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Abstract: Cell penetrating peptoids (CPPos) are potent mimics of the corresponding cell 

penetrating peptides (CPPs). The synthesis of diverse oligomeric libraries that display a 

variety of backbone scaffolds and side-chain appendages are a very promising source of 

novel CPPos, which can be used to either target different cellular organelles or even 

different tissues and organs. In this study we established the submonomer-based solid 

phase synthesis of a “proof of principle” peptoid library in IRORI MiniKans to expand the 

amount for phenotypic high throughput screens of CPPos. The library consisting of 

tetrameric peptoids [oligo(N-alkylglycines)] was established on Rink amide resin in a split 

and mix approach with hydrophilic and hydrophobic peptoid side chains. All CPPos of the 

presented library were labeled with rhodamine B to allow for the monitoring of cellular 

uptake by fluorescent confocal microscopy. Eventually, all the purified peptoids were 

subjected to live cell imaging to screen for CPPos with organelle specificity. While highly 

charged CPPos enter the cells by endocytosis with subsequent endosomal release, critical 

levels of lipophilicity allow other CPPos to specifically localize to mitochondria once a 

certain lipophilicity threshold is reached. 
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1. Introduction 

For more than a decade, polycationic cell penetrating peptides (CPPs) have been well established as 

molecular transporters for intracellular drug delivery or as probes for bioconjugation [1–4]. They have 

been either used as covalently bound moieties for a variety of cargos such as peptides and proteins, 

DNA and RNA, nanoparticles and small molecules or as complexing agents for nucleic acids due to 

their electrostatic properties [5,6]. However, CPPs often display an inefficient bioavailability due to 

their proteolysis and opsonization in the presence of serum. Many approaches such as the 

retroinversion of the CPP sequence or the conversion to -peptides have been developed to increase 

the stability by making them resistant to proteases and even more efficient transporters [7–10]. 

Surprisingly, treatment of cells with these peptides, however, resulted in a severely increased toxicity 

or in long term accumulation in the kidney [7,11]. Besides several others, polycationic cell penetrating 

peptoids (CPPos; N-substituted oligoglycines) have been synthesized by several means as protease 

resistant and less toxic mimetics of CPPs [12–25]. Although the CPPos do not always resemble the 

conformational constraints of the respective peptides, as the chirality of the -carbon is lost, they can 

be modified by a large variety of functional side chains offering a toolkit for the development of 

artificial cell penetrating moieties. By introducing side chains, which include conformational 

constraints, the structure of the peptoids can be influenced to retain the properties of the corresponding 

CPPs. Eventually, they will provide sources for specific organelle- and organ-targeting transporters. 

For the discovery of novel targeting CPPos, microscopy based phenotypic high-throughput screening 

seems to be a potent technique. However, this often requires large and chemically diverse compound 

libraries. In recent years, peptoid synthesis has been established on solid phase to allow for the 

combinatorial synthesis of highly diverse libraries of peptoids [14,16,17,25–29]. The synthesis of 

diverse peptoid scaffolds is usually performed by the so called submonomer approach through 

microwave-assisted amide bond formation and subsequent nucleophilic substitution with primary 

amines or via heterocyclic halomethyl carboxylic building blocks [25]. 

Recently, the latter approach was used for the synthesis of a one bead-one compound library of 

peptoids comprising a theoretical diversity of about 16,000 peptoids with a representation of 87% of 

the theoretical compounds [25]. Although this kind of library is suitable for the screening with 

different biological targets to mine for structurally diverse ligands, it is not applicable for the screening 

of targeting CPPos as they have to be released from the respective bead to enter cells. For the 

application in phenotypic cellular screens, larger amounts of the peptoids are necessary, which cannot 

be achieved by the one bead-one compound technology. Automated peptoid synthesis can overcome 

these problems with yields. However, a conventional peptoid synthesizer based on a peptide 

synthesizer does not allow for the synthesis of large split and mix libraries. The IRORI technology is a 

commercially available format of nano- up to macro-reactors that allows for maximizing the benefits 

of split and mix synthesis while enabling the automated production of larger amounts of single 
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compounds per reactor [30–36] (Figure 1). This technology supports the synthesis of large and 

chemically diverse libraries by the use of directed sorting technology based on glass coated 

radiofrequency (Rf) tags embedded in the reactors. Chemistry in the reactors or so called Kans can be 

performed by combining the Kans in standard glassware. Initially, Kans are loaded with the 

appropriate resin and the Rf tags prior to capping. Depending on the size of the library, the split and 

mix process can be managed by the IRORI AccuTag Synthesis Manager and sorting either by an  

Rf-tag reader or the fully automated sorting procedure with the IRORI AutoSort 10Kx instrument, 

which is designed to accept MiniBlocks harbouring up to 96 Kans. Additional synthesis and sorting 

steps can be added until large compound libraries are synthesized. To support the library production, 

the sorting of the individual compounds can be obtained following a final array of the reactors by 

sorting them into a spatially addressable MiniBlock for processing the cleavage [30]. A separate 

Cleavage Station permits the simultaneous cleavage of up to 96 compounds. Eventually, the compound 

can be collected by vacuum filtration in multiwell plates and subsequent centrifugation. It was 

previously shown that the IRORI technology can even be implemented in other data management and 

lab automation systems such as downstream liquid handling automation and drying systems as well 

as LC/MS, and MALDI-TOF-MS [30]. 

Figure 1. Schematic representation of the IRORI based solid phase chemistry of split and 

mix compound libraries. Depending on the size of the library the sorting can be performed 

manually by using the Accu TagTM Reader for up to 100 Kans or in an automated fashion 

by the Autosorter 10Kx (up to 10,000 Kans). 
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Here, we established the submonomer-based solid phase synthesis of a “proof of principle” CPPo 

library in IRORI MiniKans [31–36]. Eventually, the CPPo library was applied to HeLa cells for the 

screening of organelle targeting CPPos. 

2. Results and Discussion 

For the synthesis of the polymer-supported CPPo library, the submonomer approach offers a 

preferable simple access (Scheme 1) [37,38]. As the name indicates, the N-substituted glycine building 

blocks (peptoid monomer) will be generated from two parts: Bromoacetic acid and a primary amine 

(submonomer). This method yields peptoids by consecutive coupling of bromoacetic acid (activated by 

DIC) and subsequent nucleophilic displacement of the bromine atom by a primary amine. This 

approach has the great advantage, that a variety of commercially available primary amines can be used 

directly to build up diverse peptoids. A protecting group strategy is only necessary if further reactive 

groups are present in the submonomer. 

Scheme 1. Sub-monomer approach to build up peptoids on solid supports. 

 

The peptoid library was designed to consist of different tetramers. The synthesis was performed in a 

small scale split and mix approach. Two classes of submonomers (hydrophobic or hydrophilic, 

respectively) were used for the synthesis and each side chain could be either hydrophilic or 

hydrophobic. To make sure, that all peptoids bear at least one positive charge and thus can act as 

CPPos, the third position was chosen to be nonvariable and should always display a cationic and thus 

hydrophilic side chain. Having three variable positions for the permutation of hydrophobic and 

hydrophilic side chains available, the total library should therefore consists of 23 = 8 peptoids. The 

variable three residues were even further diversified by different hydrophobic submonomers (Figure 2) 

to support the passage through the cell membrane. It has been shown for the corresponding CPPs that 

the polycationic and amphiphilic nature of the peptides supported either the membrane penetration or 

the cellular uptake in general [39,40]. Likewise, it has been shown that peptoids featuring multiple 

positively charged side chains were able to overcome the cell membrane [16–18,41]. All peptoids 

were conjugated with rhodamine B to be applicable to fluorescence microscopy, which allowed for 

monitoring the cellular uptake and intracellular distribution. 
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Figure 2. Featured submonomers 1–4, which were used for the peptoid library. 
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The peptoid syntheses were performed with the mono-Boc-protected diamine 1 and three different 

benzylic amines 2–4, which are depicted in Figure 2. After the acidic cleavage from the solid support, 

submonomer 1 was deprotected and provided a positive charge due to its protonation in aqueous 

media. Hydrophobicity was introduced by benzylic amines 2–4. To distinguish between different 

isomeric peptoid sequences, a slightly different hydrophobic submonomer was used for each coupling 

step. We chose benzylamine (2), p-chlorobenzylamine (3) [42] and p-methoxybenzylamine (4) for this 

purpose to reveal Nphe, Npcb, and Npmb residues (Figure 3). Since the molecular masses of these 

hydrophobic submonomers were different, the actual sequence could be assigned by mass 

spectrometry.  

Figure 3. Annotation of the peptoid monomers. Nlys = N-4-aminobutylglycine,  

Nphe = N-benzylglycine, Npcb = N-(p-chlorobenzyl)glycine, Npmb = N-(p-

methoxybenzyl)glycine. 
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Bearing this in mind, we synthesized an eight-membered library of tetramers containing a three 

variable residues backbone and a nonvariable cationic side chain-containing residue at position three, 

coupled to a rhodamine B-fluorophore at the N-terminus. The resulting peptoids were annotated using 

a simple nomenclature, which is comparable to the common amino acid three letter code. To denote 

the peptoidic origin, the first letter of a peptoid monomer is always a capitalized N followed by an 

individual sequence of three small letters. The four codes, which were used in this article, are depicted 

in Figure 2. The abbreviations of the monomers Nlys and Nphe result from their analogy to the 

proteogenic amino acids lysine (Lys) and phenylalanine (Phe). In addition we used the abbreviation 

“RhoB” for the conjugated rhodamine B dye at the N-terminus. Following the peptide nomenclature, 

the peptoid sequences were also written from N- to C-terminus. 
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The tetrameric peptoids were assembled on polystyrene resin functionalized with the rink amide 

linker. The existing protocols of the well-known submonomer method were adjusted to an IRORI 

MiniKan-supported split and mix synthesis. To achieve this, the conditions were optimized for the 

synthesis of the homotetramer RhoB-Nlys4-CONH2 (5). The final peptoid was verified by MALDI-

TOF MS [43,44]. In general, the existing protocols of the submonomer method could be transferred to 

the reaction in the MiniKans by extending the reaction times. At first, the Fmoc-protected Rink amide 

resin was deprotected by incubating 3 × 10 min with 20% piperidine in DMF. We found complete 

reactions by using 1 M coupling solutions with incubation times of 90 min for the acylation and 2 h for 

the nucleophilic substitution with N-Boc-diaminobutane (1). The fluorophore rhodamine B was 

successfully coupled by overnight incubation with a 1 M solution of the dye, diisopropylcarbodiimide 

(DIC) and 1-hydroxybenzotriazol (HOBt). The final cleavage was achieved by incubating the resin 

with 95% trifluoroacetic acid (TFA) in dichloromethane. Due to the intensive color of the 

rhodamine B-labeled peptoids, the cleavage process could be optically monitored by repeated addition 

of fresh cleavage solution. The cleavage was completed after an incubation time of 2 h. The peptoid  

RhoB-Nlys4-NH2 (5) was simultaneously synthesized in three MiniKans to check the reliability of the 

conditions and to monitor statistical variations. Comparison of the HPLC chromatogram and the 

respective mass spectra of the triplicates revealed the recovery of the same product from all MiniKans. 

The crude product could be easily purified by HPLC with a purity of >99% with an average yield of 49%. 

It should be mentioned that the shape and the size of the reaction vessel is very important with 

respect to the necessary volume of solvent. All the MiniKans should be entirely covered by the 

coupling/washing solutions to grant a preferably homogenous reaction. The vessel should allow for a 

prone orientation of the MiniKans. In order to save chemicals, the volume of the solvent should be just 

enough to submerge the MiniKans completely. If the volume has to be raised, the concentration of the 

coupling reagents should be kept constant to keep the reaction time short. 

The combinatorial synthesis was conducted with 32 MiniKans to ensure the coverage of all possible 

permutations. Finally the library contained all eight peptoids between two and six times (Figure 4). 

The peptoids could be easily purified by HPLC to 82–99% purity. The N-Boc-diaminobutane (1) sub-

monomer performed very well so that the Nlys homotetramer could be isolated in good yields. 

However, the p-methoxybenzylamine containing peptoids were synthesized with rather low yields 

(2.1–2.7%). This side chain is quite acid sensitive and leads therefore to degradation [45–47]. In 

general, the concept of MiniKan-based peptoid libraries proved to be compatible with the widely used 

submomomer approach and should thus be applicable to the synthesis of large and diverse libraries. 

Eventually, all the purified peptoids were subjected to live cell imaging to screen for CPPos with 

organelle specificity. Subcellular or organelle-specific targeting is one of the major challenges in the 

delivery of bioactive molecules [48–50]. In particular, the targeting to mitochondria has lately emerged 

into focus of current research as mitochondria are involved in many metabolic and pathological 

processes [51–54]. Recently, synthetic mitochondria-penetrating peptides as special analogues of the 

CPPs have been developed [55–60]. The so-called mitochondria-penetrating peptides (MPPs) are 

identified as cationic but also lipophilic and their synthesis was rationally controlled and finally tuned 

for their application in vivo [55–60]. The herein reported library is also based on the rational to provide 

lipophilicity to the CPPos for mitochondrial targeting at least for some of the CPPos.  
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Figure 4. (A) General structure of the rhodamine B-labeled tetrameric peptoid library.  

(B) Schematic view of the library members. +, cationic Nlys residues; spheres are 

representing the peptoid backbone. 
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HeLa cells were treated with 1 and 10 µM of the corresponding peptoids for 1 and 24 h. Uptake was 

already observed for both concentrations after 1 h. However, for the better visualization of the 

organellar accumulation the incubation period was prolonged to 24 h. Co-localization experiments 

were performed by co-staining of the mitochondria with the mitochondrial marker Mitotracker 

GreenTM (Figures 5 and 6). All potential CPPos were efficiently taken up by the cells (Figure 5). As 

expected from our previous findings for all cationic CPPos [16,17], low concentration of the sequence  

RhoB-Nlys4-CONH2 (5) revealed an endosomal/lysosomal staining (Figure 5A–D). At higher 

concentrations it was released into the cytosol and the nucleus. The uptake was comparable to that 

observed with the respective CPPs. 

Figure 5. CPPos with endosomal localization. Cellular uptake of endosomal CPPos 5–8 

in HeLa cells. 1 × 104 HeLa wt cells were treated with 1 µM of 5 (A–D), 6 (E–H), 7 (I–L), 

and 8 (M–P) for 24 h at 37 °C. For costaining of the nuclei and the mitochondria the cells 

were treated with Hoechst 33342 (blue: A, E, I, M) and 100 nM Mitochondria GreenTM 

(green: B, F, J, N). Eventually the cells were analyzed by fluorescence confocal imaging. 

The images D, H, L, P show the merges of the respective emission channels of each line 

by using the following PMTs for the emission: 417–468 nm for the detection of the nuclei 

(blue: A, E, I, M), 499–552 nm for the detection of the mitochondria (green: B, F, J, N), and 

593–696 nm for the detection of the rhodamine B labeled peptoids (red: C, F, K, O). Scale 

bar = 10 µm. 
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Further comparison of the uptake of the other members of the library showed an 

endosomal/lysosomal accumulation and subsequent release into the cytosol and nucleus for the CPPos 

6–8 containing 3 Nlys residues (Figure 5E–H,I–L,M–P). By exchanging a further Nlys residue with a 

residue containing a lipophilic side chain as in CPPos 9–12, the intracellular accumulation was 

profoundly different, while the uptake was still strong (Figure 6). 

Figure 6. CPPos with mitochondrial localization. Cellular uptake of mitochondrial 

CPPos 9–12 in HeLa cells. 1 × 104 HeLa wt cells were treated with 1 µM of 9 (A–D), 10 

(E–H), 11 (I–L), and 12 (M–P) for 24 h at 37 °C. For co-staining of the nuclei and the 

mitochondria the cells were treated with Hoechst 33342 (blue: A, E, I, M) and 100 nM 

Mitochondria GreenTM (green: B, F, J, N). Eventually, the cells were analyzed by 

fluorescence confocal imaging. The images D, H, L, P show the merges of the respective 

emission channels of each line by using the following PMTs for the emission: 417–468 nm 

for the detection of the nuclei (blue: A, E, I, M), 499–552 nm for the detection of the 

mitochondria (green: B, F, J, N), and 593–696 nm for the detection of the rhodamine B 

labeled peptoids (red: C, F, K, O). Scale bar = 10 µm. 

 

By colocalizing the peptides with the mitochondrial marker Mitotracker GreenTM Pearson’s 

correlation coefficients (Rr) of the corresponding fluorescence profiles could be calculated reflecting 

mitochondrial specificity. While the latter CPPo sequences 5-8 with 3-4 Nlys residues were excluded 

from the mitochondria (Pearson correlation coefficients: Rr(5) = −0.22; Rr(6) = −0.16; Rr(7) = −0.10; 

Rr(8) = −0.11), sequences with only 2 Nlys side chains 9–11 exhibit at least a partial localization with 

the mitochondria (Rr(9) = +0.16; Rr(10) = +0.47; Rr(11) = +0.68; Rr(12) = +0.86). However, they also 
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exhibit an additional accumulation within the endosomal compartment with increasing concentrations. 

CPPo 12 containing only one Nlys residue displayed a very high level of mitochondrial colocalization 

with a Pearson coefficient of Rr = +0.86, while the CPPos with two remaining Nlys residues were a 

little less abundant in the mitochondria (Rr = +0.16 – +0.68). Notably, there were even subtle 

differences in the mitochondrial colocalization of the CPPos containing only 2 Nlys residues. By 

alternating the Nlys residues with lipophilic residues as well as by enhancing the lipophilicity at the  

C-terminus one can trigger mitochondrial colocalization of the CPPos 10 and 11 (Figure 6E–F,I–L).  

This indicated that minor changes to the chemical structure of the CPPos could have a significant 

impact on the organellar targeting of the transport moieties. Cationic tetrameric CPPos with a net 

charge of +3 and higher will be localized to the endosomal compartment with a final release into the 

cytosol. Electrostatic interactions play a significant role in the membrane affinity of those cationic 

moieties. With a pKa of 10.4, the side chains of the peptoids display a similar pKa as lysine. In aqueous 

solution the CPPo will be highly charged as the amino groups are protonated and transformed into 

NH3+-groups giving a total charge of the molecule of +3 up to +4. By interacting with the negatively 

charged proteoglycans at the plasma membrane these CPPos can be attracted close to the lipid bilayer 

to be subsequently engulfed with the plasma membrane and endocytosed. If a cationic tetrametric 

CPPo with +2 charge should be routed to the mitochondria it must possess sufficient lipophilicity such 

as displayed in CPPos 9–11. The CPPo 12 containing charge of +1 and lipophilic side chains will 

always be localized in the mitochondria. As it was already described for the mitochondria penetrating 

peptides (MPPs) [56,57], there seems to be a well-defined lipophilicity threshold that is required for 

mitochondrial routing. So far, there were no obvious localization effects of the p-methoxy and  

p-chloro substituents on the lipophilic residues, although CPPo 9, which did not contain any Npcb 

residues was the weakest mitochondrial transporter. However, the IRORI system has to be exploited 

for more diverse libraries in the future to allow for a more detailed study of the determinants of 

mitochondrial and other organelle specific transport.  

3. Experimental 

3.1. General Remarks 

All reactions were performed at room temperature in IRORI MiniKans on Rink amide resin  

(0.64 mmol/g, 50 mg per MiniKan). The volume of the different washing or coupling solutions was 

constant during the entire synthesis (3 mL per MiniKan). The coupling reagents had a concentration of 

1 M each. After each step described below, the MiniKans were filtered from the solution. After each 

transformation the resin was thoroughly washed with 2 × DMF and 1 × DMF biograde. The washing 

steps were performed by stirring with the washing solution for 10 min. MALDI-TOF mass spectra of 

the peptoids were obtained by using a Bruker Biflex IV spectrometer with a pulsed ultraviolet nitrogen 

laser, 200 µJ at 337 nm and a time-of-flight mass analyzer with 125 cm linear flight path. Reversed 

phase analytical HPLC was performed (Agilent Series 1200, using a C18 PerfectSil Target column MZ 

Analytik, 3–5 µm, 4.0 × 250 mm; Flow rate: 1 mL/min; solvent A: 0.1% TFA in water; solvent B: 

0.1% TFA in acetonitrile). Reversed phase preparative HPLC was performed using a JASCO HPLC 
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system, using a C18 Vydac 218TP Series column (Grace Davison Discovery Sciences, 10 µm, 22 × 

250 mm). Flow rate: 15 mL/min; solvent A: 0.1% TFA in water; solvent B: 0.1% TFA in acetonitrile.  

3.2. Sub-Monomer Synthesis  

The synthesis of tert-butyl (4-aminobutyl)carbamate (1) was carried out as reported by  

Schröder et al. [16]. 

3.3. Synthesis of the Peptoid Library by using IRORI MiniKans (Data are given for 32 MiniKans in a 

300 mL Erlenmeyer Flask)  

Fmoc-protected Rink amide resin  was loaded into IRORI MiniKans. At first, the resin was swollen 

in DMF for 1 h. Afterwards the resin was washed with  

3 × DMF. The Fmoc deprotection was carried out by stirring with 3 × piperidine (20% in DMF) for  

10 min. Subsequent acylation was performed by reaction with bromoacetic acid and diisopropyl-

carbodiimide (DIC) in DMF biograde for 90 min. For the conjugation with either a hydrophilic or a 

hydrophobic submonomer, the MiniKans were randomly split in two portions. One portion of the 

MiniKans was stirred in a solution of the hydrophilic submonomer, whereas the other portion was 

stirred in a solution of the hydrophobic submonomer (except for the third coupling where just the 

hydrophilic submonomer was used). Afterwards, all MiniKans were combined (mixed) again (split and 

mix method) [61]. This sequence of acylation and nucleophilic substitution by a sub-monomer was 

repeated four times in total. The hydrophilic submonomer 1 was used for every nucleophilic 

substitution, whereas the hydrophobic submonomers 2, 3 and 4 were used for the first, second and 

fourth nucleophilic substitution, respectively. The submonomers were dissolved in DMF biograde and 

the resin was incubated for 2 h. After the synthesis of the tetramer, rhodamine B was coupled by 

activating with DIC and 1-hydroxybenzotriazole hydrate (HOBt) in DMF biograde through overnight 

incubation. Finally, the peptoid of each MiniKan was cleaved separately by adding trifluoroacetic acid 

(95% in CH2Cl2, 5 mL) and incubating for 2 h. The cleavage solution was filtered and the resin was 

thoroughly washed with MeOH until the washing solution remained colorless. The solvent was 

removed under reduced pressure and the crude product was dissolved in H2O/acetonitrile (2:1) and 

subsequently lyophilized. The library contained every possible permutation of the tetrameric peptoid 

(2–6 times). The different peptoids were purified by RP-HPLC. All resulted peptoids were analyzed by 

MALDI-TOF MS [43,44]. The data below are related to one MiniKan approach for each peptoid. 

RhoB-Nlys4-CONH2 (5): 23.8 mg (49%, HPLC purity: >99%). MALDI-TOF MS: m/z: 954 [M]+. 

RhoB-Npmb-Nlys3-CONH2 (6): 1.18 mg (2.5%, HPLC purity: 83%). MALDI-TOF MS: m/z: 1003 

[M]+. 

RhoB-Nlys3-Nphe-CONH2 (7): 10.3 mg (23%, HPLC purity: 90%). MALDI-TOF MS: m/z: 973 [M]+. 

RhoB-Nlys2-Npcb-Nlys-CONH2 (8): 2.67 mg (5.7%, HPLC purity: 88%). MALDI-TOF MS: m/z: 

1007 [M]+. 
  



Pharmaceuticals 2012, 5 1276 

 

 

RhoB-Npmb-Nlys2-Nphe-CONH2 (9): 1.16 mg (2.7%, HPLC purity: 85%). MALDI-TOF MS: m/z: 

1022 [M]+. 

RhoB-Npmb-Nlys-Npcb-Nlys-CONH2 (10): 1.01 mg (2.3%, HPLC purity: 83%). MALDI-TOF MS: 

m/z: 1057 [M]+. 

RhoB-Npmb-Nlys3-CONH2 (11): 1.18 mg (2.5%, HPLC purity: 83%). MALDI-TOF MS: m/z: 1003 

[M]+. 

RhoB-Npmb-Nlys-Npcb-Nphe-CONH2 (12): 0.89 mg (2.1%, HPLC purity: 82%). MALDI-TOF MS: 

m/z: 1076 [M]+. 

3.4. Cell Culture Techniques for Mammalian Cells 

All procedures with mammalian cells were carried out under sterile conditions. 1 × 104 HeLa 

(human cervix carcinoma) cells were plated into each well of a 8-well µslide from IBIDI (Ibitreat, 

Martinsried, Germany) and cultured in 200 µL Dulbecco’s modified Eagle’s medium, high glucose, 

(DMEM, Invitrogen, Karlsruhe, Germany) supplemented with 10% fetal calf serum (FCS, PAA) and 

1 U/mL penicillin/streptomycin at 37 °C, 5% CO2. 

3.5. Treatment of HeLa Cells with Rhodamine B Coupled Peptoids 

The purified peptoids were dissolved in bidistilled water to yield a 2 mM stock solution and were 

further diluted with 10% DMEM to yield the respective incubation media. The cells were cultured as 

described above were incubated with the different peptoids at final concentrations of 1–10 µM. 

Cellular uptake of the peptoids was measured by live-cell imaging after 1 and 24 h as fixation would 

alter the intracellular distribution as described for other polycationic species. 

3.6. Live Imaging by Confocal Microscopy 

Visualization of the peptoids was achieved by confocal microscopy using a Leica TCS-SP5 II, 

equipped with a DMI6000 microscope. The peptoids were excited at 561 nm using a DPSS laser. The 

Mitotracker Green (Invitrogen, Karlsruhe, Germany) for the detection of the mitochondria was excited 

at 488 nm using an argon laser and the Hoechst 33342 for the detection of the nuclei was excited at 

364 nm using a UV laser. The objective was a HCX PL APO CS 63.0  1.2 Water UV. The exposure 

was set to minimize oversaturated pixels in the final images. Fluorescence emission was measured at 

417–468 nm for the detection of the nuclei, at 499–552 nm for the detection of the mitochondria, and 

593–696 nm for the detection of the rhodamine B labeled peptoids. Image acquisition was conducted 

at a lateral resolution of 1,024 × 1,024 pixels and 8 bit depth using LAS-AF 2.0.2.4647 acquisition 

software. 

4. Conclusions 

In this study we established the submonomer-based solid phase synthesis of a “proof of principle” 

CPPo library in IRORI MiniKans to expand the amount of peptoids for future phenotypic high 
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throughput screens. Although the split and mix process of the MiniKans was performed manually due 

to the size of the “proof of principle” CPPo library, the IRORI system has many advantages. This 

technology allows for the straightforward synthesis, facile derivatization, barcoding and upscaling of 

large and diverse libraries. The synthesis of diverse oligomeric libraries that display a variety of 

backbone scaffolds and side-chain appendages are a very promising source of novel CPPos, which can 

be used to either target different cellular organelles or even different tissues and organs. By the 

introduction of different lipophilic residues mixed with cationic moieties we have engineered a class of 

cell-penetrating peptoids that efficiently enter human cells but differed in cellular uptake and organelle 

localization. While highly charged CPPos enter the cells by endocytosis with a subsequent endosomal 

release, critical levels of lipophilicity allow other CPPos to specifically localize to mitochondria once a 

certain lipophilicity threshold is reached. In future experiments the IRORI approach will be expanded 

to generate larger libraries for the determination of the exact requirements that impart mitochondrial or 

other organelle localization to lipophilic cations, and may provide a means to engineer the cellular 

trafficking of bioactive compounds as it was shown for CPPs. 
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