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Abstract: cGMP-dependent protein kinases (PKG) exhibit diverse physiological functions 

in the mammalian system e.g., in vascular and gastrointestinal smooth muscles, in 

platelets, in kidney, in bone growth, nociception and in the central nervous system. 

Furthermore, PKG were found in insects and in the malaria parasite Plasmodium 

falciparum. Two different genes of PKG exist: a) the PKG-I gene that is expressed as 

cytosolic PKG-Iα or PKG-Iβ isoform, and b) the PKG-II gene, which expresses the 

membrane associated PKG-II protein. The enzyme kinetics, the localization and the 

substrates of these PKG enzymes differ utilizing different physiological functions. Various 

inhibitors of PKG were developed directed against diverse functional regions of the kinase. 

These inhibitors of PKG have been used to analyse the specific functions of these enzymes. 

The review article will summarize these different inhibitors regarding their specificity and 

their present applications in vitro and in vivo. Furthermore, it will be discussed that the 

distinct inhibition of the PKG enzymes could be used as a valuable pharmacological target 

e.g., in the treatment of cardiovascular diseases, diarrhea, cancer or malaria. 
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1. Introduction 

Kinases are enzymes that transmit phosphate groups from a donor, usually a nucleoside 

triphosphate (e.g., ATP), to specific substrates. This phosphorylation results in a functional change of 
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the substrate protein. A large group of kinases are protein kinases, which catalyze the transfer to a 

special amino acid in most cases with a free hydroxyl group. 

The most important families are tyrosine kinases and serine/threonine kinases. Examples of 

serine/threonine kinases are the cGMP-dependent protein kinases (PKG, cGK, respectively) and the 

cAMP-dependent protein kinase (PKA, cAK, respectively). PKG is mainly activated by the cyclic 

nucleotide cGMP. In eukaryotes, two different genes were identified: prkg 1 coding for PKG-I and 

prkg2 coding for PKG-II. By alternative splicing, PKG-I is expressed in two isoforms, PKG-Iα and 

PKG-Iβ. Both are soluble enzymes, localized in the cytosol. They can interact with different substrates 

through their individual N-termini. They only differ in their N-terminal domain, the catalytic and the 

regulatory domains are identical. In contrast PKG-II is bound to the plasma membrane by 

myristoylation of the N-terminal Gly2 residue. All three PKGs act as homodimers [1–3]. Generally, 

cGMP-dependent protein kinases consist of three domains: 

 amino-terminus with a leucine-zipper (important e.g., for homodimerization and targeting) 

and the autoinhibitory domain. 

 regulatory domain with a high- and low-affinity binding site for cGMP (important for the 

activation of the enzyme). 

 catalytic domain for ATP binding, which catalyses the transfer of the phosphate residue to the 

serine/threonine motif. 

PKG-Iα is found in several tissues, mostly lung, cerebellum and heart, whereas PKG-Iβ is 

expressed predominantly in platelets and hippocampus. Additionally, both kinase isoforms are found 

in vascular smooth muscle cells, uterus, gastrointestinal tract, kidney and trachea [4–6]. 

The Iα isoform is 10-fold more sensitive to cGMP than PKG-Iβ[7]. This fact results in different 

activation constants for cGMP: Ka (PKG-Iα) = 0.1 µM and Ka (PKG-Iβ) = 1.0 µM [8–11]. PKG-II was 

detected in kidney, intestine, lung, brain and chondrozytes. Here, the Ka for cGMP is 0.07 µM [9,10]. 

Binding of cGMP releases an inhibition of the catalytic center by the N-terminal autoinhibitory 

domain and effects the phosphorylation of serine/threonine residues in target proteins. The recognition 

sequence is K/R K/R X S/T. 

Meanwhile, many substrates of PKG-I and PKG-II are identified and well studied. The 

phosphorylation of these substrates is important for tissue contractility, cell motility, proliferation and 

differentiation. The substrate specificity depends on the N-terminus of the different isozymes. The 

isoform PKG-Iα specifically recognizes for example regulatory myosin phosphatase targeting subunit 

1 (MYPT1) [12] or RhoA [13]. In contrast the IP3RI-associated cGMP kinase substrate (IRAG) is a 

specific substrate for PKG-Iβ [14]. Cystic fibrosis transmembrane conductance regulator (CFTR) [15] 

or the transcription factor (SOX9) [16] are specific PKG-II substrates. 

Based on the different localization of the kinases the physiological functions are variable. PKG-II 

regulates the intestinal chloride- and water-secretion [17], is involved in bone ossification[18] and 

controls renin-release in the kidney [19]. Furthermore PKG-I promotes the opening of calcium-

activated potassium channels, which leads to a hyperpolarization and therefore relaxation of smooth 

muscle cells [20]. A variety of functions of the PKGs are explored in peripheral organs (e.g., vasculature, 

gastrointestinal tract, β-pancreatic cells) and in the CNS (e.g., cerebellum, hippocampus). 
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As mentioned before, the PKGs are the main target for cyclic nucleotides, such as cGMP. This 

second messenger is synthesized by cyclases (sGC, pGC) after stimulation. The soluble guanylyl 

cyclase (sGC) is activated by nitric oxide (NO) and  carbon monoxide (CO) and effects the conversion 

of GTP into cGMP. In contrast the particulate guanylyl cylase (pGC) can be stimulated by several 

natriuretic peptides (CNP, BNP, ANP, etc.). The degradation of cGMP takes place by phospho-

diesterases (PDEs) via a hydrolysis into 5’-GMP. PDE 5, 6 and 9 are cGMP-specific, while PDE 1, 2, 

3, 10 and 11 can convert both cAMP and cGMP [6]. Thus the intracellular concentration of cyclic 

nucleotides can be controlled. Today several analogs of cyclic nucleotides are known and used as 

activators or inhibitors for PKG (see below).  

Several reviews exist which describe the diverse activators of PKG [9,21,22]. This review will 

concentrate on different PKG inhibitors regarding their specificity and their present applications in 

vitro and in vivo and a (potential) use in health and disease. 

2. PKG Inhibitors 

2.1. Cyclic Nucleotide Analogs 

During the last years a variety of cGMP analogs were developed and well described in literature. 

There are several analogs which act as potent activators (like 8-Br-PET-cGMP) but also as inhibitors 

for both PKG-I and PKG-II. 

Cyclic nucleotide analogs used as PKG inhibitors are Rp-diastereomers of cGMP. They attach to 

the cGMP binding domain, so that the enzyme cannot be activated any more, resulting in a 

competitive, reversible in vivo inhibition of PKG-I and PKG-II [22,23]. Furthermore these analogs are 

membrane-permeable and resistant to hydrolysis by PDEs [24]. Due to their sulphur group in the 

cyclic phosphate moiety, they are able to inhibit several phosphodiesterases (e.g., PDE 5 and PDE 10). 

The Rp-cGMP-S substances are non-specific antagonists as they inhibit both PKG and PKA [22,25]. 

(Rp)-8-Br-PET-cGMP-S is the most specific PKG-I inhibitor out of the cyclic nucleotide analogs 

known until now. (Rp)-cGMP-S also acts as non-specific antagonist and shows a low membrane 

permeability [22]. Often its structural combination with 8-Br-cGMP is utilized. The resulting 

substance is (Rp)-8-Br-cGMP-S and is also used as PKG inhibitor. The different structures and the 

inhibitory constants are shown in Figure 1/Table 1. Due to the low membrane permeability of (Rp)-8-

Br-cGMP-S and (Rp)-cGMP-S the in vivo use is limited. Meanwhile (Rp)-8-pCPT-cGMP-S and (Rp)-

8-Br-PET-cGMP-S are more lipophilic and are able to inhibit PKG in human platelets [26] and 

intestinal mucosa [27]. 
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Figure 1. Chemical structures and names of cyclic nucleotide analogs. (a) (Rp)-8-Br-PET-

cGMP-S, β-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate 

(Rp- Isomer). (b) (Rp)-8-pCPT-cGMP-S, 8-(4-chlorophenylthio)guanosine-3',5'-cyclic 

monophosphorothioate (Rp- Isomer). (c) (Rp)-cGMP-S, Guanosine-3',5'-cyclic mono-

phosphorothioate (Rp- Isomer). (d) (Rp)-8-Br-cGMP-S, 8-bromoguanosine-3',5'-cyclic 

monophosphorothioate (Rp- Isomer). 

 

(a) (b) 

  
(c) (d) 

Table 1. Inhibition constants (Ki) for the cGMP-dependent protein kinases. The inhibition 

constants for kinases PKG-Iα, -Iβ and -II and PKA were determined in vitro. 

Inhibitors 
PKG-Iα PKG-Iβ PKG-II PKA-II 

Ref. 
  

Ki (µM) Ki (µM) Ki (µM) Ki (µM)   

(Rp)-cGMP-S 20 15 0.5 20 [22,25]   

(Rp)-8-Br-cGMP-S 3.7 15 - 20 [22]   

(Rp)-8-Br-PET-cGMP-S 0.035 0.03 0.45–0.9 11 [3,10,22,24,35]   

(Rp)-8-pCPT-cGMP-S 0.5 0.45–0.6 0.29–0.7 8.3 [9,10,22]   

KT-5823 0.23 - - > 10 [23,28]   

H-7 5.8 - - 3 [1,28]   

H-8 0.5 - - 1.2 [1,28]   

H-9 0.9 - - 1.9 [1,28]   

H-89 0.48–0.5 - - 0.05 [1,23,28]   

W45 0.49–1.15 - - 559 [2, 30]   

DT-2 0.012 - - 12.7–20.3 [2, 30]   

DT-3 0.025 - - 493 [30]   

(D)-DT-2 0.0008 - - 8.7–15.3 [34]   

Abbreviation: - not detected. 
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2.2. K-Series Inhibitors 

KT5823 is a potent, in vitro inhibitor of PKG, based on the structure of staurosporine (Figure 2). 

The substance inactivates the ATP-binding site by competition with ATP [23]. KT5823 is an indol 

carbazole with good membrane permeability. It is also a weak inhibitor of PKC (protein kinase C) and 

PKA [23,28]. The in vivo applicability is not ensured as in cells the inhibitory effect is very low/ 

cannot be detected [23]. 

 

Figure 2. Chemical structure and name of K-Series inhibitor KT5823: (9S,10R,12R)-2, 

3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg: 

3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester. 

    

2.3. H-Series Inhibitors 

The isoquinolinesulfonamide protein kinase inhibitors are also widely used. H-7, H-8, H-9 and H-

89 are potent in vitro inhibitors of PKG (Figure 3, Ki are shown in Table 1).  

Figure 3. Chemical structures and names of the H-Series inhibitors. (a) H-7 hydrochloride, 

1-(5-isoquinolinesulfonyl)-2-methylpiperazine·2HCl; (b) H-8 hydrochloride, N-[2-

(methylamino)ethyl]-5-isoquinolinesulfonamide·2HCl; (c) H-9 hydrochloride, N-(2-

aminoethyl)-5-isoquinolinesulfonamide; (d) H-89, N-[2-(p-bromocinnamylamino)ethyl]-5-

isoquinolinesulfonamide·2HCl. 
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Figure 3. Cont. 
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The in vivo use is discussed [1,28]. H-89 shows very high cell membrane permeability, whereas H-

7, H-8 and H-9 can only pass inefficiently. These inhibitors are ATP site inhibitors: via binding at the 

catalytic ATP sites, they can eliminate the phosphorylation process [23,29]. The inhibitory effect of the 

H-series substances is not selective: they inhibit PKG, but also PKA, PKC, MLCK (myosin light chain 

kinase) and diverse other kinases.  
 
2.4. W-Series Inhibitors 

 

The W-series inhibitors are potent competitive inhibitors for both PKG-I isoforms. They are 

peptide-based (so they can interact with the substrate domain) and only used in vitro, as their 

membrane permeability is very low [30]. Substances like W45 (Figure 4) are well established and can 

be taken as control peptide for studies with DT-2 and DT-3, a group of new potent PKG  

inhibitors (see below). Other W-series inhibitors like W7 and W21 are out of use. 

Figure 4. Amino acid sequence (one letter code) of W45 

 

2.5. DT Inhibitors 

The highly potent DT inhibitor peptides are an improvement of the W-Series inhibitors. These 

substrate competitive fused-oligopeptides are targeted against the substrate domain and all are 

membrane-permeant. They do not constrict ATP binding. Via a N-terminal fusion of W45 to the 

membrane translocation sequences from HIV-1 Tat protein or from Drosophila antennapedia 

homeodomain the fusion peptide DT-2 or DT-3 are formed, respectively (Figure 5) [30]. DT-2 shows a 

high selectivity for PKG with a ratio of about 1300 fold compared to PKA [30]. Both PKG and PKA 

can be inhibited by DT-3, but it is 20000 fold more selective for PKG [30]. The inhibitory constants 

are shown in Table 1. DT-2 and DT-3 are used for in vitro studies; the in vivo use is controversial 

[31,32]. Uptake of DT-2 into cells occurs via endocytic or non-endocytic mechanisms depending on 

their cellular phenotype [33]. (D)-DT-2 is the D-amino acid analogue of DT-2 and can be used as a 

potent PKG-Iα inhibitor [34]. This peptide is proteolytically stable and the specificity index 

(PKG/PKA) can be almost compared to DT-3 with a ratio of approximately 15000 fold [34]. The 

applicability for in vitro studies is ensured; the in vivo use is not fully examined yet and depends on the 

biosystem used [34]. 
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Figure 5. Amino acid sequence (one letter code) and composition of DT-2 and DT-3. 

 
 

2.6. Coccidian PKG Inhibitor 

Inhibitor 1 (Figure 6) inhibits the coccidian PKGs by blocking the ATP-binding site c 

ompetitively [36]. For more information see 3.4.2. 

Figure 6. Chemical structure and name of the coccidian PKG inhibitor inhibitor 1, 4-[2-(4-

fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H pyrrol-3-yl]pyridine. 

 
 
3. PKG-Inhibition as a Potential Therapeutic Target 

3.1. PKG in Smooth Muscle Organs 

3.1.1. PKG in Vascular Relaxation 

The influence of PKG-I on vasorelaxation is well established. PKG-I-KO mice show an impaired 

response to NO/NP induced vasodilatation [37–40]. Targets of PKG-I that regulate vasorelaxation 

include inhibition of intracellular Ca2+-release from sarcoplasmic/endoplasmic reticulum via IP3RI  by 

phosphorylation of IRAG [14]. Ca2+-sensitivity of contraction is regulated by an interaction of the 

PKG-Iα isoform with myosin phosphatase targeting subunit (MYPT) and thereby activation of myosin 

light chain phosphatase (MLCP) [12,41]. MLCP activation decreases myosin light chain 

phosphorylation and lead to relaxation with constant [Ca2+]. The Ca2+-influx through L-type Ca2+-
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channels is indirectly regulated by PKG-I activating large-conductance Ca2+-activated maxi-K+ 

channels (BKCa) and thus hyperpolarization of the membrane and closing of voltage-dependent Ca2+-

channels [39,42]. Due to these mechanisms an increased blood pressure in PKG-I-KO mice was 

expected. But blood pressure monitoring of those mice showed the expected increase only in juvenile 

animals whereas adult mice exhibited a normal blood pressure compared to control animals[38]. Under 

septic conditions due to stimulation with lipopolysaccharides (LPS) IRAG-KO mice did not show the 

typical hypotonic blood pressure associated with septic shock [43]. The mechanisms described here 

would favor PKG activators as potential drugs, as a high blood pressure is one of the most common 

disease in the western hemisphere. Even though an inhibition of PKG would probably lead to severe 

side effects in prolonged treatment it could be used to antagonize the pathologic hypotonic condition 

(vasoplegia) encountered during an anaphylactic/septic shock. The efficacy of the PKG inhibitors  

DT-2 and DT-3 in decreasing NO mediated vasodilation has been demonstrated in isolated cerebral 

arteries [30,44]. Furthermore investigations on the regulation of PKG-I expression levels revealed a 

cGMP dependent ubiquitination and degradation of PKG-I in cultured vascular smooth muscle cells. 

This time- and dose-dependent degradation could be reversed by DT-2 [45]. 

3.1.2. PKG in Vascular Remodelling 

It has been shown in different in vitro setups, that NO can have pro- [46,47] and  

antiproliferative [48,49] effects, depending on the concentration. While most reports describe an 

antiproliferative effect of PKG on smooth muscle cells, some report the opposite [50], depending on 

experimental conditions. In a PKG-I knockout, first a pro-proliferative effect was described [51] which 

was later proven to be a positive effect on cell adhesion [52]. Furthermore dedifferentiated smooth 

muscle cells have been shown to be a major contributant to the formation of neointimal layers after 

balloon angioplasty and are also the source of the majority of smooth muscle like cells in 

atherosclerotic plaques [53,54]. In a smooth muscle specific PKG-I-KO mouse with and without 

apolipoprotein E-deficient background, an antiproliferative effect as seen in vitro could not be 

reproduced in a restenosis model after carotid ligation [55]. Recent studies with the sGC activator 

BAY 41-2272 confirm the antiproliferative role of cGMP/PKG in a rat carotid balloon injury model 

and in cultured VSMC. The antiproliferative effects of BAY 41-2272 could be completely reversed by 

DT-2 in vitro [56]. Once the mechanisms underlying vascular remodelling are fully clarified, PKG 

inhibitors might become an option to prevent restenosis. Investigations on the effect of DT-2 and DT-3 

on angiogenesis in chicken chorioallantoic membranes and rabbit eye cornea identified PKG-I as a 

downstream effector of vascular endothelial growth factor [57]. These results suggest PKG-I inhibition 

as a future target in diseases characterized by strong neovascularization.  

3.1.3. PKG in the intestine 

While PKG-I is mostly responsible for intestinal motility via the above-explained pathways to 

decrease smooth muscle tone, studies with the PKG inhibitors KT-5823 and RP-8-pCPT-GMP-S 

suggest a role in the formation of pacemaker potentials in interstitial cells of Cajal [58]. PKG-II 

regulates the gastrointestinal secretion of chloride and water through phosphorylation of  

CFTR [59, 60]. This secretion can be stimulated by toxins like the E. coli heat stable toxin (STa) to 
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induce diarrhea. STa stimulates the guanylyl cyclase C (GCC) and results via elevation of cGMP and 

PKG-II activation in phosphorylation of CFTR and thereby trafficking of CFTR from storage vesicles 

into the apical membrane [15]. This activation and enhanced membrane localization of CFTR results in 

an elevated Cl- and water secretion. In PKG-II knockout mice STa does not induce this diarrhea [61], 

clearly marking PKG-II inhibition as a potential target to treat toxin-induced diarrhea. 

3.2. PKG in the Bone 

3.2.1. PKG in Bone Development 

During normal bone development chondrocytes arise from a mesenchymal colony, undergo a 

proliferative state and finally differentiate into hypertrophic chondrocytes that express cartilage matrix. 

In a last step this cartilage matrix is calcified and replaced by bone. The naturally occurring Komeda 

miniature rat Ishikawa (KMI) contains a deletion in the Prkg2 gene resulting in a frame shift and a 

premature stop codon in the transcript. Thereby, a truncated PKG-II is expressed that lacks the kinase 

domain [62]. In these rats the switching from proliferative chondrocytes to hypertrophic chondrocytes 

is impaired and results in a diminished longitudinal growth of bones. The involvement of PKG-II in 

bone development and growth was also shown in PKG-II-KO mice [61]. Recent studies have identified 

glycogen synthase kinase 3β (GSK-3β) as a likely substrate for PKG-II that mediates the kinases 

influence on skeletal growth through hypertrophic differentiation of growth plate chondrocytes [63]. 

Furthermore, a function for PKG-II in osteoblast mechanotransduction and in the osteoblast anabolic 

response via extracellular signal-regulated kinases (ERK), sarcoma tyrosine kinase (SRC) or 

transcription factor c-fos was proposed [64,65]. These results point to a teratogenic potential of PKG 

inhibitors if given during pregnancy. Investigations of the PKG-inhibitor DT-3 and siRNA knockdown 

of PKG-Iα on the bone marrow stromal cell line OP-9 suggest a role of PKG-Iα in bone marrow 

functionality [66]. As bone marrow stromal cells provide a micro-environment for hematopoietic stem 

cells, treatment with PKG inhibitors might ultimately lead to bone marrow failure. 

3.3. PKG Signaling in Cancer 

3.3.1. PKG-Iα in Lung Cancer 

It is known that PKG-Iα signaling has cytoprotective and anti-apoptotic effects in various  

issues [50,67] as far as conferring chemoresistance in ovarian cancer cells [68]. Investigations into the 

PKG-Iα cytoprotective effects in non-small-cell lung carcinoma cell lines H460 and A549 

demonstrated, that specific inhibition of PKG-Iα with the inhibitor DT-2 significantly increases 

spontaneous apoptosis. SiRNA-mediated knockdown of PKG-Iα led to a reduced expression of the 

inhibitor of apoptosis proteins c-IAP1 (cellular inhibitor of apoptosis-1), livin and survivin. Treatment 

of the cisplatin resistant cell line A549 with a combination of cisplatin and DT-2 showed a synergistic 

effect in induction of apoptosis whereas pretreatment of A549 cells with 8-Br-cGMP caused 

significant protection towards cisplatin [69]. These results mark PKG-Iα inhibitors as a potential co-

medication in cisplatin chemotherapy of solid tumors. 
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3.3.2. PKG in Colorectal Carcinoma 

It was recently shown that NO/PKG/extracellular-signal-regulated kinases (ERK) signaling 

promoted migration and invasion of colorectal carcinoma (CRC) cell lines in both scratch wound and 

modified Boyden chamber assays [70]. Treatment with the NO-donor S-nitroso-N-acetylpenicillamine 

(SNAP) led to stronger migration whereas co-treatment with SNAP and the GC-inhibitor 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), the PKG-inhibitor KT5823 or the ERK-inhibitor 

PD98059 reversed this effect. Further investigations showed that SNAP treatment led to an up 

regulation on mRNA level as well as an activation of RhoGTPases and matrix metalloproteinases (MMPs) 

that were also reversible with the aforementioned inhibitors. 

These results offer another potential target for PKG inhibitors during the treatment of early stages 

of CRC to reduce the risk of metastasis formation. However, proapoptotic effects of PKG were 

reported in the analysis of the PKG inhibitor DT-2 in the colon epithelial cell line CCD841 and the 

transfection of SW480 and SW620 colon carcinoma cell lines with PKG [71]. 

3.3.3. PKG in Breast Cancer 

In contrast to the rather positive effects on cancer mentioned so far, recent reports imply a pro 

apoptotic role of PKG in an estrogen receptor-positive (MCF-7) and –negative (MDA-MB-468) breast 

cancer cell lines [72]. Treatment of these cell lines with 1-benzyl-3-(5’-hydroxymethyl-2’-

furyl)indazole (YC-1), a sGC activator, and 8-Br-cGMP in varying concentrations inhibited the 

viability in a time and dose dependent manner. FACS-analysis with an Annexin-V/propidium iodide 

stain of treated cells showed an increase in the apoptotic cell fraction. These apoptotic effects could be 

reversed by co-treatment of the cells with one of the activators and either KT5823 or Rp-8-pCPT-

cGMP-S. The results presented in this chapter place PKG inhibition in cancer treatment in an 

ambiguous role. In some forms of cancer the effects seem to be very positive where in other forms a 

rather negative effect was demonstrated. To utilize PKG inhibition in cancer treatment, a minute 

classification of the malignancy and its response to the treatment options is vital.  

3.4. PKG Provides a Target for Parasite Treatment 

3.4.1. Interspecies Differences in PKG 

As shown in Figure 7 PKG proteins vary largely between species. Major variations can be found in 

length, from the relatively short 671 aa enzyme PKG-I in mammals to the large 1088 aa dPKG-II 

isozyme in Drosophila melanogaster, in cGMP binding sites 2–4 and in regulatory and interaction 

domains. These differences offer potential targets for the development of species specific drugs that 

can be utilized e.g., in parasite treatment. 
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Figure 7. PKG enzymes in different species light blue=kinase domain, dark  

blue=ATP-binding site, green=cGMP-binding sites 1-4, yellow=regulatory domains, 

orange=interaction domains, red=C-terminal AGC (cAMP-dependent, cGMP-dependent 

and protein kinase C)-kinase domain. 

 

3.4.2. PKG: A Novel Target in Malaria Therapy 

It has been shown that the coccidian PKGs are a target for the inhibitor 4-[2-(4-fluorophenyl)-5-(1-

methylpiperidine-4-yl)-1H pyrrol-3-yl]pyridine (inhibitor 1) [36]. The inhibitor competitively blocks 

the ATP binding site and does not influence mammalian PKG. Experiments with Plasmodium 

falciparum schizonts suggest a role of Plasmodium falciparum PKG (PfPKG) in schizont progression 

and rupture. Specifity of inhibitor 1 for PfPKG was demonstrated by treatment of an inhibitor-

insensitive transgenic parasite [73]. PfPKG expression is upregulated during the schizont stages and 

reaches its peak in the segmented schizont stage [74]. 

Inhibitor 1 was also tested in T. gondii and E. tenella and insensitive transgenic parasites to 

establish a role of PKG in the release of adhesive proteins, motility, attachment and invasion of host 

cells [75]. A potential problem of malaria therapy with coccidian PKG inhibitors is the development of 

resistances. The inhibitor-insensitive transgenic parasites used to demonstrate PKG specifity of the 

effect differed only in a single amino acid in the ATP-pocket of the enzyme. To utilize PKG as a 

clinical target, more reliable inhibitors have to be developed. 
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Figure 8. Effects of PKG inhibition on various targets. 

 

4. Conclusions  

In this review the different available PKG inhibitors were summarized and the effect of PKG 

inhibition in various organ systems was presented. Current inhibitors of PKG activity target the ATP-

binding, the cGMP-binding or the substrate recognition site. Some of these inhibitors (e.g., of the W-

Series or DT-series) are highly specific compared to its inhibition of PKA. Diverse inhibitors can be 

used for analytical aspects in vitro. However, the application of these inhibitors in vivo is still 

tempting. Hence, there is a further need for the development of more specific and in vivo usable 

inhibitors to enhance its applicability in vitro and in vivo. The different physiological functions of PKG 

imply that its inhibition will yield in various pleiotropic effects (Figure 8). PKG-I inhibition in smooth 

muscle organs reduces vasorelaxation, influences vascular angiogenesis and retards intestinal motility. 

PKG-II inhibition in the intestine prevents toxin-induced diarrhea. PKG-II is also involved in bone 

development. In various cancer cells PKG inhibition suppresses proliferation and might influence 

apoptosis. PfPKG inhibitors could be useful in the treatment of various stages of malaria. Therefore, 

studies of PKG inhibitors might lead to new directions regarding therapeutic applications. 

Furthermore, they might guide to explanations of side effects of cGMP-enhancing substances or 

possible PKG activators.  
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