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Abstract: Mitochondrial gene therapy and diagnosis have the potential to provide 

substantial medical benefits. However, the utility of this approach has not yet been realized 

because the technology available for mitochondrial gene delivery continues to be a 

bottleneck. We previously reported on mitochondrial gene delivery in skeletal muscle 

using hydrodynamic limb vein (HLV) injection. HLV injection, a useful method for 

nuclear transgene expression, involves the rapid injection of a large volume of naked 

plasmid DNA (pDNA). Moreover, the use of a condensed form of pDNA enhances the 

nuclear transgene expression by the HLV injection. The purpose of this study was to 

compare naked pDNA and condensed pDNA for mitochondrial association in skeletal 

muscle, when used in conjunction with HLV injection. PCR analysis showed that the use 

of condensed pDNA rather than naked pDNA resulted in a more effective mitochondrial 

association with pDNA, suggesting that the physicochemical state of pDNA plays a key 

role. Moreover, no mitochondrial toxicities in skeletal muscle following the HLV injection 

of condensed pDNA were confirmed, as evidenced by cytochrome c oxidase activity and 

mitochondrial membrane potential. These findings have the potential to contribute to the 

development for in vivo mitochondrial gene delivery system. 
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1. Introduction 

Mutations and defects in the mitochondrial genome form the basis of a variety of human diseases, 

many of which involve mitochondrial dysfunctions [1–4]. Therefore, mitochondrial gene therapy  

and diagnosis could be expected to offer substantial medical benefits, however, the utility of this 

strategy has not yet been realized because the technology for in vivo mitochondrial gene delivery  

is a bottleneck. We previously reported on the potential for using hydrodynamic limb vein (HLV)  

injection for achieving mitochondrial gene delivery targeted to mammalian skeletal muscle tissue [5].  

Skeletal muscle represents an attractive target tissue for mitochondrial gene therapy, because 

mitochondrial genomic dysfunctions in skeletal muscle are largely associated with various 

mitochondrial diseases [2,4]. The HLV injection procedure, a useful method for nuclear transgene 

expression in skeletal muscle, involves the rapid injection of a large volume of naked plasmid DNA 

(pDNA) into the distal vein of a limb [6–9]. Using PCR analysis, we demonstrated the HLV injection 

technique could be used to deliver naked pDNA into myofibrillar mitochondria and that it had no 

influence on mitochondrial function [5]. 

In this study, we focused on the condensation of pDNA to enhance mitochondrial association, since 

it has been reported that, when condensed pDNA is used in HLV injection, it is even more effective 

than naked pDNA in achieving nuclear transgene expression in skeletal muscle [10–12]. Figure 1 

shows the schematic image of mitochondrial gene delivery in skeletal muscle by HLV injection of 

condensed pDNA. A sufficient volume of saline is used to facilitate extravasation of the condensed 

pDNA from the vasculature and into the muscle tissue through multiple physical barriers. 

Hydrodynamic force could induce the transient opening cellular membrane to permit the condensed 

pDNA to be internalized into cells. Finally, the localization of pDNA in mitochondria may also be 

achieved by alternate, currently unknown mechanisms. 

The objective of this study was to compare naked pDNA and condensed pDNA for mitochondrial 

association, in conjunction with HLV injection. We first determined the optimal conditions for 

condensing pDNA by measuring the sizes and zeta-potentials of the particles. We then, using PCR 

analysis, investigated the effects of injection volume and the condensation of pDNA on mitochondrial 

association by HLV injection. Finally, we assessed mitochondrial toxicity in skeletal muscle following 

the HLV injection of condensed pDNA, in terms of cytochrome c oxidase (COX) activity and 

mitochondrial membrane potential. 
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Figure 1. Schematic image of mitochondrial gene delivery in skeletal muscle by HLV 

injection of condensed pDNA. pDNA was condensed with a polycation (Protamine) and 

the condensed pDNA was intravenously injected into the dorsalis pedis vein via HLV 

injection, which is similar to a previously reported method [5]. It is generally thought that 

the condensed pDNA is internalized into cells via hydrodynamic force, and mitochondrial 

localization of pDNA may be achieved. 

 

2. Experimental Section  

2.1. Materials 

The pcDNA3.1 (+)-luc plasmid was constructed by inserting the firefly luciferase gene (Hind  

III-Xba I fragment) of the pGL3-Control plasmid (Promega, Madison, WI, USA) into the pcDNA3.1 

(+) plasmid (Life Technologies Corporation, Carlsbad, CA, USA) pretreated with the same restriction 

enzymes. The pDNA was purified using an Endfree Plasmid Giga Kit (Qiagen GmbH, Hilden, 

Germany). Oligonucleotides were purchased from Sigma Genosys Japan (Ishikari, Japan) in purified 

form. Protamine, the native protamine sulfate from salmon milt, was purchased from Calbiochem 

(Darmstadt, Germany). Tetramethylrhodamine (TMRM) and MitoTracker Deep Red 633 (MTDR) 

were purchased from Life Technologies Corporation. All other chemicals used were commercially 

available, reagent-grade products.  

2.2. Experimental Animals 

Female Wistar Hannover rats (7–9 weeks old) were purchased from Sankyo Labo Service  

(Sapporo, Japan). Rats with body weight in the range 150–180 g were used in all experiments.  

All animal protocols were approved by the institutional animal care and research advisory committee 

at the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (date: 22 March 2013, 

registration No. 13-0062). 
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2.3. Preparation of Condensed pDNA Particles 

To prepare condensed pDNA particles, solutions of pDNA (0.3 mg/mL) and protamine were mixed 

in 10 mM HEPES buffer (pH 7.4) under vortexing at various nitrogen/phosphate (N/P) ratios. Particle 

diameters were measured using a quasi-elastic light scattering method by a Zetasizer Nano ZS 

(Malvern Instruments, Worcestershire, UK). The zeta-potentials, the nature of the electrostatic 

potential near the surface of a particle, were determined by laser doppler micro-electrophoresis in 

which the velocity of the particles in an electric field were measured using the Zetasizer Nano ZS. 

2.4. Validation of pDNA Condensation and Decondensation 

To evaluate the release of pDNA, condensed pDNA with protamine at an N/P ratio of 2.3 was 

subjected to agarose gel electrophoresis before and after treatment with a polyanion. Prior to 

electrophoresis, the samples were treated with a polyanion solution, i.e., 1 mg/mL poly(L-aspartic acid) 

(pAsp), for 20 min at 25 °C to release the pDNA. A 0.1-μg sample of pDNA was subjected to 

electrophoresis. Electrophoresis was performed on a 1% agarose gel in TAE (40 mM Tris-HCl, 40 mM 

acetic acid, 1 mM EDTA, pH 8.0) at 100 V for 20 min. The gel was stained with ethidium bromide. 

2.5. Hydrodynamic Injection into the Limb Vein of Rats 

Rats were anesthetized with a pentobarbital (37.5 mg/kg) solution via an intraperitoneal injection. 

Prior to each pDNA injection, a tourniquet was placed on the upper hind limb to restrict blood flow 

into and out of the hind limb. Basically, naked pDNA or condensed pDNA suspensions (3 mL) 

containing 184 μg pDNA were injected in 20 s from a distal site of the dorsalis pedis vein. At 2 min 

after the injection, the tourniquet was released. A schematic diagram of this methodology, which was 

previously reported for the HLV injection of naked pDNA [5], is shown in Figure 1. 

2.6. Quantification of pDNA in Mitochondria-Enriched Fraction after HLV Injection 

The experimental protocol was designed based on findings obtained in our previous report [5]. At 

24 h postinjection, the rats were sacrificed, the crural muscles harvested, and the mitochondria-enriched 

fraction was then obtained from the tissue (see the Supplemental Material for details). We first 

extracted total DNA including mtDNA from muscle tissue using a GenElute Mammalian Genomic 

DNA Miniprep Kit (Sigma-Aldrich Co., St Louis, MO, USA) to determine the copy numbers of 

mtDNA per mg of muscle protein (mtDNAmuscle [mtDNA-copy/mg muscle protein]). Copy numbers of 

mtDNA were estimated by quantitative real-time PCR (q-PCR) (see the Supplemental Material for 

details), and concentrations of the muscle protein were measured using a BCA protein assay kit 

(Pierce, Rockford, IL, USA). We next extracted pDNA and mtDNA from the mitochondria-enriched 

fraction using SepaGene (Sanko Jun-yaku, Tokyo, Japan), and the copy numbers of pDNA and 

mtDNA were measured by q-PCR to determine the amount of pDNA per mtDNA in mitochondria-

enriched fraction (pDNAmt [fg pDNA/mtDNA-copy]). The amount of pDNA in the mitochondria-

enriched fraction of muscle tissues were calculated as follows: 
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Mitochondrial association with pDNA [fg pDNA/mg muscle protein] = mtDNAmuscle  

[mtDNA-copy/mg muscle protein] × pDNAmt [fg pDNA/mtDNA-copy]. 

2.7. DNase Treatment of Mitochondria-Enriched Fraction Following HLV Injection of pDNA 

The experimental protocol was designed based on findings obtained in our previous report [5].  

At 24 h after the HLV injection of condensed pDNA suspensions (184 μg, 3 mL), the rats were 

sacrificed, the crural muscles were harvested, and a mitochondria-enriched fraction was then obtained 

from the tissue. The mitochondria-enriched fraction in a total volume of 38 μL was incubated with  

20 U of Recombinant DNase I (RNase-free) (Takara Bio Iic., Shiga, Japan) at 37 °C for 30 min,  

and 2 μL of 0.5 M EDTA (pH 8.0) was then added and the suspension was incubated at 80 °C for  

2 min to stop the reaction. A similar procedure was carried out, but without the DNase I treatment  

to produce a sample that had not been subjected to DNase I treatment. We next extracted pDNA  

and mtDNA from the mitochondria-enriched fraction, and the amount of pDNA and mtDNA  

were measured by q-PCR. Finally we determined the amount of pDNA per mtDNA in  

mitochondria-enriched fraction (ng pDNA/mg mtDNA). 

2.8. COX Staining 

The experimental protocol was designed based on findings obtained in our previous report [5].  

At 24 h postinjection, the rats were sacrificed, the crural muscles containing the gastrocnemius/soleus 

were harvested, and COX staining was performed on the dried tissue sections. COX is the collective 

name for the part of the oxidative respiratory chain of enzymes that are located exclusively in the 

mitochondria of cells. Briefly, 5-μm thick sections of tissues were prepared on coverslips with a  

Tissue-Tek Cryo 3D cryostat (Skura Finetek Japan Co., Ltd, Tokyo, Japan). The sections were then 

placed in the incubating medium (0.1 M CH3COONa, 2 mg/mL di-amino benzidinetetrachloride 

(DAB), 0.1% MnCl2, 0.1% H2O2, pH 5.5) for 1 h at 37 °C. The section was washed with deionized 

distilled H2O and then treated with 1% CuSO4 for 5 min. After washing the section with deionized 

distilled H2O, it was dehydrated in an ascending series of alcohols (50%, 70%, 80%, 90%, 95%,  

100% × 2) and cleared in xylene. The section was mounted and then observed by microscopy. The use 

of DAB results in a brown insoluble compound at the site of cytochrome oxidase activity.  

In this experiment, we used COX-positive cells, which were stained brown, indicating that they had 

COX activity. We also calculated the ratios of COX-positive cells and the values are indicated  

on each image. 

2.9. Observations of Mitochondrial Membrane Potentials in Muscle Tissue 

The experimental protocol was designed based on findings obtained in our previous report [5].  

At 24 h postinjection, the rats were sacrificed and the crural muscles containing the gastrocnemius/soleus 

were harvested. The muscle tissues were treated with TMRM and MTDR to stain mitochondria,  

and were then observed by confocal laser scanning microscopy (CLSM). TMRM and MTDR were 

purchased from Life Technologies Corporation. TMRM, a conventional fluorescent stain for 

mitochondria, is easily washed out once the mitochondria experience a loss in membrane potential.  
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On the other hand, MTDR is also selective for mitochondria and the stain is retained, even when 

mitochondrial membrane potential is lost. This experiment allowed us to evaluate the extent to which 

the hydrodynamic injection affected mitochondrial membrane potential. Briefly, the muscle tissues 

were incubated for 20–30 min in Hank's buffered salt solution containing TMRM (final concentration, 

1 μM), MTDR (final concentration, 1 μM). Fluorescent images were obtained by CLSM (Nikon A1; 

Nikon Co. Ltd., Tokyo, Japan). The tissue specimens were excited at a wavelength of 561 nm by a 

DPSS laser. A series of images were obtained using a Nikon A1 confocal imaging system equipped 

with a water immersion objective lens (Plan Apo 60_1.20 PFS WI) and a 1st dichroic mirror 

(405/488/561/640). The two fluorescence detection channels (Ch) were set to the following filters: 

Ch1: 595/50 (red color) for TMRM and Ch2: 700/75 (cyan pseudo color) for MTDR. When the 

mitochondrial membrane potential was depolarized, the muscle tissues were treated with carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP, Sigma), a mitochondrial uncoupler, before 

observation (final concentration of FCCP, 100 μM). 

2.10. Statistical Analysis 

The diameters and zeta-potentials of condensed pDNA formed using protamine at a series of N/P 

ratios were measured respectively. Each value shown in Figure 2A is represented by the mean ± S.D  

(n = 4). Mitochondrial association with pDNA compared between naked pDNA and condensed pDNA 

at various injection volumes were evaluated. Each value shown in Figure 3 is represented by the  

mean ± S.D. (n = 3–5). Statistical significances between naked pDNA and condensed pDNA, and 

among injection volumes were examined by the two-way ANOVA, followed by Bonferroni correction. 

Detection of exogenous pDNA in the mitochondria-enriched fraction before and after DNase treatment 

were evaluated. Each value shown in Figure 4 is represented by the mean ± S.D. (n = 3). Statistical 

significances between before and after treatment with DNase I were examined by the two-tail unpaired 

student’s t-test. The ratios of COX-positive cells compared between saline administered muscle  

and condensed pDNA administered muscle were evaluated. Each value shown in Figure 5A is 

represented by the mean ± S.D. (n = 3). Statistical significances between saline and condensed pDNA 

administered muscles were examined by the two-tail unpaired student’s t-test. Levels of p < 0.05 were 

considered to be significant. 

3. Results and Discussion 

3.1. Condensation of pDNA and the Evaluation of the Physiochemical Properties 

The optimal conditions were determined for condensing pDNA with protamine, a condenser 

showing efficient DNA release [13,14]. pDNA was mixed with protamine at several N/P ratios to form 

nanoparticles and their diameters and ζ-potentials were then measured (Figure 2A). Figure 2A  

(left panel) shows the diameters of the condensed pDNA, in which particles with diameters of ~100 nm 

were formed at N/P ratios higher than 1.5. Figure 2A (right panel) shows the ζ potentials of condensed 

pDNA, where the charges of particles had changed from minus to plus when the N/P ratio was 

increased. In this experiment, we used small positively charged particles that were formed at an N/P 

ratio of 2.3. As shown in Figure 2B, the condensed pDNA was a positively charged nanoparticle with a 
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pDNA, the value for a 5 mL injection volume (black column in right, Figure 3) was significantly 

higher than the others. These results suggest that, to achieve the efficient mitochondrial association 

with condensed pDNA by HLV injection, a high injection volume might be required. 

As shown in Figure 3, the use of condensed pDNA increased the amount of pDNA in the 

mitochondria-enriched fraction following HLV injection compared to naked pDNA. Here, we 

considered the reasons for why condensation of pDNA enhanced mitochondrial association following 

HLV injection. In previous reports regarding nuclear transgene expression using mice and HLV 

injections, Itaka et al. showed that condensed pDNA resulted in about a 200-fold increase in the 

amount of intact pDNA in muscle compared to naked pDNA [10]. This report prompted us to consider 

that condensed pDNA, which has a small rigid structure, may have easy access to myofibrillar 

mitochondria, which are present on muscle fibers far from blood vessels. On the other hand, the results 

of previous in vitro experiments suggest that the mitochondrial import of large-sized cargoes might be 

inhibited in many cytoskeletons and a high density of cell components inside the cells [15]. 

Hydrodynamic force may assist condensed pDNA in accessing mitochondria, even in such a cell 

environment, although the mitochondrial import of condensed pDNA would be hindered by 

intracellular barriers. It is also presumed that condensed pDNA with a positive charge would bind 

readily to mitochondria, because a high negative potential would be maintained. 

Another possibility is that the use of pDNA condensed with polycations could influence the levels 

of exogenous pDNA in myofibrillar mitochondria. Previous reports showed that the amounts of naked 

pDNA in the nuclei of liver cells decreased to 1/10 at 24 h after hydrodynamic injection into tail vein 

of mice [16]. Thus, the more than a 100–1000 fold increase in the levels of exogenous pDNA in the 

mitochondria-enriched fraction (Figure 3) cannot be explained only by protecting pDNA from 

degradation, although the target organ and organelle were different between the current study and the 

previous study. Based on previous reports and our results, we concluded that the high levels of 

exogenous pDNA in the mitochondria-enriched fraction (when condensed pDNA was used) can be 

explained, not only by the protection of pDNA from degradation but also by an enhancement in the 

mitochondrial association with pDNA. 

3.3. DNase Treatment of Mitochondria-Enriched Fraction Following HLV Injection of Condensed pDNA 

In the previous study, we showed that mitochondrial delivery of naked pDNA by HLV injection 

achieved the localization of exogenous pDNA in inside a mitochondrion, based on the DNase I digestion 

experiment [5]. As shown in Figure 4, we detected exogenous pDNA in the mitochondria-enriched 

fraction that had been treated with DNase I, after the HLV injection of condensed pDNA. As a result, 

the levels of exogenous pDNA in the mitochondria-enriched fraction following the HLV injection of 

condensed pDNA (184 μg, 3 mL) were comparable to the values before and after the DNase I 

treatment (Figure 4). We also confirmed that pDNA was released from the condensed pDNA when 

mixed with the mitochondria-enriched fraction, and DNase I digested the pDNA (data not shown).  

Our results suggest the possibility that the HLV injection of condensed pDNA resulted in the 

localization of exogenous pDNA inside mitochondria, although the mechanism responsible for this 

remains unknown. This issue will be investigated in the future. 
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3.4. Evaluation of Mitochondrial Toxicity in Skeletal Muscle after HLV Injection of Condensed pDNA 

Since the use of HLV injection for the efficient delivery of pDNA involves rather severe conditions, 

a toxicity assessment is an important issue that is related to the potential therapeutic utility of this 

methodology. Therefore, we previously investigated mitochondrial toxicity following HLV injection, 

and an evaluation of COX activity and mitochondrial membrane potentials showed that the HLV 

injection had no significant effect on mitochondrial function [5]. 

Figure 4. Detection of exogenous pDNA in the mitochondria-enriched fraction before  

and after DNase treatment. At 24 h after HLV injection of the condensed pDNA, the  

crural muscles were harvested, and the pDNA in mitochondria-enriched fraction was  

then measured using q-PCR, before and after treatment with DNase I. Bars indicate  

means ± S.D. (n = 3). Statistical analysis was performed by a two-tailed unpaired Student’s 

t-test. N.S. indicates non-significant difference. 

 

Here we evaluated mitochondrial toxicity after the HLV injection of condensed pDNA, which 

resulted in a more efficient mitochondrial association with pDNA. Myofibrillar mitochondrial activity 

was evaluated by COX staining, after performing an HLV injection (Figure 5A). Saline administered 

muscle was used as a positive control for COX staining where COX-positive cells are stained brown 

[Figure 5A(a)]. COX-positive cells were observed in skeletal muscles after the HLV injection of 

condensed pDNA [Figure 5A(b)]. It was also confirmed that the ratios of COX-positive cells between 

saline administered muscle (26% ± 4%) and condensed pDNA administered muscle (26% ± 7%) were 

comparable. The results indicate that the mitochondria maintained COX activity in skeletal muscles 

after the HLV injection of condensed pDNA. 

Mitochondrial membrane potentials of the soleus of crural muscle following HLV injection were 

also evaluated (Figure 5B). The staining of mitochondria with tetramethylrhodamine (TMRM)  

(red color; a,c,e, Figure 5B) is dependent on the membrane potential, while MitoTracker Deep Red 633 
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We also confirmed that mitochondria were incompletely stained by TMRM, when the 

mitochondrial membrane potential was depolarized, in the case where muscles were treated with FCCP 

(a mitochondrial uncoupler) (e,f in Figure 5B). These results indicate that the HLV injection of 

condensed pDNA does not cause a significant decrease in the mitochondrial membrane potential, 

compared to the FCCP treatment. A similar tendency regarding mitochondrial membrane potentials 

was observed in the case of the gastrocnemius of crural muscles (Figure 5C). 

4. Conclusions 

Condensation of pDNA enhances the mitochondrial association with pDNA following HLV 

injection. The results suggest that the physicochemical state of pDNA appears to play key role in 

mitochondrial delivery by HLV injection. Moreover, the evaluation of COX activity and mitochondrial 

membrane potentials showed that HLV injection was not toxic to mitochondria. These findings can 

contribute to the development of in vivo mitochondrial gene delivery systems. Planned future studies 

involve attempts to achieve in vivo mitochondrial transgene expression by HLV injection in 

conjunction with experts in mitochondrial molecular biology. Studies directed toward this goal are 

currently in progress. 
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