warnings were reported when passing it through the FAF-Drugs 
prediction system [54], and the compound appears to be free of PAINS issues [55,56]. It might also be 
worthwhile to synthesize and test other Biginelly-type compounds that are co-located with compound 
1 in the same SOM cluster. 

Judging from the successful integration of the Biginelli-type multi-component reaction to virtual 
screening, a molecular design cycle seems feasible that is led by a SOM model serving not only as a 
visual aid in computer-assisted medicinal chemistry, but as a basic ‘pharmacophore dictionary’ for 
guided lead candidate prototyping. We anticipate combinations of such a tool with fast combinatorial 
synthesis protocols and compound testing to enable focused compound library design and target 
profiling with reduced experimental effort. 
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