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Abstract: Host defense peptides (HDPs) are an important first line of defense with 

antimicrobial and immunomoduatory properties. Because they act on the microbial 

membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance 

and therefore, are being actively investigated as a novel class of antimicrobials and vaccine 

adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. 

More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a 

single chromosomal segment, apparently as a result of gene duplication and diversification. 

In contrast to their mammalian counterparts that adopt various spatial conformations, 

mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, 

adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides 

classical β-defensins, a group of avian-specific β-defensin-related peptides, namely 

ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, 

avian cathelicidins and defensins are derived from either myeloid or epithelial origin 

expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory 

activities. Structure-function relationship studies with several avian HDPs have led to 

identification of the peptide analogs with potential for use as antimicrobials and vaccine 

adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a 

promising alternative approach to disease control and prevention in chickens. 
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1. Introduction 

Host defense peptides (HDPs), also known as antimicrobial peptides, constitute a large group of 

small peptides that have been discovered in virtually all forms of life [1–3]. Natural HDPs are 

generally positively charged and comprised of less than 100 amino acid residues with amphipathic 

properties. HDPs represent an important first-line of defense particularly in those species whose 

adaptive immune system is lacking or primitive. Most HDPs are encoded by distinct genes, and a large 

number of structurally different HDPs normally exist in a single species. A majority of HDPs are 

strategically synthesized in the host phagocytic and mucosal epithelial cells that regularly encounter 

the microorganisms from the environment. Synthesized initially as precursors, HDPs are generally 

processed by host proteases to release mature peptides upon infection and inflammation [1,2]. 

Mature HDPs are broadly active against Gram-negative and Gram-positive bacteria, mycobacteria, 

fungi, viruses, and even cancerous cells [1,2]. Relying primarily on the physical membrane-lytic 

mechanisms, HDPs kill bacteria with a low risk of triggering resistance [4]. Additionally, HDPs were 

recently found to interact specifically with several membrane-bound or intracellular receptors with a 

profound ability to modulate the host response to inflammation and infection [5–7]. Because of 

antimicrobial and immunomodulatory activities, HDPs are being actively explored for antimicrobial 

therapy particularly against drug-resistant microbes [8]. A number of HDPs have been found with 

preferential expression in the male reproductive tract and several are linked to sperm maturation and 

might have potential for infertility treatment [9,10]. 

2. Classification of HDPs 

HDPs are structurally diversified. Based on the secondary structure, HDPs are classified into  

α-helical, β-sheet, αβ, and non-αβ families [1–3,11]. In general, α-helical peptides are amphipathic, 

often with a bend around the central region disrupting an otherwise fairly perfect cylindrical structure. 

The β-sheet HDPs are usually formed by the presence of disulfide bonds with amphipathic patches 

scattered on the surface. The αβ-peptides consist of both α-helical and β-sheet structures, whereas  

non-αβ HDPs are free of α-helical and β-sheet structures, often unstructured, and rich in proline, 

arginine or histidine residues. 

2.1. Cathelicidins 

Among an ever increasing number of HDPs that have been reported, two major families,  

namely cathelicidins and defensins, exist in vertebrate animals [12–14] (Figure 1). Cathelicidins have 

been reported in a variety of vertebrate species including fish, amphibians, reptiles, birds, and 

mammals [12,15]. Multiple cathelicidins normally exist in each species, except for euarchontogliers 

(e.g., primates, rabbits, and rodents) and carnivorans (e.g., cats and dogs). Cathelicidins are named for 

the presence of a cathelin-like domain in the N-terminal region of the peptide precursor (Figure 1). 

Although the signal peptide and cathelin-like domain of cathelicidins are extremely conserved across 
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species, mature peptide sequences at the C-terminal region are highly diversified even within a species. 

Neutrophilic granule proteins (NGPs) are a group of cathelicidin-related HDPs that have been reported 

in rabbits, rodents, and many other mammalian species [16–18]. Although they apparently have 

evolved from cathelicidins, NGPs are conserved throughout the entire sequence, including the  

C-terminal region. Given rabbit NGP, also known as p15, is biologically active without proteolytic 

cleavage [19], it is possible that other NGPs may not be processed to become biologically active. 

Figure 1. Schematic drawing of vertebrate cathelicidin and defensin precursor peptides. 

(A) Cathelicidins and cathelicidin-related peptides known as NGPs are highly conserved in 

the cathelin-like domain that contains two disulfide bridges. Unlike cathelicidins whose  

C-terminal segments are highly variable across species and proteolytically cleaved from 

the cathelicidin-like domain to become biologically active, NGPs are conserved throughout 

the entire sequence and functionally active without being processed. (B) The defensin 

family includes classical α-, β-, and θ-defensins with indicated disulfide bonds as well as 

four subfamilies of defensin-related peptides with unknown disulfide bonding patterns. 

Avian-specific ovodefensins contain six cysteines but with a different spacing pattern from 

that of classical defensins. Rodent-specific CRS1C, CRS4C, and rattusin also exist with 11, 

9, and 5 cysteine residues, respectively, that presumably form intermolecular disulfide bonds. 

Positively and negatively charged amino acids are indicated in red and green, respectively. 

Signal               Cathelin-Like Domain (Conserved)               Mature
Peptide                        Peptide 

Signal              Prosequence Mature Peptide
Peptide             (Conserved) (Variable) 

C C C C CC

α-Defensin (HNP-1) ACYCRIPACIAGERRYGTCIYQGRLWAFCC (+3)

β-Defensin (HBD-1) DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK (+5)

θ-defensin (RTD-1)                                  (+5)

Ovodefensin (Gallin) LVLKYCPKIGYCSNTCSKTQIWATSHGCKMYCCLPASWKWK (+7)

CRS (CRS1C-1) LQDVAQRRFPWCRKCRVCQKCEVCQKCPVCPTCPQCPKQPLCKERQNKTAITTQAPNTHHKGC (+11)

CRS (CRS4C-1) LQDAALGWGRRCPQCPRCPSCPSCPRCPRCPRCKCNPK (+7)

Rattusin VQDLRVRRTLQCSCRRVCRNTCSCIRLSRSTYAS (+7)

C        C C C

(A) Cathelicidins and Cathelicidin-Related Peptides 

(B) Defensins and Defensin-Related Peptides

Cathelicidin
α-helical (Fowlicidin-1) RVKRVWPLVIRTVIAGYNLYRAIKKK (+8)

β-sheet (Protegrin-1) RGGRLCYCRRRFCVCVGRG (+6)

Cyclic (Bactenecin-1) RITKQPWAPPQAARLCRIVVIRVCR (+6)

Unstructured (Indolicidin) ILPWKWPWWPWRR (+3)
NGP

Mouse NGP QETSFNDKQDVSEKEKFEDVPPHIRNIYEDAKYDIIGNILKNF (-3)
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2.2. Defensins 

Vertebrate defensins are further classified into three subfamilies including α-, β-, and θ-defensins 

that are characterized by the presence of six cysteines with different spacing and bonding patterns 

(Figure 1) [9,13,14]. The α-defensins are mammalian-specific with a C1-C6, C2-C4, and C3-C5 

cysteine-bridging pattern, whereas β-defensins are universal in vertebrates with a C1-C5, C2-C4, and 

C3-C6 bridging pattern. The θ-defensins, on the other hand, have only been discovered in primates, 

with a pseudogene present in the human genome [20]. The six cysteines of θ-defensins form a cyclic 

structure by a head-to-tail ligation of two truncated α-defensins [20]. Three additional subfamilies of  

α-defensin-related peptides have also been found in rodents [21,22]. Two groups of cryptdin-related 

sequence (CRS) peptides, namely CRS1C and CRS4C, appear to exist only in mice with 11 and nine 

cysteines, respectively [21]. A unique rat-specific rattusin was recently reported to consist of five 

cysteines [22]. Although rodent defensin-related sequences are located within the α-defensin gene 

cluster and highly similar to α-defensins in the signal and pro-sequences, the disulfide bridging 

patterns of the C-terminal mature peptides are totally different among them (Figure 1). Albeit with no 

reported tertiary structures, these defensin-related peptides are likely to form homo- or hetero-dimers 

or oligomers because of the presence of an odd number of cysteines. Another group of β-defensin-

related molecules, recently classified as ovodefensins, appear to be specific in birds [23]. Albeit with 

six cysteines in the C-terminal mature region forming a disulfide bonding pattern identical to  

β-defensins [24], avian ovodefensins consist of a different cysteine spacing pattern (Figure 1). 

3. Discovery of Avian HDPs 

Both the cathelicidin and defensin families of HDPs exist in birds [25,26]. However, NGPs appear 

to be specific to mammals and no NGP-like cathelicidins have been reported in any avian species. 

Only β-defensins have been discovered in birds, and no α- or θ-defensins exist. Rodent-specific 

rattusin or CRS peptides are also absent in birds. However, ovodefensins are uniquely present  

in several avian species [23]. Excellent reviews are available on the general knowledge of avian  

HDPs [27,28], and this review will focus on their biology and therapeutic applications, with more 

emphasis on the similarities and differences between avian and mammalian HDPs. 

3.1. Avian Cathelicidins 

Four distinct cathelicidin genes have been reported in birds. The first two avian cathelicidins 

(CATH1 and CATH2) were reported in chickens in 2004 and 2005, respectively [29,30]. The same 

two peptides, together with a third chicken cathelicidin (CATH3), were also independently reported as 

fowlicidin 1–3 [18]. The fourth chicken cathelicidin, known as CATH-B1, was discovered to be 

preferentially expressed in the bursa of Fabricius [31], a specialized organ for hematopoiesis and B cell 

development in birds. All four chicken cathelicidins were found to cluster densely together within a 

7.5-kb distance toward one end of chromosome 2 [18,31]. All four chicken cathelicidin genes adopt a 

4-exon, 3-intron structure, typical for a mammalian cathelicidin. The first three exons encode the  

5′-untranslated region, signal peptide, and a majority of the cathelin-like domain, while the last exon 

encodes primarily the mature peptides, in addition to the 3′-untranslated region [18,31]. Chicken 
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CATH1–3 share similar exon sizes and a typical cathelin-like domain with mammalian cathelicidins, 

whereas CATH-B1 consists of an alternatively spliced and unusually large first exon and an 

uncharacteristic cathelin-like domain [31]. 

Alignment of four chicken cathelicidin peptide sequences revealed that they are similar to each 

other and also homologous to mammalian cathelicidins in the signal peptide and cathelin-like domain 

(Figure 2). Among them, CATH1 and CATH3 are most closely related with >90% identity throughout 

the entire sequence, while CATH-B1 is a distant member, sharing only 40% with CATH1 (Figure 2). 

The orthologs of chicken CATH1–3 were also recently reported in several other avian species such as 

the common quail and common pheasant [32,33]. With recent completion of genome sequencing for 

the turkey, mallard duck, rock dove (Columba livia), ground tit (Pseudopodoces humilis), saker falcon 

(Falco cherrug), Peregrine Falcon (Falco peregrinus), and budgerigar (Melopsittacus undulatus),  

a number of avian cathelicidin sequences have been predicted and become available in GenBank. 

Figure 2. Amino acid sequence alignment of four chicken cathelicidins. Conserved 

sequences are shaded and identical residues are in red. Dashes are created to maximize the 

alignment. Each cathelicidin precursor consists of a conserved signal peptide sequence, a 

cathelin-like domain, and a variable C-terminal mature peptide sequence. Four cysteines in 

the cathelin-like domain are highlighted in yellow. Note that an N-terminal, 117-amino 

acid segment of CATH-B1 was omitted for clarity. 

Cathelin-Like Domain (Prosequence)Signal Peptide

Mature Peptide  

3.2. Avian β-Defensins 

More than a dozen unique β-defensin genes are present, and no α- or θ-defensins exist in birds.  

The first two avian β-defensins, known as gallinacins 1–2, were isolated in 1994 from chicken 

heterophils [34], an equivalent of mammalian neutrophils. The turkey orthologs of gallinacins 1–2 

were also independently purified from heterophil granules later in the same year [34]. With the 

completion of the chicken genome sequencing, a large number of additional chicken β-defensin genes 

were independently reported by Lynn, et al. [29] and Xiao, et al. [35], respectively. Because of 

different numbering systems used by the two groups, a new standard nomenclature for chicken  

β-defensins was proposed [36]. To be consistent with the mammalian defensin nomenclature, the term 

“gallinacin” was suggested to be dropped and a new term “avian β-defensin (AvBD)” be adopted [36]. 

The AvBD numbering system was proposed to follow Xiao’s [35]. With deposition of a new chicken 
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β-defensin, i.e., AvBD14 (under the GenBank accession no. AM402954), after initial two publications, 

the chicken genome now appears to encode a total of 14 distinct β-defensin genes (AvBD1–14) packed 

within a 85-kb distance toward one end of chromosome 3 [36]. In contrast with most mammalian  

β-defensin genes, which primarily consist of two exons, at least five AvBDs (AvBD1, 2, 6, 7, and 8) 

are comprised of a minimum of four exons [35]. The remaining AvBD genes contain three exons, 

while AvBD12 and -14 appear to have only two exons. 

Sequencing alignment of all 14 chicken β-defensins revealed that they are highly conserved at the 

N-terminal signal peptide region (Figure 3). The spacing pattern of six cysteines are also conserved at 

the C-terminal segment. Additionally, two glycines, with one preceding the second cysteine and the 

other preceding the fourth cysteine, are also largely conserved (Figure 3). Most other residues are quite 

diverse among AvBDs. In contrast to mammalian α-defensins with a long, often negatively charged 

prosequence, β-defensins including AvBDs consist of a short prosequence, which is even absent in a 

few cases. The C-terminal tails of AvBDs after the last cysteine are generally short, consisting mostly 

of 3-6 amino acids. AvBD3, 11 and 13 are exceptions. AvBD3 and AvBD13 have up to 30 residues 

after the last cysteine [35], while AvBD11 contains two tandem, but different six-cysteine motifs at the 

C-terminus [35]. As a result, mature AvBD11 may form six, instead of three, intramolecular disulfide 

bonds. AvBD11 is the only known β-defensin with such a sequence, and functional significance for the 

existence of such two defensin motifs remain to be studied. A number of AvBDs have also been found 

in several other species of birds including the turkey, ostrich, king penguin, zebra finch, duck, and 

goose [37–43]. Many additional AvBD sequences have also been predicted and deposited in GenBank. 

Figure 3. Amino acid sequence alignment of chicken β-defensins and ovodefensins. 

Conserved sequences are shaded and identical residues are in red. Dashes are created to 

maximize the alignment. Each β-defensin precursor is comprised of a conserved signal 

peptide, an optional short prosequence, and a C-terminal mature sequence consisting of six 

cysteines. Note that the cysteine spacing patterns are different between chicken ovodefensins 

(known as gallin 1–3) and classical β-defensins. Additional C-terminal tail sequences of 

AvBD3, 11, and 13 were omitted for simplicity. 

Mature PeptideSignal Peptide Prosequence

 

Besides classical β-defensins, chickens have also been found to express three closely related  

β-defensin-related peptides, namely gallin 1–3 [23,44,45]. In fact, multiple peptides with a similar 

cysteine-spacing pattern have been reported earlier in the mallard duck, turkey, and black  
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swan [46–48]. This group of peptides were in turn classified as ovodefensins because of their 

preferential expression in the oviduct with abundant presence in egg white [23]. Ovodefensins appear 

to be avian-specific, containing a six-cysteine motif of C-X3-5-C-X3-C-X11-C-X3-4-CC, as opposed to 

that of C-X4-8-C-X3-5-C-X9-13-C-X4-7-CC in classical avian β-defensins (Figure 3). 

4. Evolution of Avian HDPs 

4.1. Avian Cathelicidins 

Phylogenetic analysis of all publically available avian cathelicidins revealed that they are clustered 

into three distinct clades, namely CATH1/3, CATH2, and CATH-B1 (Figure 4), suggesting that these 

three clades of cathelicidin genes have evolved before divergence of these bird species from each 

other, unlike mammalian cathelicidin genes, a majority of which were duplicated after species 

separation [18]. Surprisingly, an initial analysis of the zebra finch (Taeniopygia guttata) genome failed 

to identify any cathelicidin sequences [39]. If that is the case, it will be interesting to know why the 

cathelicidin genes were lost in zebra finch, although it is likely that the genome segments containing 

the cathelicidin genes failed to be sequenced, because the entire genome were only sequenced to  

5.5 × coverage to encompass 94% of the genome [49]. Consistent with our assumption, scores of gaps 

are present in the syntenic cathelicidin region in the current zebra finch genome assembly (WUGSC 

3.2.4/taeGut1) released in July 2008. 

Figure 4. Phylogenetic analysis of avian cathelicidins. The phylogenetic tree was 

constructed with the full-length amino acid sequences using the neighbor-joining method, 

and the reliability of each branch was assessed by using 1,000 bootstrap replications. 

Numbers on the branches indicate the percentage of 1,000 bootstrap samples supporting 

the branch. The species and GenBank accession number of each sequence are indicated. 

 CATH1-Chicken NP 001001605

 CATH1-Quail ADA70040

 CATH1-Pheasant ACY66643

 CATH3-Pheasant ACZ45041

 CATH3-Chicken AAZ42401

 CATH3-Quail ACZ45043

 CATH3-Rock dove EMC81125

 CATH3-Budgerigar XP 005139563

CATH1/3

 CATH2-Chicken NP 001020001

 CATH2-Pheasant ACY66644

 CATH2-Turkey XP 003206957

 CATH2-Quail ACZ45042

 CATH2-Rock dove EMC81124

 CATH2-Saker Falcon XP 005442469

 CATH2-Budgerigar XP 005144047

 CATH2-Ground tit XP 005532197

 CATH2-Mallard XP 005023367

CATH2

 CATHB1-Chicken NP 001258101

 CATH-B1-Turkey XP 003206958
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4.2. Avian β-Defensins 

Phylogenetic analysis of all available avian β-defensins and related peptide sequences revealed the 

presence of cross-species, gene-specific clusters for most genes, implying that a majority have evolved 

before the split of the bird species from each other (Figure 5), reminiscent of avian cathelicidin genes. 

However, species-specific AvBD genes do exist. For example, AvBD14 appears specific to chickens, 

because no orthologs have been found in any other avian species, despite the availability of several 

avian genome sequences. Supported by a bootstrap value of 52 (Figure 5), it is likely that AvBD14 

duplicated from AvBD13 after the separation of chickens from other birds. Zebra finch lacks the 

AvBD6 gene [39,40], although it is present in the chicken, turkey, goose, and mallard duck genomes. 

The AvBD1 gene is conserved in the chicken, turkey, goose, quail, and ostrich, but has apparently 

duplicated and diversified into three paralogous genes (AvBD123, 124, and 125) in the zebra  

finch [39,40] (Figure 5). Likewise, the AvBD3 gene has also expanded to a total of eight paralogous 

genes in the zebra finch genome [39,40] (Figure 5). 

Figure 5. Phylogenetic analysis of avian defensins (see Figure 4 legend for details). 
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BPS1-Rock dove EMC87475

95

Cygnin-1-Rock dove EMC87474

Cygnin-2-Rock dove EMC87476

98

BPS2-Mallard EOA93566/P02785

41

Meleagrin-1-Turkey XP 003204659

Meleagrin-2-Turkey XP 003204663

92

Gallin1-Chicken XP 429907

Gallin2-Chicken CBE70278

Gallin3-Chicken XP 429909

93

97

50

98

99

AvBD12-Chicken NP 001001607

32
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Ovodefensins clearly form a distinct clade, which is further divided into two subgroups (Figure 5). 

Small basic protein 1 (BPS1) in the mallard duck or rock dove is separated from the remaining 

ovodefensins. A closer examination of their amino acid sequences indicated that BPS1 consists of a 

cysteine-spacing pattern of C-X3-C-X3-C-X11-C-X4-CC, as opposed to C-X5-C-X3-C-X11-C-X3-CC in 

other ovodefensins. It remains to see whether these two subgroups of ovodefensins are present only in 

certain species of birds. It is also important to know how they are functionally different from each 

other and from classical defensins. 

Importantly, ovodefensins are clustered with AvBD12 as supported by a bootstrap value of 32 

(Figure 5), suggesting that ovodefensins might have duplicated and diversified from AvBD12 as a 

result of gene duplication after separations of birds from other animal species. Consistent with the 

notion that ovodefensins are derived from classical AvBDs, three chicken ovodefensin/gallin genes are 

located in tandem on chromosome 3, approximately 260 kb centromeric to the AvBD gene cluster on 

the current chicken genome assembly. To further support a possible origination of gallins from 

AvBD12, the gallin genes consist of two exons separated by an intron, which is identical to the 

genomic structure of the AvBD12 and AvBD14 genes, whereas all other AvBD genes are comprised 

of at least three exons [35]. 

5. Expression and Regulation of Avian HDPs 

5.1. Tissue Expression Pattern 

Like mammalian counterparts, avian cathelicidins and β-defensins are derived from the bone 

marrow and/or epithelial cells, with the majority expressing in a wide variety of tissues. CATH1–3 are 

primarily of myeloid origin, while CATH-B1, a distant member of avian cathelicidins, is derived from 

epithelial cells. Chicken CATH1–3 mRNAs are predominantly expressed in the bone marrow, but also 

throughout the mucosal tissues of the digestive, respiratory, and urogenital tracts [29,30,50]. On the 

other hand, chicken CATH-B1 mRNA shows a more restricted expression pattern, with preferential 

expression in the secretory epithelial cells of the bursa of Fabricius [31,50]. Consist with the role of 

cathelicidins in the first line of host defense, abundant CATH1–3 proteins can be detected in the 

granules of heterophils, as in the case of chicken CATH2 [51], whereas mature CATH-B1 protein is 

secreted from the epithelial cells and concentrated on the basolateral surfaces of the M cells in the 

bursal lymphoid follicles [31]. 

Myeloid avian β-defensins include AvBD1, 2, and 4–7, whereas the remaining AvBD8–14 are 

mainly of epithelial origin, although both myeloid and epithelial AvBDs are also expressed in a 

majority of other tissues [29,35,52]. In agreement with their myeloid origin, AvBD1 and AvBD2 

mRNAs have been found abundantly in the bone marrow and their proteins in heterophil granules in 

the chickens, turkey, and ostrich [34,42,53]. It will be interesting to know the tissue expression pattern 

of those species-specific AvBDs such as AvBD115–125 in the zebra finch [40]. However, because 

they are orthologous to AvBD1 and AvBD3 (Figure 5), they are expected to share a similar expression 

pattern to AvBD1 and AvBD3. 

Human cathelicidin LL-37 has been found in seminal plasma associated with sperm and 

prostasomes [54]. A majority of β-defensins in rats (and likely in other mammalian species as well) are 
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expressed preferentially in the male reproductive system and the epididymis and testis in  

particular [55]. Like their mammalian counterparts, many avian cathelicidins and β-defensins are 

expressed adequately in the male and female reproductive organs, particularly in the testis, epididymis, 

ovary, and oviduct [29,35,50,56], suggesting a possible role in reproduction. Ovodefensins have been 

found to be among the major components of egg white in the chicken, turkey, and duck [44–48]. 

Consistently, chicken ovodefensin gallin 1–3 mRNA and proteins are the most abundantly expressed 

in tubular gland cells in the magnum of the chicken oviduct [23], a segment that secretes egg white. 

5.2. Developmental Regulation 

The expression of chicken cathelicidins and β-defensins has been studied during the pre- and  

post-hatch periods and found to be developmentally regulated. At the embryonic stage, most chicken 

cathelicidin and AvBD mRNAs were detected as early as embryonic day 3 (E3), except for CATH-B1 

and AvBD11, which did not appear until day E9 [57]. All four cathelicidin mRNA expression was 

generally increased as embryos develops, whereas the 14 β-defensins were differentially expressed [57]. 

AvBD3, 4, 5, 10, 11, 12, and 14 were largely enhanced during the embryonic development, whereas 

the remaining chicken β-defensins showed a biphasic expression pattern. In the case of AvBD2, 6, and 

7, their expression was increased on day E6 relative to that in day E3, decreased on day E9, and then 

increased gradually with the age of embryos [57]. 

After hatch, chicken cathelicidins and β-defensins are also developmentally regulated in both gene- 

and tissue-specific patterns. During the first 28 days, CATH1–3 showed an age-dependent increase 

both in the cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after 

hatching, with a gradual decline by day 28 [50]. On the other hand, CATH1–3 showed a peak 

expression in the cecum on day 28, while the highest expression of CATH-B1 was seen in both the 

lung and cecal tonsil on day 14 [50]. AvBD1 and AvBD2 mRNA gradually reduced in different 

segments of the intestinal tract in the first week post-hatch, but restored and increased gradually in the 

following week [58]. In the reproductive tract, more than a half of AvBDs increased during the sexual 

maturation in the vagina, ovary, and epididymis of chickens, whereas others showed little no 

expression [56,59,60]. 

5.3. Regulation by Infection and Inflammation 

HDPs are critically involved in the first line of host defense. Dysregulation of the HDP synthesis 

often leads to immune deficiency or autoimmunity such as Crohn’s disease and psoriasis in  

humans [61,62]. Many, but not all, HDPs are induced upon infection and inflammation in humans and 

mice. On the other hand, certain pathogens suppress HDP synthesis as a strategy to evade the immune 

system [63–65]. A number of studies have been conducted on the transcriptional response of 

cathelicidins and β-defensins in chickens and several other avian species. Like their mammalian 

relatives, multiple AvBDs are inducible in response to microbial products (e.g., lipopolysaccharides 

and CpG DNA), live bacteria, viruses or parasites in the intestinal, reproductive, and respiratory  

tracts [38,56,59,60,66,67]. However, it appears that many avian HDP genes are regulated differently in 

different tissues in response to different stimuli. For example, chicken CATH1 was induced in the 

cecal tonsil [66], but not the jejunum of chickens in response to Salmonella infections [51]. On the 
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other hand, chicken CATH1 was down-regulated by Campylobacter jejuni or Eimeria praecox [68–70], 

perhaps as a mechanism of immune evasion. 

5.4. Regulation by Dietary Compounds 

Because suppressing HDP expression is a microbial strategy for immune subversion, inducing the 

synthesis of endogenous HDPs will conversely augment the host capacity to fight off infections [71–73]. 

Unlike infection or injury that triggers HDP expression with an unwanted and often exaggerated 

inflammatory response, butyrate and vitamin D3 have been found to be highly potent in augmenting 

HDP synthesis without provoking inflammation in humans [74–78]. Several other compounds like 

dietary histone deacetylase inhibitors, retinoic acid, forskolin, and sugars are also capable of inducing 

HDP expression in humans [79–83]. 

In chickens, butyrate has been revealed as a strong inducer of HDP expression in vitro and in vivo. 

Among all 14 AvBDs and 4 cathelicidins, half of them were induced with others largely unchanged in 

chicken cells in response to butyrate [84]. Butyrate was further shown to enhance the antibacterial 

activity of chicken monocytes, and supplementation of butyrate in the feed enhanced clearance of 

Salmonella enteritidis in the cecum of chickens following an experimental infection [84]. Among all 

saturated free fatty acids with 1–18 carbons, butyrate was the most potent in stimulating HDP 

expression in chicken cells [85]. Furthermore, butyrate synergizes with the agonists of the cyclic 

adenosine monophosphate (cAMP) signaling pathway in inducing HDP expression [86]. Feeding with 

butyrate and a plant extract containing forskolin, which is an adenylyl cyclase agonist, showed a strong 

synergy in augmenting HDP expression in the crop and jejunum of chickens [86]. Mitogen-activated 

protein kinase signaling pathways were revealed to be critically involved in the HDP-inducing synergy 

between butyrate and forskolin [86]. The results indicated the potential for use of these dietary 

compounds in promoting HDP synthesis, host immunity, and disease resistance. 

6. Biological Activities of Avian HDPs 

6.1. Antimicrobial Activities 

The antibacterial efficacy of all four chicken cathelicidins and many defensins have been evaluated. 

Like their mammalian counterparts, most chicken HDPs are capable of killing a broad spectrum of 

Gram-positive and Gram-negative bacteria, and fungi including antibiotic-resistant strains generally in 

the low micromolar range. For example, chicken CATH1–3 are broadly active with the minimum 

inhibitory concentration (MIC) values mostly between 0.5 and 2 µM against a range of bacteria [18,87], 

and CATH-B1 also has the MIC values between 0.5 and 2.5 µM against E. coli, S. aureus, and  

P. aeruginosa [31]. However, many HDPs showed varying efficiencies against different pathogens. 

Chicken AvBD1 and AvBD2 kill 90% S. enteriditis, C. jejuni, and Candida albicans at <4 µM, but 

showed a much reduced efficiency against Pasteurella multocida [41]. Similarly, AvBD9 is active 

against most Gram-positive and Gram-negative bacteria tested with the MIC values in the range of  

2–4 µM, but with a minimum activity against S. typhimurium (>30 µM) [88]. On the other hand, 

AvBD13 was found to be minimally active against a range of bacteria examined, with the MIC values 

in the range of 50–100 µM [89]. The antibacterial activity of chicken CATH1–3 is not affected by the 
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presence of physiological concentrations of salt [18]; however, that of chicken defensins is greatly 

reduced by salt [26], reminiscent of mammalian defensins [13]. In the case of CATH1–3, AvBD2, and 

presumably most other avian HDPs, non-specific membrane disruption and lysis is a major bactericidal 

mechanism [87,90,91]. 

Ovodefensins are unique in that they generally lack an obvious antibacterial activity as seen with 

turkey meleagrin as well as duck BPS1 and BPS2 [46,48]. Chicken gallin is the only ovodefensin with 

known antibacterial activities, but appears to have a narrow range. Among several common  

Gram-negative and Gram-positive bacteria tested, chicken gallin1/2 showed an activity only against  

E. coli, but not Salmonella, S. aureus or Listeria monocytogenes [24]. It is hence very unlikely that the 

major biological function of ovodefensins is antibacterial. 

6.2. Immunomodulatory Activities 

Besides having direct microbicidal activities, HDPs have increasingly been appreciated to play a 

profound role in regulating host immune responses to infections. Many peptides are shown to be 

actively involved in chemotaxis and activation of immune cells, regulation of dendritic cell 

differentiation, induction of angiogenesis and re-epithelialization, modulation of cytokine and 

chemokine gene expression, and potentiation of antigen-specific adaptive immune response [5,92,93]. 

Importantly, many HDPs directly bind to and neutralize bacterial membrane components such as 

lipopolysaccharides (LPS), lipotechoic acid, and peptidoglycan and suppress the production of 

proinflammatory cytokines induced by bacteria and membrane components [94,95]. 

In chickens, CATH1 was shown to possess excellent immunomodulatory properties with a strong 

capacity to specifically chemoattract neutrophils without affecting the migration of monocytes or 

lymphocytes [96]. Furthermore, CATH1 and CATH2 activates macrophages or peripheral blood 

mononuclear cells by inducing synthesis of an array of cytokines and chemokines at moderate levels, 

which is distinct from that induced by LPS [96,97], CATH1–3 were shown to bind to LPS directly, 

with 50% binding occurring at approximately 10 μM [18,87]. Moreover, three peptides at 10–20 μM 

substantially abrogated LPS-induced production of proinflammatory cytokines in macrophages and 

peripheral blood mononuclear cells [18,87,97]. CATH1 was further found to augment adaptive 

immune response when administered into mice together with chicken ovalbumin, a model antigen [96]. 

In the case of human cathelicidin LL-37, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

sequestosome-1/p62 were recently identified as intracellular receptors to mediate cytokine/chemokine 

production in monocytes [98,99]. It will be interesting to examine whether chicken cathelicidins also 

utilize the same receptors to modulate the macrophage response. 

7. Structures-Activity Relationships of Avian HDPs 

7.1. Structural Features 

To date, the tertiary structures of three chicken cathelicidins (CATH1–3), two β-defensins (chicken 

AvBD2 and penguin AvBD103a/spheniscin-2), and a chicken ovodefensin (gallin1/2) have been 

determined by nuclear magnetic resonance (NMR) in solutions. Unlike mammalian cathelicidins that 

adopt various conformations, all three chicken cathelicidins are largely α-helical with a mild kink or 
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rather extensive bend around the center in aqueous solutions [87,90,100] (Figure 6). A mild kink in 

CATH1 and CATH3 is induced by the presence of a glycine residue, whereas an extensive bend in 

CATH2 is caused by proline (Figure 6A). Additionally, all three chicken cathelicidins consist of a 

flexible unstructured segment at the N-terminal region [87,90,100]. Unlike typical amphipathic  

α-helical HDPs, no obvious segregation of hydrophobic residues from hydrophilic residues is seen 

with either CATH1 or CATH2; instead, the positively charged residues are mostly concentrated at both 

ends (Figure 6B). On the other hand, CATH2 are rather amphipathic throughout the entire α-helix. 

Three truncated analogs of chicken CATH1 consisting of amino acid residues 1–16, 8–26, and 5–26 

were also revealed to adopt similar confirmations to the full-length peptide in the presence of LPS or 

zwitterionic dodecylphosphocholine micelles [101,102]. 

Figure 6. Structures of avian cathelicidins and β-defensins. (A) Secondary structural 

features of cathelicidins and β-defensins. (B) Tertiary ribbon structures of cathelicidins and 

β-defensins. Polar residues are indicated in blue and nonpolar residues in red. Disulfide 

bonds of β-defensins are shown in yellow. Protein Data Bank identification number for 

each molecule is indicated in parenthesis. 

 

Both penguin AvBD103a and chicken AvBD2 adopt a triple-stranded, antiparallel β-sheet structure 

stabilized by three pairs of intramolecular disulfide bonds [91,103] (Figure 6B), typical of mammalian 

β-defensins. Penguin AvBD103a also consists of an α-helical segment at the N-terminal region with a 
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hydrophobic patch on the surface [103]. However, AvBD2 lacks either the α-helical or an obvious 

amphipathic feature [91]. A β-bulge that is formed by the G-X-C motif around the fourth cysteine and 

highly conserved in both mammalian α- and β-defensins is also present in both AvBD2 and AvBD103a 

(Figure 6B). Albeit with a different cysteine-spacing pattern, chicken gallin1/2 also consists of a 

characteristic β-defensin fold with three antiparallel β-sheets [24]. However, unlike classical  

β-defensins, gallin1/2 is comprised of two additional β-sheets formed separately by Val2-Leu3 at the  

N-terminal end and Thr24-Ser25 preceding the fourth cysteine [24] (Figure 6). 

7.2. Structure-Activity Relationships 

Structure-activity relationship (SAR) studies with α-helical HDPs indicated that the antimicrobial 

potency and target specificity are strongly influenced by structural and physicochemical parameters, 

such as cationicity (net charge), helicity, amphipathicity, and hydrophobicity [11,104,105]. However, 

in general there is no simple correlation between any of these physicochemical properties and peptide 

functions. A delicate balance of these parameters often dictates the antimicrobial potency and target 

selectivity [11,104,105]. Within a certain range, an improvement in these parameters is often positively 

correlated with the antimicrobial activity of peptides, but sometimes is accompanied by unwanted 

enhancement in cytotoxicity as well [104–107]. In several cases, the antimicrobial domain of the 

peptides is located separately from the domain responsible for cytotoxicity [108,109], meaning that the 

peptide derivatives devoid of the lytic domain could be identified with improved therapeutic potential. 

In the case of β-sheet HDPs and defensins in particular, antimicrobial and immunomodulatory 

activities are strongly influenced by structural integrity, cationicity, and hydrophobicity [11,110,111]. 

The presence of three intramolecular disulfide bonds in many cases is dispensable for the antibacterial 

activity, but essential for other activities such as chemotactic activity [112] and the ability to resist 

proteolysis [113]. On the contrary, the antibacterial activity of human β-defensin-1 drastically 

increases when the peptide is reduced [114]. In fact, some defensins may be naturally reduced in the 

intestinal tract by thioredoxin, a redox enzyme [114]. Cationicity of defensins is believed to dictate the 

killing of Gram-negative bacteria, whereas hydrophobicity appears to confer the activity against  

Gram-positive bacteria [111]. 

In avian species, a series of SAR studies with chicken CATH1, CATH2, and AvBD2 have yielded 

some very interesting observations. Investigations of chicken CATH1 analogs with either N- or  

C-terminal deletions revealed that the cationic residues at both N- and C-terminal regions are 

dispensable for the antibacterial, LPS-binding, and cytotoxic activities, whereas the C-terminal helix 

(Arg21-Lys25) is essential for all three activities [100]. Tryptophan at position 6 (Trp6) is critical in both 

LPS binding and cytotoxicity [100,115], but is dispensable for neutrophil chemotaxis [96]. Furthermore, 

an omission of Trp6 in CATH1 also resulted in an obvious reduction in its ability to kill bacteria [115] 

and induce chemokine synthesis in macrophages [96]. Replacing the kink-causing glycine (Gly16) with 

a helix-stabilizing residue, leucine, resulted in no obvious difference in either antibacterial,  

LPS-binding or cytotoxic activity [100], indicating that enhancing the helicity of α-helical HDPs may 

not necessarily result in an improvement in the antibacterial potency. Simultaneous substitutions of 

multiple amino acid residues to make CATH1 nearly perfectly amphipathic surprisingly caused a loss 

of the antibacterial potency against certain bacteria and undesirably, an increase in hemolytic  
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activities [100]. Collectively, these findings suggested that a fine tuning of various structural and 

physicochemical parameters including cationicity, helicity, hydrophobicity, and amphipathicity, rather 

than a simple alteration of one, will result in an enhancement in the therapeutic potential of α-helical 

HDPs, which is in agreement with earlier findings [11,104,105]. 

Studies with a series of CATH2 analogs with deletions of either N- or C-terminal residues  

showed that neither α-helical segment per se is sufficient to bind LPS, kill bacteria or lyse mammalian 

cells [90]. Inclusion of four additional amino acids in the central bending region (Arg15-Arg18) beyond 

either N- or C-terminal α-helical segment to the α-helical segment was associated with a significant 

enhancement in both antibacterial and LPS-neutralizing activities [90]. To directly evaluate the 

functional significance of the central bending segment, a substitution of leucine for proline greatly 

reduced the antibacterial and hemolytic activities. The abilities to neutralize LPS-induced cytokine 

production and to stimulate chemokine synthesis in peripheral blood mononuclear cells were also 

significantly impaired by such a proline-to-leucine substitution [97], implying that the bending is 

critically important in the peptide interactions with membranes as well as the cell activation receptors. 

Interestingly, a gradual increase in cationicity, helicity and amphipathicity among all peptide analogs 

led to a gradual enhancement in antibacterial potency and LPS neutralization [90]. Furthermore, 

substitution of multiple tryptophans for phenylalanines in an N-terminal, 15-amino acid fragment of 

CATH2 led to an improvement in antibacterial and LPS-neutralizing activities [116]. Head-to-tail 

cyclization of this CATH2 variant further increased its serum stability with a reduced cytotoxicity [117]. 

The same study also revealed that D-amino acid substitutions rendered the peptide completely resistant 

to trypsin proteolysis [117]. 

In the case of chicken AvBD2, D-enantiomerization resulted in little difference in the activity 

against both Gram-positive and Gram-negative bacteria, suggesting that membrane is the primary 

target [91]. However, unlike many mammalian defensins whose structural integrity has a minimum 

impact on the antibacterial activity, reducing AvBD2 led to a drastic loss in the activity against  

Gram-positive bacteria, but was less prominent against Gram-negative bacteria [91]. Substitution of 

alanine for a conserved lysine following the sixth cysteine resulted in an obvious N-terminal structural 

modification and a marked decrease in the antibacterial activity against both Gram-positive and  

Gram-negative bacteria [91]. Surprisingly, a reduction of disulfide bonds rendered the lysine-alanine 

substituted AvBD2 nearly completely inactive in killing bacteria [91]. Therefore, conformational 

changes (and subsequent changes in hydrophobicity and/or amphipathicity) are likely the underlying 

mechanism behind many of the alterations in the antibacterial activity of AvBD2. 

8. Potential Therapeutic Applications 

HDPs including avian HDPs can be potentially used in a variety of applications such as 

antimicrobial therapy (Figure 7). Additionally, HDPs hold promise in augmenting the efficacy of 

vaccines as adjuvants. Although a number of avian HDPs are expressed in both male and female 

reproductive tracts and believed to promote sperm maturation and fertility like their mammalian 

counterparts [10,118], experimental evidence is yet to prove the link. Therefore, the potential role and 

application of avian HDPs in infertility treatment will not be discussed here. To reduce the cost of 
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delivering synthetic peptides and minimize peptide degradation, endogenous HDPs can also be induced 

by certain cost-effective dietary compounds to help the host better fight off infections (Figure 7). 

Figure 7. Potential therapeutic applications of host defense peptides (HDPs). Synthetic 

HDPs can be directly administered exogenously as antimicrobials, vaccine adjuvants or 

infertility drugs. Alternatively, endogenous HDPs can modulated by dietary compounds for 

antimicrobial therapies. 

HDP Applications

Direct Administration

Antimicrobial Vaccine Adjuvant Infertility

Indirect Modulation by 
Dietary Compounds

Antimicrobial

 

8.1. Antimicrobial Therapies 

HDPs are active against a broad range of bacteria, mycobacteria, fungi, and parasites [1,8]. Rather 

than relying on a single or a limited number of intracellular targets like most currently available 

antibiotics, HDPs kills microbes primarily through physical electrostatic interactions and membrane 

disruption. Therefore, it is difficult for microbes to gain resistance to HDPs [1,8]. At the same time, 

most HDPs have the capacity to recruit and activate immune cells and facilitate the resolution of 

inflammation [6,8]. In fact, the antibacterial and immunomodulatory properties of HDPs can be 

harnessed separately for antimicrobial therapy, particularly against antibiotic-resistant strains [6,8].  

A few HDPs have been evaluated clinically for their antibacterial efficacy, and several more are 

currently at different stages of human trials. Because of a relatively low efficacy as compared with 

many of the conventional antibiotics, all clinical trials with HDPs have met a limited success [119].  

As a result, no HDPs have been approved by the FDA to date. More efforts are being shifted toward 

exploring the immune regulatory activities of HDPs. Excitedly, several small HDPs with no or weak 

antibacterial activities have been proved to be highly efficient in protecting animals from infections by 

recruiting and activating neutrophils and/or monocytes [95,120]. Because they act on the host but not 

on the pathogens, these immunomodulatory peptides have the potential to control a broad spectrum of 

pathogens without triggering resistance. 

In avian species, only chicken CATH1 has been evaluated for its in vivo antibacterial efficacy.  

A single intraperitoneal administration of a C-terminal, 21-amino acid CATH1 peptide analog, known 

as fowlicidin-1 (6–26), led to a 50% increase in the survival of mice from a lethal dose of  

methicillin-resistant S. aureus (MRSA), concomitant with a reduction in the bacterial titer in both 

peritoneal fluids and spleens of mice [115]. Additionally, fowlicidin-1(6–26) is more potent in 

inducing neutrophil chemotaxis and macrophage activation than human cathelicidin LL-37 and a  

de novo synthesized peptide, IDR-1 [96]. Because of its ability to induce neutrophil chemotaxis and 

macrophage activation, fowlicidin-1(6–26) protected 50% mice if given 4 days prior to an otherwise 
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lethal MRSA infection, and 100% mice survived if the peptide was received 1 or 2 days before 

infection [96]. This is the first HDP that has been shown to protect animals from bacterial infections 

beyond a 48-h window. Therefore, fowlicidin-1(6–26) represents an attractive candidate for further 

exploration as a novel antimicrobial for both therapeutic and prophylactic applications. Rational design 

and functional screening of additional CATH1-related peptides may lead to identification of new peptide 

analogs with improved safety and therapeutic potential, particularly against antibiotic-resistant pathogens. 

It is worth noting that many HDPs and defensins in particular have obvious antiviral effects by 

acting as lectins or by modulating host cell responses. Enveloped and non-enveloped viruses such as 

human immunodeficiency virus (HIV-1), influenza A virus (IAV), cytomegalovirus (CMV), herpes 

simplex virus (HSV-1 and HSV-2), vesicular stomatitis virus (VSV) , adenovirus, and papillomavirus 

(HPV) have been shown to be sensitive to human α-, β- and/or θ-defensins [121,122]. In some cases, 

defensins can directly inactivate viruses by disrupting envelop lipid bilayers, aggregating viral 

glycoproteins or blocking the binding of viruses to host cell receptors [122]. In other cases, the 

antiviral effects of defensins are indirectly mediated by modifying host cell responses such as inhibition 

of protein kinase C (PKC) activation or down-regulation of host cell receptor expression [122]. 

Limited work exists on the antiviral activities of avian HDPs. Only a few duck β-defensins were 

recently shown to inhibit the replication of duck hepatitis virus (DHV) [37,67]. However, the antiviral 

mechanisms or the susceptibility of other viruses to avian HDPs remains unknown, but warrant  

further investigations. 

8.2. Vaccine Adjuvants 

HDPs have been shown to profoundly impact the development of adaptive immune response by 

regulating the migration, maturation, and activation of different immune cell types including dendritic 

cells and T and B lymphocytes [5,8,123]. Several HDPs are capable of enhancing antigen-specific 

adaptive immune response when co-administered with vaccines [123]. HDPs have been found to 

synergize with other adjuvants like CpG DNA and polyphosphazene in potentiating adaptive immune 

response [124–126]. The adjunvanticity of chicken AvBD1, duck AvBD2, and chicken CATH1 have 

been experimentally verified. When fused with the infectious bursal disease virus (IBDV) VP2 gene in 

a DNA vaccine, chicken AvBD1 increased the VP2-specific antibody titers, CD4+ and CD8+ T cell 

populations, and conferred better protection against an infectious bursal disease virus (IBDV) 

challenge in chickens [127]. Duck AvBD2 was shown to be chemotactic to T- and B-lymphocytes  

in vitro, with the ability to suppress the mRNA expression of an inhibitory receptor, namely dendritic 

cell immunoreceptor (DCIR), in duck splenocytes [128]. Chicken CATH1, when co-administered with 

chicken ovalbumin (OVA), was found to enhance both IgG1 and IgG2a titers to OVA in mice [96]. 

Because CATH 1 was more potent than LL-37 or IDR-1 in inducing surface expression of CD86, a  

co-stimulatory molecule, on macrophages [96], CATH1 may be more efficient in promoting antigen 

presentation and adaptive immunity and therefore, represent an excellent candidate as an adjuvant or a 

component of an adjuvant complex. 
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8.3. Direct Administration vs. Indirect Modulation 

The production cost and stability are two major obstacles for in vivo applications of many  

peptide-based drugs. Purification from natural sources or chemical synthesis are inefficient and  

cost-prohibitive for large-scale production of HDPs. Although recombinant expression of HDPs has been 

achieved in bacteria and yeasts, an inclusion of a fusion protein is often needed to reduce the peptide 

toxicity to the host and aid in the peptide solubility [129]. In order to achieve the maximum activity, an 

extra proteolytic cleavage step and additional production costs are often unavoidable. Given a short 

half-life of most natural peptides in vivo, it is desirable to retard the peptide degradation by chemical 

modifications that often involves the use of D-amino acids, cyclization or peptidomimetics [130]. 

However, it remains unknown how those modifications would impact the immunomodulatory 

functions of HDPs, which appear to be receptor-dependent. 

To overcome the high manufacturing cost and minimize degradation of HDPs for in vivo 

applications, it is advantageous to develop convenient and cost-effective strategies to specifically 

induce the synthesis of endogenous HDPs. Several dietary compounds including short-chain fatty acids 

and vitamin D3 have shown promise in stimulating HDP synthesis in humans without triggering 

inflammatory response [131,132]. Dietary supplementation of HDP-inducing compounds has emerged 

as a novel antibiotic-alternative approach to antimicrobial therapy [131,132]. In chickens, butyrate, 

structural analogs of butyrate, and cAMP signaling agonists have been shown to be potent inducers of 

HDPs [84–86]. Desirably, butyrate and cAMP agonists are synergistic in augmenting HDP gene 

expression and bacterial clearance in chickens [86], suggesting their potential as alternatives to 

antibiotics for disease control and prevention. However, dietary regulation of HDPs often exhibit  

gene-, cell-, and species-specific patterns. HDP genes are differentially regulated in response to a 

dietary compound, with some being induced and others unaltered. In chickens, approximately a half 

number of chicken HDPs are induced by butyrate [84]. Some HDPs are regulated in a cell-specific 

pattern. For example, chicken AvBD9 gene increased by more than 5000-fold in HD11 macrophages, 

but with only a less than 10-fold induction in cecal intestinal cells after a 24-h exposure to 4 mM 

butyrate [84]. The same compound that show a strong HDP-inducing activity in one animal species, 

may completely lose its ability to induce HDPs in another species. A case in point is vitamin D3, 

which strongly augments cathelicidin gene expression in human but not mouse cells [75,76]. Therefore, 

it is important to evaluate the HDP-inducing efficacy of individual compounds in different species. 

9. Conclusions 

Birds harbor approximately 20 unique cathelicidins and β-defensin genes in each species. It appears 

that most have evolved before divergence of birds from each other. Unlike mammalian cathelicidins 

that adopt different tertiary structures, avian cathelicidins are mostly α-helical, with a hinge around the 

central region and a flexible N-terminal segment. Besides classical β-defensins, a group of avian-specific, 

β-defensin-related peptides, namely ovodefensins, exist with a different cysteine-spacing pattern. 

However, the overall three-dimensional structure of ovodenfensins resemble that of β-defensins. 

Coupled with their close chromosomal proximity with the β-defensin gene cluster, ovodefensins were 

clearly diversified from a β-defensin ancestral gene, possibly AvBD12, after separation of the birds 
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from other vertebrate species. Several avian HDPs have been shown to possess potent, broad-spectrum 

antibacterial activities with a strong ability to modulate the host response to infection and 

inflammation. Structure-activity relationship studies have led to the identification of a few avian HDPs 

and their analogs as promising candidates as antimicrobials or vaccine adjuvants. Because avian HDPs 

can be induced by dietary compounds such as short-chain fatty acids and cAMP signaling agonists, 

dietary modulation of endogenous HDP synthesis may have potential to be further explored as a novel, 

cost-effective antimicrobial strategy. 
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