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Abstract: This study analyzed the chemical composition of Cymbopogon citratus essential oil from
Puebla, México, assessed its antioxidant activity, and evaluated in silico protein–compound interac-
tions related to central nervous system (CNS) physiology. GC–MS analysis identified myrcene (8.76%),
Z-geranial (27.58%), and E-geranial (38.62%) as the main components, with 45 other compounds
present, which depends on the region and growing conditions. DPPH and Folin–Ciocalteu assays
using the leaves extract show a promising antioxidant effect (EC50 = 48.5 µL EO/mL), reducing
reactive oxygen species. The bioinformatic tool SwissTargetPrediction (STP) shows 10 proteins as
potential targets associated with CNS physiology. Moreover, protein–protein interaction diagrams
suggest that muscarinic and dopamine receptors are related to each other through a third party.
Molecular docking reveals that Z-geranial has higher binding energy than M1 commercial blocker
and blocks M2, but not M4 muscarinic acetylcholine receptors, whereas β-pinene and myrcene block
M1, M2, and M4 receptors. These actions may positively affect cardiovascular activity, memory,
Alzheimer’s disease, and schizophrenia. This study highlights the significance of understanding
natural product interactions with physiological systems to uncover potential therapeutic agents and
advanced knowledge on their benefits for human health.
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1. Introduction

Cymbopogon citratus is a perennial herb of the Poaceae family that is reproduced by
cuttings. Its origin is in India, Sri Lanka, and Malaysia, and it is now cultivated in tropical
and subtropical areas, including Mexico and Latin America [1]. Employed in traditional
medicine worldwide, C. citratus has a broad range of applications, such as in antibacte-
rial, antifungal, antiprotozoal, anticancer, anti-inflammatory, antioxidant, cardioprotective,
antitussive, antiseptic, and antirheumatic activities [1–3]. Notably, it demonstrates hypo-
glycemic effects, making it potentially useful as an antidiabetic, and the ability to induce
apoptosis in various cancer cells by increasing reactive oxygen species (ROS). Consequently,
many research groups focused on elucidating the interrelation of compounds responsible
for these bioactivities, whether from the complete plant or its leaves essential oil (EO). How-
ever, the action mechanisms underlying these biological effects remain largely unknown,
primarily because they have been studied in isolation and without molecular objectives.

C. citratus, or lemongrass, exhibits a wide range of biologic activities due to its diverse
bioactive compounds. The plant’s antimicrobial properties encompass both antibacterial
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and antifungal actions, with efficacy against Gram-negative and Gram-positive bacterial
strains [4] and fungi such as Aspergillus spp., Mucor indicus [5], Botrytis cinerea [6], and
Aspergillus flavus and Aspergillus parasiticus [7]. Lemongrass demonstrates anti-aspergillosis
potential by inhibiting enzymes essential for fungal cell wall synthesis [4–8]. Lemongrass
also shows promise in the realm of human health, with hepatoprotective effects against
hepatocellular injury in diabetic rats [9], cholesterol-lowering potential by preventing gut
absorption [10], and the ability to overcome doxorubicin resistance in cancer cells [11]. In the
area of oral health, lemongrass combined with chlorhexidine can effectively reduce bacterial
counts in microcosm biofilms, paving the way for new mouthwash formulations [12].

Anxiolytic, anticonvulsant, and maybe preventative qualities against Alzheimer’s dis-
ease are among the plant’s neuroprotective benefits that are linked to volatile components
including citral, geraniol, and linalool [13,14]. As evidenced by its topical use in lowering
skin erythema and edema [15] and its inclusion into chitosan bioactive films for skincare
applications [16], lemongrass also has antioxidant [9,17,18] and anti-inflammatory effects.
The biological activities of C. citratus have been attributed to the secondary metabolites
present in both the plant matrix and essential oils. The species reportedly contains tannins,
saponins, flavonoids, alkaloids, and, predominantly, terpenes in the leaves essential oil.
Citronellal, myrcene, and β-pinene are of particular interest for their potential relation-
ship with biological functions [19,20]. Recently, bioinformatic tools have contributed to
establishing such a correlation.

An activity closely associated with C. citratus is the sedative effect due to its action on
the CNS; however, this activity presents discrepancies in various studies [21]. Nevertheless,
its EO does have a neuroprotective effect by promoting glutamate release and inhibiting the
GABA receptor, providing a guideline for the effect among species [22]. These discrepancies
could be attributed to the variants of C. citratus and the composition of the EO, influenced by
factors such as sowing and harvesting seasons, light–dark time cycles, nutrient availability,
and exposure to different herbivores, among others. Therefore, this manuscript studied
the essential oil of C. citratus (Figure 1) grown under controlled organic conditions at
the University Botanical Garden of the BUAP, using a hydrodistillation technique for the
qualitative determination of its secondary metabolites, as well as quantitative analysis by
GC–MS for its extraction. The antioxidant activity was assessed using the 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assay. Some of the obtained chemical structures were related to the
reported biological activity through in silico studies of structural similarity and molecular
coupling with proteins associated with CNS physiology.
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2. Materials and Methods
2.1. Vegetal Material

Fresh C. citratus plant material was collected between 8:00 and 10:00 am during the
maturity season. It was grown under organic controlled conditions at the BUAP University
Botanical Garden.

2.2. Extraction

The fresh plant material (100 g) was cut into 1 cm2 pieces and placed in the round-
bottomed flask of a modified Clevenger-type steam system, in contact with 300 mL of
distilled water, and boiled in a cyclic system for 4 h. Subsequently, the volume of oil in the
bubble was determined. Water was removed with Na2SO4 and then stored at 4 ◦C. The
modification in the Clevenger equipment involved the addition of a respirator to eliminate
water vapor, preventing overpressure (Figure 2).
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2.3. Phytochemical Test

Phytochemical tests for flavonoids, saponins, lactones, phenolic hydroxyls, unsatu-
ration, coumarins, alkaloids, sesquiterpene lactones, steroids, terpenes, carbonyl groups,
sugars, and anthocyanins were performed on both plant material and C. citratus EO using
previously reported methodologies [23–25].

2.4. GC–MS Analyses

The separation, quantification, and identification of the chemical components present
in the EO of C. citratus were carried out using Agilent Model 7890A gas chromatograph
coupled with Agilent Series 5975 mass selective detector. A 20% solution of the EO (0.64 mL)
in chloroform was prepared, and 1.0 µL aliquots were injected into the chromatographic
column using an Agilent G4513A automatic liquid sampler. The analysis was performed in
split-less mode with the injector at a temperature of 250 ◦C, using a fused silica HP-5MS
capillary column (30 × 0.25 mm ID × 0.25 µm and He (Praxair Grade 5) as carrier gas
at a constant flow of 1 mL/min. The column oven was operated using a temperature
program with three heating ramps (45 ◦C to 150 ◦C @ 4 ◦C/min; 150 ◦C for 2 min; 150 ◦C
to 250 ◦C @ 5 ◦C/min; 250 ◦C for 5 min; 250 ◦C to 275 ◦C @ 10 ◦C/min). The detector
was operated in electron impact mode with an ionization energy of 70 eV and a current
of 100 mA. Mass spectra were recorded in the range of 35 to 500 Da, with scan intervals
of 0.32 s; the total analysis time was 71 min. The identification and calculation of relative
percentage amounts of each component in the analyzed mixture were determined using
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Agilent G1701EA ChemStation software library and integrators, respectively. The peaks
were analyzed using NIST MS Library software.

2.5. Antioxidant Activity

The free radical scavenging DPPH assay was used according to the reported method-
ology [26,27], and absorptions were measured at 517 nm reading. The potential antioxidant
activity of the essential oil was measured in triplicate samples for those obtained in inde-
pendent collections. Eight solutions at different concentrations of EO in ethanol (150, 100,
75, 50, 35, 25, 10, and 1 µL/mL) were prepared. A total of 2.7 mL of EO solution was used
to perform the antioxidant tests and 0.7 mL of DPPH solution. Gallic acid was used as
standard and for the calculation of the percentage of inhibition the following relation was
used: %Inhibition = [Blank − Test]/Blank × 100. A second test to evaluate the antioxidant
activity was carried out through the determination of total phenols by the ABTS and Folin–
Ciocalteu technique, according to the methodology previously reported [28–31]. The same
doses mentioned above were used for the test, and the results were reported as equivalents
of gallic acid.

2.6. In Silico Studies

The similarity study was carried out by SwissTargetPrediction, and a cumulative fre-
quency diagram was constructed [32]. Human protein structures were obtained from the Pro-
tein Data Bank for acetylcholinesterase (AChE, 4M0E) [33], cannabinoid receptor 1
(CB1, 5TGZ) [34], cannabinoid receptor 2 (CBR2, 5ZTY) [35], D2 dopamine receptor (DR2,
6LUQ) [36], monoamine oxidase B (MAOB, 6YT2) [37], M1 muscarinic acetylcholine
receptor (M1, 6ZFZ) [38], M2 muscarinic acetylcholine receptor (M2, 5ZK8) [39], and
M4 muscarinic acetylcholine receptor (M4, 5DSG) [40]. All proteins were prepared in
Schrödinger [41] according to the previously reported methodology, with crystalliza-
tion molecules removed and water > 5.0 A, adjusting to pH 7.4 and minimizing with a
RMSD < 0.3 A [42]. Reference ligands and inhibitors/blockers were obtained from the refer-
ences cited in Table 3 (Pag 9) and prepared with the Schrödinger LigPrep [41] according to
the previously reported methodology at pH conditions of 7.4, retaining the stereochemistry
of the reported molecules and with a limit of tautomer and protonation states of 32 per
molecule [42]. Finally, a non-rigid coupling system was used in Schrödinger glide [43], the
softening of the nonpolar parts of the receptors was carried out by scaling the van der Waals
radii by a 0.08 factor. Atoms were considered nonpolar if they were determined that their
absolute partial atomic charge was <0.25, according to the methodology reported in [42],
with amino acids Cys, Ser, and Tyr allowed to move freely. The slip coupling scores were
performed in three high-throughput virtual sensing (HTVS) modes, standard precision
(SP), and additional precision (XP). First, docking with reference molecules of the respective
protein targets was performed to validate the docking protocol with OPLS4 as force field,
each protein was validated by redocking with the co-crystal, obtaining RMDS < 1.5 A in
all cases.

3. Results and Discussion

The phytochemical analysis and bioactivity of an essential oil are complex, mainly
because its composition depends on several factors, such as altitude, climate, and pests,
among others. Available data from different places of Mexico and other countries reveal
that the composition of essential oils is not homogeneous [19,44–46]. Under controlled and
completely organic cultivation conditions, carried out in the University Botanical Garden,
the plant material provided a constant and accurately identified number of compounds.
With this starting point, four phases of study were carried out; the first phase corresponded
to the extraction and qualitative study of the essential oil’s secondary metabolites. The
second phase included the determination of its composition by GC–MS. The third phase
involved the determination of antioxidant activity using the DPPH and Folin–Ciocalteu
techniques. The fourth phase consisted of an in silico study to determine the interaction of
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the found metabolites with proteins in the CNS as specific targets, to propose a hypothesis
of the correlation between the essential oil’s compounds and their biological function.

3.1. Extraction and Phytochemical Tests

The extraction process was carried out by hydrodistillation in a modified Clevenger
apparatus (Figure 2A) for 4 h. In this process, the fresh plant material was always in contact
with water, and the volatile compounds were extracted by steam dragging and condensed
at a low temperature in a cyclic process, obtaining 0.64 ± 0.07 mL of oil for every 100 g of
plant material.

To determine the type of secondary metabolites present in the plant material and
in the oil, phytochemical tests were performed, highlighting that higher responses were
obtained from the essential oil. Results of phytochemical analyses are shown in Table 1.
One characteristic is that alkaloids are detected in the plant material but absent in the EO,
indicating that the pathway of affectation against the CNS is not due to a psychotropic
alkaloid. With the rest of the tests, congruence between plant material and EO is observed.
For unsaturated and carbonyl groups, their contents increase in the essential oil, indicating
that the essential oil is enriched with mono- and sesquiterpenes. On the other hand, in the
case of steroids, sugars, and anthocyanins, a qualitative low presence in the EO is observed,
due to the low solubility of those compounds in the water medium used for the extraction
technique. Flavonoids, saponins, lactones, coumarins, and sesquiterpene lactones are not
detected in either the vegetal material or the EO.

Table 1. Compounds identified in C. citratus plant material and essential oil.

Secondary Metabolite Group Fresh Vegetal Material Essential Oil

Phenolic hydroxyls - -

Unsaturation ++ +++

Alkaloids + -

Steroids and terpenes +++ +

Carbonyl groups ++ +++

Sugars +++ +

Anthocyanins ++ -
- no detected, + low concentration, ++ appreciable concentration, +++ high concentration.

The low amount of positive phytochemical component groups detected in fresh plant
material allows for rapid analysis of EO for nonpolar and low polar compounds by GC–MS
coupled to a compound library.

3.2. GC–MS

In the GC chromatogram, a low number of peaks can be observed compared to
other essential oils and extracts of natural products, and among them, three highlighted
peaks corresponding to myrcene, Z-geranial, and E-geranial at 7.7, 16.5, and 17.6 min of
retention time, respectively, account for 10.7%, 32.1%, and 32.9% of the total EO content,
respectively. The remaining 24.3% corresponds to 45 compounds, highlighting structures
such as pulegone (0.98%, 13.28 min), (S)-linalool (1.24%, 10.69 min), tetrahydrocarvone
(1.73%, 13.56 min), and geranylgeraniol (1.56%, 37.95 min). The respective structures
are shown in Figure 3. These data show a high correlation with the observations in
phytochemical tests. The content of secondary metabolites is quite diverse when compared
to the literature. Pino et al. reported high volatile content with 33.2% Z-geranial and 39.8%
E-geranial and 9.6% myrcene as major products [19]. In contrast, Ekpentong et al. reported
a mixture of geranial isomers of 70–85%, as well as isopulegol, myrcene, and L-linalool [44].
On the other hand, Gbenou et al. reported the same components, but with myrcene at
8.63 min with 27.83% and Z-geranial at 14.25 min with 27.04%, and E-geranial at 15.18 min
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with 19.93% [45], demonstrating that the composition and distribution of the metabolites
depend entirely on the region and culture conditions. However, Pandelo et al. did report the
low presence of myrcene and Z-geranial (31.5%) and E-geranial (26.1%) [46]. These reports
demonstrate great variability in the content and distribution of EO components. Although
geranial isomers are constant, the rest of the metabolites and their content depends on
the culture conditions, and, mainly due to the biotic and abiotic stress conditions they are
subjected to, the content is directly associated with various biological activities, mainly
antioxidants, related to the central nervous system, and antimicrobial properties [26,44–48].
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3.3. Antioxidant Activity

Considering the presence of aldehydes, which have a latent antioxidant potential due
to their reactivity, as well as the presence of some flavonoids, although in a low percentage,
the antioxidant activity is viable for this essential oil. Two tests were carried out: first, the
inhibitory capacity of oxidation of the DPPH free radical. Table 2 shows the percentage
of inhibition obtained in relation to the concentration of the EO; one notable observation
is that at 100 µL/mL in ethanol, the inhibition of the oxidative process of DPPH is better
than 50%, but below 10 µL/mL, this effect is negligible. These data suggest that the most
abundant metabolites are the ones that have an antioxidant effect in favor of the DPPH
free radical. In the same way, in the ABTS test, a high antioxidant activity is obtained, for
150 µL EO/mL of 67.79 ± 7.55% and for 50 µL EO/mL, 45.36 ± 8.10%, demonstrating an
antioxidant pathway by the terpenes contained in the oil.

Table 2. Antioxidant capacities of C. citratus essential oil.

Concentration (µL EO/mL) DPPH (%)

150 76.30 ± 1.23

100 72.15 ± 2.62

75 59.58 ± 2.25

50 52.11 ± 1.98

35 18.16 ± 3.15

25 8.66 ± 0.87

10 0.0 ± 0.0
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To determine the antioxidant level by a second test, the Folin–Ciocalteu test was carried
out, and the result indicate the absence of phenols. The antioxidant activity observed at
various levels demonstrates a potential effect on the CNS at the level of reducing reactive
oxygen species, natural oxidants in the CNS, focusing on neuroprotective activity. Given
the high lipophilicity of the compounds and the entry into the CNS, this would enable an
interaction with specific proteins.

3.4. In Silico Studies

Given the potential physiological actions of the essential oil, both what is reported
in the scientific literature and what is obtained with the antioxidant activity is of interest
to study the possible interactions of the metabolites contained in this essential oil. When
studying these metabolites using the SwissTargetPrediction tool, we obtained the frequency
diagram shown in Figure 4, This diagram shows in percentages the frequency with which
a target presents a non-zero probability of interaction of a set of molecules, in this case,
the metabolites found in the essential oil. Two groups of proteins stand out; the first
group is part of the hormonal system, and the second group, those of higher frequency, are
associated with the neuron physiology.
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With the 10 proteins obtained associated with CNS physiology, a proteomic interaction
diagram was constructed (Figure 5A). There is a direct interaction between these proteins
at different levels. In the center is AChE [49,50], which interacts directly with the three
muscarinic receptors, as it regulates the acetylcholine concentration. However, it also
correlates with other proteins such as monoamine oxidase B (MAOB), dopamine receptor
D2 (DRD2), cannabinoid receptor 1 (CNR1), and solute carrier family 6 member 3 (SLC6A3).
Interactions between MAOB, DRD2, and SLC6A3 are possible since MAOB regulates
dopamine levels and SLC6A3 regulates its transport [51]. However, the cannabinoid
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receptor has no common ligands, suggesting indirect mediation with acetylcholine levels in
the synaptic cleft. In the case of sigma nonopioid intracellular receptor 1 (SIGMAR1) [52,53],
the interaction is correlated between cholinergic receptor muscarinic 1 (CHRM1) and DRD2,
as a mediator of these two proteins. Given the obtained relationships, an interaction by third
interactors is proposed, obtaining the interaction diagram with a limit of five interactors
(Figure 5B), giving rise to interactions with four new proteins: guanine nucleotide-binding
protein G(i) subunit alpha-1 (GNAI1), arrestin beta 2 (ARRB2), heat shock 70 kDa protein
(Hsp70), binding protein 1 (HSPA), and synuclein alpha (SNCA), which explains the
indirect interactions between muscarinic receptors and the dopaminergic pathway.
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Given the high interrelation of proteins, it was important to analyze the biological
function of each of these proteins and the diseases related to them to find the possible
applications of this oil and explain the effects reported in the scientific literature. Table 3
shows a summary of this information, highlighting the association with two neurotrans-
mitters, acetylcholine [49,50] and dopamine [54–56], which play crucial roles in human
physiology such as the control of voluntary movement, motivation, and cognitive func-
tions, among others. These functions support the effect on the CNS, as altering these two
systems can generate relaxation and neuroprotective effects. The pathologies related to this
group of phytoconstituents are Alzheimer’s and Parkinson’s disease, given the regulation
of acetylcholine levels and AChE activity, whose inhibition increases the levels of this
neurotransmitter. In addition, an effect on cannabinoid receptors is found, which explains
the effect on behavior reported for this essential oil.
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Table 3. Target proteins, secondary metabolites in C. citratus and related biological function.

Target Frequency (%) Substrates/Inhibitor Disease-Related Biological Functions Ref.

Cannabinoid receptor 2
(CNR2) 29.63

JWH133, arachidonoyl
ethanolamine (AEA) and
2-arachidonoylglycerol

(2-AG)

Multiple sclerosis,
Alzheimer’s disease

(AD)

Neuroinflammation,
pain, and anxiety [57,58]

Dopamine D2 receptor
(DRD2) 29.63

Haloperidol,
fluphenazine,

chlorpromazine,
risperidone, olanzapine,
paliperidone, dopamine

Schizophrenia (SCZ) Cognition, mood, and
motor movements [54–56]

Monoamine oxidase B
(MAOB) 24.07 Selegiline, rasagiline Parkinson’s disease Dopamine metabolism [59]

Muscarinic
acetylcholine receptor

M1
(CHRM1)

22.22 Xanomeline Alzheimer’s disease Learning and memory [60]

Dopamine transporter
(SLC6A3) 18.52

Dopamine, pramipexole,
ropinirole, rotigotine,

apomorphine

Parkinson’s disease,
bipolar disorder,
attention deficit

hyperactivity
disorder, and

dopamine
transporter

deficiency syndrome.

Translocate dopamine (DA) [51]

Muscarinic
acetylcholine receptor

M4 (CHRM4)
18.52 Pirenzepine,

acetylcholine

Alzheimer’s disease,
schizophrenia, and

drug addiction

Regulation of the
transmission [40,61]

Sigma opioid receptor
(SIGMAR1) 18.52 1,3 di-O-tolyl guanidine

(DTG), haloperidol

Addiction,
depression, pain,

neurodegenerative
conditions, cancer,
and amyotrophic
lateral sclerosis

Endoplasmic reticulum
stress, autophagy, lipid
transport, ion channel

regulation, cognition, and
memory

[52,53]

Acetylcholinesterase
(ACHE) 16.67 Donepezil, galantamine,

Alzheimer’s disease
AD, Huntington’s
disease, multiple

sclerosis,
Parkinson’s disease

Development of
neuromuscular junctions,

thalamocortical
connections, axon growth,

and apoptosis

[49,50]

Cannabinoid receptor 1
(CNR1) 16.67

CP55940, JWH-015,
WIN55212-2,
Arachidonoyl

ethanolamine (AEA),
2-Arachidonoylglycerol

(2-AG)

Huntington’s disease
(HD), multiple
sclerosis (MS),

Alzheimer’s disease
(AD)

Learning, memory, pain,
analgesia, anxiety,
epilepsy, appetite

[57,62]

Muscarinic
acetylcholine receptor

M2
(CHRM2)

16.67
BIBN-99, 3-quinuclidinyl-

benzilate, N-methyl
scopolamine

Alzheimer’s disease,
schizophrenia,

Parkinson’s disease,
and chronic
obstructive

pulmonary disease

Cardiovascular function
through G-protein-coupled

activation
[63,64]

Although establishing a connection between proteins and biological function is not
sufficient to predict a physiological effect, determining it involves high cost. In silico
studies enable the establishment of a correlation at the energy level, allowing comparisons
with endogenous ligands, substrates, or inhibitors to propose potential therapeutic effects.
Table 4 presents the molecular coupling energies with each of the proteins that have a
reported crystal (PDB database), as well as the energy of each of the selected controls.
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Table 4. Coupling energies (molecular docking) among components of C. citratus essential oil and
protein targets. Red relates to an endogenous reference. Green relates to an inhibitor reference.

RT (min) Name Abundance AChE CBR2 DR2 CBR1 M1 M2 M4 MAOB
7.75 β-Myrcene 8.76 −4.059 −6.017 −5.717 −5.840 −6.297 −7.025 −6.741 −2.987

7.87 4-Carene 0.40 −4.456 −6.637 −5.897 −6.341 −6.787 −7.040 −7.276 −3.390

8.56 β-Pinene 1.94 −4.709 −6.193 −5.459 −5.827 −6.163 −6.762 −6.931 −3.173

9.07 α-Ocimene 0.40 −1.969 −3.778 −3.422 −3.315 −3.196 −4.042 −3.971 −0.510

9.18 β-Ocimene 0.40 −2.376 −4.469 −4.005 −4.170 −3.947 −4.691 −3.841 −0.932

9.41 Seudenone 0.07 −4.584 −5.897 −5.906 −4.940 −6.193 −6.324 −6.312 −3.512

10.42 1,2,3,3a,4,6a-
hexahydropentalene 0.20 −4.013 −5.900 −5.607 −5.511 −6.106 −6.403 −6.428 −2.949

16.89 d-Linalool 1.24 −2.649 −4.713 −3.538 −4.894 −4.478 −4.332 −4.822 −1.569

11.52 Alloocimene 0.38 −3.153 −5.191 −4.324 −5.478 −5.089 −5.323 −5.404 −1.780

12.05 3,3,5-Trimethyl-1,4-hexadiene 0.31 −2.900 −4.449 −4.072 −4.109 −4.443 −4.905 −4.628 −1.855

12.27 3,5-Dimethyl-1,6-heptadiene 0.80 −1.027 −2.954 −2.231 −1.742 −2.830 −2.724 −3.042 0.212

12.69 Ethenylcyclohexane 0.81 −4.425 −5.844 −5.079 −5.891 −6.138 −6.510 −6.508 −3.306

12.96 5-Dodecyne 0.98 1.056 −0.991 −0.398 0.796 0.173 −1.252 −1.262 3.277

13.29 Pulegone 1.00 −4.594 −6.959 −6.407 −6.483 −6.581 −7.366 −7.774 −3.612

13.56 Tetrahydrocarvone 1.73 −4.813 −6.692 −5.646 −5.456 −6.533 −6.429 −7.075 −3.061

15.76 Z-Geranial 27.58 −2.263 −4.050 −4.437 −4.384 −4.935 −4.555 −4.756 −1.062

17.7 E-Geranial 38.62 −2.787 −4.535 −4.359 −5.533 −4.187 −4.679 −4.793 −1.283

18.18 3-Ethoxybenzenamine 1.23 −4.391 −5.220 −5.261 −5.832 −5.407 −5.257 −5.438 −3.109

18.37 Grandlure IV 0.22 −4.029 −6.262 −5.123 −5.166 −5.782 −7.163 −6.447 −2.975

18.73 Carvotanacetone 0.48 −5.141 −7.020 −6.368 −6.551 −7.282 −7.194 −7.761 −3.574

18.99 Ethyl nerate 0.29 −3.835 −5.454 −4.512 −6.495 −4.719 −5.766 −5.264 −1.607

19.13 Verbenyl ethyl ether 0.74 −4.573 −6.224 −4.924 −5.807 −6.031 −7.097 −7.071 −2.783

19.75 2,3-Dimethyl-3-buten-2-ol 0.76 −3.739 −4.383 −3.571 −4.536 −4.426 −4.825 −4.758 −2.254

20.26 (Z)-2-Butenoic acid, methyl
ester, 1.33 −3.615 −3.541 −3.838 −3.949 −4.181 −3.854 −4.308 −2.088

20.62 Dehydrolinalool 0.22 −2.662 −4.383 −3.847 −4.739 −4.288 −4.654 −4.763 −2.590

20.85 2-Butenoic acid, hexyl ester 0.77 1.204 −0.796 −0.220 −1.109 0.259 −0.893 −0.726 2.892

21.03 Chrysanthenone 0.30 −5.398 −6.865 −4.983 −6.817 −6.342 −7.531 −7.678 −3.517

21.12 Safranal 0.30 −5.559 −6.299 −5.963 −5.861 −6.250 −7.021 −7.470 −3.710

21.47 Butyl crotonate 0.61 −2.258 −3.482 −2.791 −3.802 −3.056 −3.889 −4.022 −0.556

21.83 (Z)-3,7-Dimethyl-2,6-octadienal 0.08 −2.263 −4.050 −4.437 −4.384 −4.935 −4.555 −4.756 −1.062

23.12 2-Tridecanone 0.81 0.890 −1.035 −0.113 −1.947 −0.851 −1.690 −1.094 2.938

25.68 Caryophyllene oxide 0.07 −4.565 −6.944 −4.517 −6.219 −3.925 −8.261 −7.851 −2.936

26.67 α-Guajene 0.09 −5.065 −7.370 −6.424 −6.932 −6.372 −8.089 −8.295 −3.151

28.64 2-Pentadecanone 0.05 0.437 −1.584 0.262 −2.187 −0.710 −1.950 −1.508 2.572

33.72 2,2,3,5,6-Pentamethyl-3-heptene 0.03 −4.172 −6.157 −5.614 −5.976 −5.908 −6.434 −6.610 −1.934

37.31
1-Benzyloxy-9-(phenylthio)-

3,7,11,15-tetramethyl-2,6,10,14-
hexadecatetraene

0.22 −3.920 −10.474 −4.460 −9.091 −7.890 −9.524 −8.581 −1.828

37.94 Geranylgeraniol 1.56 −2.125 −4.829 −4.066 −4.879 −4.051 −4.577 −4.736 −0.007

38.36 2-cis-Geranylgeraniol 0.27 −2.250 −4.800 −3.307 −5.289 −4.246 −4.117 −4.591 1.017

38.6
2,6-Dimethyl-6-(4-methyl-3-

pentenyl)-2-cyclohexene-
1-carboxaldehyde

0.48 −4.219 −6.127 −5.912 −6.670 −6.351 −7.792 −7.059 −2.108

38.76 Geranyllinalool 0.52 −1.561 −4.981 −3.221 −5.242 −4.102 −4.056 −5.000 0.133

39.18
2,6,10,15,19,23-Hexamethyl-

2,6,10,14,18,22-tetracosahexaene
(all-E)

1.39 −4.129 −8.479 −5.427 −7.232 −6.022 −7.048 −1.266

39.47 2,6,10,14,18-Pentamethyl-
2,6,10,14,18-eicosapentaene 0.85 −4.031 −8.025 −3.890 −7.795 −5.945 −4.998 −7.618 −1.129

40.05 Peruviol 0.26 −1.133 −4.067 −1.594 −3.935 −2.811 −3.895 −4.044 1.063

40.24 Lavandulol 0.13 −2.795 −4.559 −4.117 −4.453 −4.722 −5.130 −5.083 −2.489

41.14 2-Methyl-2-(4-methyl-3-
pentenyl)cyclopropanemethanol 0.11 −3.923 −5.160 −4.973 −5.131 −6.096 −5.762 −5.946 −2.383

41.97 4,8-Dimethyl-3,7-nonadien-2-ol 0.06 −4.114 −5.556 −4.824 −5.864 −5.379 −5.578 −5.993 −2.674

- ligand/substratum * −3.934 −7.224 −8.16 −5.107 −4.19 −4.484 −6.04 -

- blocker/inhibitor + −5.459 −8.085 −9.27 −7.686 −4.613 −9.538 −4.665 −5.766

RT = retention time. * Acetylcholine: AChE, M1, M2 and M4; CBD: CBR1 and -CBR2; dopamine: DR2. + AChE:
donepezil, M1: Xanomeline, M2: methyl scopolamine, M4: pirenzepine, CBR1 and CBR2: THC, DR2: haloperidol,
MAOB: rasagiline.
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Initially, inhibition or a direct effect on the dopamine receptor appears unlikely since all
molecules have lower energy than dopamine. Under physiological conditions, dopamine
displaces any of them, reinforcing the theory of indirect interaction through the acetyl-
choline pathway. Two possible blocks of effects can be suggested: the first involves direct
action on the muscarinic receptors M1, M2, and M4. Most metabolites can block these
three receptors with better energy than the endogenous ligand. In M1, they exhibit higher
energies than the reported blocker (Ki = 4 nM). Specifically, geranial (in higher abundance)
can block M1 (better than the commercial blocker) and M2 (Ki = 31 nM) (better than acetyl-
choline) but not M4, however, this receptor shows an effect at different levels, presenting
Ki values from 13.8 to 105.0 [65,66]. Meanwhile, pinene and myrcene, potential tertiary
components in content, can block all three receptors, leading to deregulation in cardiovas-
cular physiology and memory. However, in the case of myrcene, this action could affect the
corticosteroid pathway, which might be beneficial in Alzheimer’s disease and schizophre-
nia [65], but the effect on cardiovascular functioning is negative. The downregulation of
acetylcholine levels is regulated by the observed effect as inhibitors of acetylcholinesterase
activity since the E-geranial can inhibit this enzyme, although its isomer does not have this
potential effect. Myrcene and pinene and other metabolites contained in the essential oil,
including safranal, show better binding energy than reference inhibitor donepezil.

On the other hand, for MAOB, no metabolite has higher energy than rasagiline
(IC50 = 0.042 mg/kg). The inhibition of this enzyme involves the metabolism of dopamine,
which clarifies the interactions observed in the protein interaction diagrams. Figure 6
shows the interactions that phenelzine presents compared with the compounds with the
highest abundance, with unions with Asn145 and Glu150. Specifically, E- and Z-geranial
do not show significant interactions with these two amino acid residues but with Lys149
close to the site.
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The third associated group is the cannabinoid receptors, which are mainly associated
with response in the CNS given the psychotropic and relaxant effects. Terpenes have
a lipophilic structure similar to CBD and THC [57,58,62]; however, there is a greater
interaction energy on CBR1 (THC, Ki = 10 nM) than on CBR2 (THC, Ki = 24 nM). Myrcene
and E-geranial can interact on the CBR2 receptor type 1 [57], while with type 2, they do not
reach the level of CBD. These data suggest that the psychotropic effects occur through the
CBR1 pathway. Figure 7 shows the interactions they have with each of the metabolites, both
CBD and THC, as well as the metabolites with higher content, maintaining the binding in
the same place since the interactions are observed with the same residues. The type of this
bond generates changes in the coupling energy between the E and Z-geranial due to the
interaction distance with Met103, unlike CBD, which does not present said energy. The
molecule with the highest coupling energy has the disadvantage of having an abundance
of 0.22%, which makes it difficult to have a more significant effect than THC. In the case
of high abundance on CBD, it suggests that the relaxing and psychotropic effect could
be explained by the activation of CBR1 receptors but not by the CBR2 receptors, which
explains why, in some countries, the use of this natural product is regulated.
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4. Conclusions

This study elucidated the chemical composition, antioxidant activity, and potential
physiological effects of Cymbopogon citratus essential oil. The presence of various phyto-
chemical components suggests possible therapeutic applications, while in silico analysis
reveals interactions with central-nervous-system-associated proteins. The essential oil
may affect the central nervous system through multiple pathways, including choliner-
gic and dopaminergic systems and cannabinoid receptor type 1 (CBR1) activation. This
could account for the reported psychotropic and relaxing effects and potential therapeutic
applications in neurological conditions.

Although in silico analyses offer valuable insights, further experimental, in vivo, and
clinical studies are required to confirm the interactions and efficacy of the essential oil in
treating various diseases and conditions. Ultimately, this research enhances our under-
standing of the essential oil’s chemical composition and potential therapeutic applications,
emphasizing the importance of exploring complex interactions between natural products
and physiological systems to discover novel therapeutic agents and advance our knowledge
of these compounds’ potential benefits for human health.
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