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Abstract: Ouabain, an organic compound with the ability to strengthen the contraction of the heart
muscle, was originally derived from plants. It has been observed that certain mammalian species,
including humans, naturally produce ouabain, leading to its classification as a new type of hormone.
When ouabain binds to Na+/K+-ATPase, it elicits various physiological effects, although these effects
are not well characterized. Previous studies have demonstrated that ouabain, within the concentration
range found naturally in the body (10 nmol/L), affects the polarity of epithelial cells and their
intercellular contacts, such as tight junctions, adherens junctions, and gap junctional communication.
This is achieved by activating signaling pathways involving cSrc and Erk1/2. To further investigate
the effects of ouabain within the hormonally relevant concentration range (10 nmol/L), mRNA-
seq, a high-throughput sequencing technique, was employed to identify differentially expressed
transcripts. The discovery that the transcript encoding MYO9A was among the genes affected
prompted an exploration of whether RhoA and its downstream effector ROCK were involved in
the signaling pathways through which ouabain influences cell-to-cell contacts in epithelial cells.
Supporting this hypothesis, this study reveals the following: (1) Ouabain increases the activation
of RhoA. (2) Treatment with inhibitors of RhoA activation (Y27) and ROCK (C3) eliminates the
enhancing effect of ouabain on the tight junction seal and intercellular communication via gap
junctions. These findings further support the notion that ouabain acts as a hormone to emphasize the
epithelia phenotype.
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1. Introduction

Ouabain, a noteworthy organic chemical compound [1], has garnered significant at-
tention due to its diverse range of toxic, therapeutic, and physiological effects on various
animal species, including humans. It falls into a category of chemical compounds known
as cardiac glycosides [2,3]. Originally obtained from plants and subsequently isolated [4],
ouabain was once utilized as a medicinal treatment for improving heart conditions. Its abil-
ity to enhance the contraction of the cardiac muscle was particularly beneficial. However,
due to its narrow therapeutic window, where the effective dose is very close to the toxic
dose, the use of ouabain in congestive heart failure has nearly ceased [5].

At the molecular level, ouabain is known to interact with the sodium–potassium
ATPase (Na+/K+-ATPase), resulting in the inhibition of its pumping capacity at concen-
trations in the micromolar range in most animal species. This inhibition accounts for its
toxic and lethal effects, considering the widespread presence of this pump in all animal
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cells [6]. However, when administered at controlled doses, ouabain induces inhibition of
Na+/K+-ATPase, leading to what is known as a positive inotropic effect, which explains its
properties in cardiac tissue [7,8].

In addition to its inhibitory effect on Na+/K+-ATPase, it has been observed that at
picomolar to nanomolar doses, ouabain (as well as other cardiac glycosides) activates
Na+/K+-ATPase to function as a receptor and transducer. This activation initiates one
or more signaling cascades, resulting in physiological effects in various tissues [9,10].
Interestingly, it has been shown that some animal species, including humans, produce, by
themselves, a chemical compound undistinguishable from plant-derived ouabain, which
is produced and secreted from the adrenal glands and released into the bloodstream
in concentrations in the peak to the nanomolar range [11]. Hence, ouabain has been
considered as a new hormone [12–15], of which, however, its physiological functions are
mostly unknown.

We investigated the effects of ouabain at hormonally relevant concentrations (in the
nanomolar range) on epithelial physiology. To study these effects, we employed MDCK
(Madin–Darby canine kidney) cells as a biological model since they form monolayers in
culture that exhibit typical epithelial properties [16,17]. Our research has demonstrated that
ouabain influences various important biological aspects of epithelial cells related to cell-to-
cell contact and apical/basolateral membrane polarity. Specifically, we found that ouabain:
(1) enhances intercellular contact mediated by tight junctions [18]; (2) induces changes in
adherens junctions by promoting increased expression of E-cadherin, β-catenin, and γ-
catenin in the cell membrane [19]; (3) enhances gap junctional communication between cells
arranged in mature epithelial monolayers [20] by modulating the membrane distribution
of Cx32 and Cx43 [21]; and (4) accelerates the reestablishment of the epithelial phenotype
in cells seeded at confluency after trypsinization, as evidenced by the expedited expression
of an apical cilium [22]. Moreover, our investigations have revealed that ouabain affects
various processes and that the Na+/K+-ATPase acts as the receptor responsible for initiating
signaling cascades upon binding to ouabain. These cascades involve the participation of
cSrc and Erk1/2 in their initial stages. However, the involvement of other downstream
components and the potential inclusion of additional signaling pathways remain to be
elucidated. Based on these findings, we formulated a hypothesis suggesting that one of
the physiological roles of ouabain is to enhance the epithelial phenotype by modulating
multiple processes associated with intercellular contact and epithelial polarity [23,24]. In
addition to its direct modulation of diverse biological processes, ouabain has been reported
to induce the nuclear relocation of signaling Nuclear Adhesion Complexes (NACos) [25],
as well as β-catenin, a peripheral protein involved in adherens junctions [19]. These
results suggest that ouabain, within the nanomolar range, may also induce changes in gene
expression in epithelial cells.

With the aim of enhancing our understanding of the physiological and molecular shifts
induced by ouabain in epithelial cells, particularly concerning intercellular connections,
we employed mRNA-seq, a high-throughput sequencing technique often referred to as
next-generation sequencing (NGS) [26,27]. This study aimed to ascertain whether ouabain,
administered at a physiological concentration of 10 nmol/L, triggers any changes in the
transcriptome of MDCK epithelial cells. If such changes occur, our goal is to pinpoint the
specific genes associated with the modulation of intercellular communication.

As described below, the preliminary findings of our study led us to hypothesize and
subsequently investigate the involvement of Rho-A and its downstream effector ROCK
in the signaling pathways activated by ouabain to modulate key cell-to-cell contacts in
epithelial cells, including tight junctions and gap junctions.

2. Materials and Methods
2.1. Cell Culture

A vial stored in liquid nitrogen of MDCK cells, purchased from the American Type
Culture Collection (ATCC) (Manassas, VA, USA), was thawed and seeded in tissue cul-
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ture flasks and grown in a 5% CO2 and humidified atmosphere at 36.5 ◦C, in DMEM
(Dulbecco’s Modified Eagle Medium, Cat. 12100-061, GIBCO, Grand Island, NY, USA),
supplemented with 10,000 U/µg/mL penicillin-streptomycin (In Vitro, Cat. A-01, Roma
Sur, Mexico), and 10% FBS (fetal bovine serum, Cat. 160000-44, GIBCO, Grand Island,
NY, USA), this medium is hereafter referred to as CDMEM. For all experimental assays,
cells were harvested with trypsin (in vitro, Cat. EN-005, Roma Sur, Mexico), seeded at
confluency (1–2 × 105 cells/cm2), in a well of a 24-well plate (Costar, Cat. 3524, Corning,
NY, USA), which may have contained a glass coverslip or transwell, as required by the
experiments. To obtain mature monolayers, cells were seeded at confluency and incubated
in CDMEM for 24 h, then washed with PBS (phosphate-buffered saline, Cat. 21300-058,
GIBCO, Grand Island, NY, USA) and incubated in DMEM supplemented with 1% FBS for
an additional 24 h, before treatments.

2.2. Massive RNA Sequencing (mRNA-Seq)
2.2.1. Treatment of MDCK Cells in Mature Monolayers with or without Ouabain

Cells in mature monolayers were incubated with 10 nmol/L ouabain as follows:
DMEM fresh medium supplemented with FBS was mixed with ouabain and used to replace
the medium, and cells were incubated for 1 h at 37 ◦C. All samples were placed in 15 mL
falcon tubes containing 10 mL of RNA stabilization solution ((RNAlaterTM; Cat AM7021,
Thermofisher, Whaltham, MA, USA). Samples were stored at 4 ◦C for further analysis.

2.2.2. RNA Extraction

The culture medium was removed, and 5 mL of RNA stabilization solution (RNAlaterTM;
Cat AM7021, Thermofisher, Whaltham, MA, USA) was added to the flask. Monolayered
cells were scraped using a plastic rod and then deposited into a sterile tube. RNA extraction
was performed using the total RNA from the blood and tissues kit (Biopure, Mexico)
and resuspended in 30 µL RNase-free water. RNA concentration and 260/280 nm ratio
were determined with a Nanodrop One spectrophotometer (Thermo Scientific; Waltham,
MA, USA). The RNA integrity was verified using denaturing agarose electrophoresis, and
visualization was carried out with a BioDocAnalyze gel documentation system (Biometra
Gmbh, Jena, Germany).

2.2.3. Library Preparation and Sequencing for Massive RNA Sequencing (RNA-Seq)

RNA from three independent flasks treated with ouabain were pooled, as well as RNA
of control, untreated cells. Therefore, each sample consisted of three biological replicates.
RNA was purified as described and then treated with DNase I (Invitrogen, Carlsbad, CA,
USA). Each sample was diluted to a final concentration of 0.13 µg/µL, and one volume
(15 µL) of RNA stabilizing agent (RNAstat; Biopure, Mexico) was added. The samples
were sent to Otogenetics© Corporation (Atlanta, GA, USA) for sequencing. The RNA-seq
method used was based on poly (A+) selection, which enriches eukaryotic mRNA and
other polyadenylated RNAs. Each selected sample was processed with the TruSeq RNA
Sample Preparation Kit (Illumina, San Diego, CA, USA), and index codes were assigned
to identify each sample independently. RNA sequencing libraries were generated using
Illumina sequencing instrumentation (Illumina HiSeq2500). Multiplexed libraries were
sequenced on a single flow cell of the HiSeq2500 platform to generate 125 bp paired-end
reads. Each RNA-seq set consisted of 40 million reads per sample.

2.2.4. Bioinformatic Analysis

Data processing was carried out as follows: quality of sequence reads was assessed
using the FASTQC program. Prior to assembly, sequences were processed with a quality
control script (https://github.com/Czh3/NGSTools/blob/master/qualityControl.py, ac-
cessed on 1 July 2023) using the parameters −q 20, −p 90, and −a 30 to obtain high-quality
paired sequences. SeqPrep v1.1 (https://github.com/jstjohn/SeqPrep, accessed on 1 July
2023) was used to merge overlapping paired reads with a minimum of 87% coincidence re-
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quired in the overlapping region. High-quality merged and unmerged reads were de novo
assembled with Trinity 2.4.0 [28] using default parameters. The resulting contigs (unigenes)
were processed with Deconseq [29] to eliminate contaminating sequences. AlignWise was
used to identify open reading frames (ORFs) and their translated amino acid sequences.
Insertions and deletions within and outside of ORFs were corrected [30]. Redundant se-
quences with more than 90% of identity between them were removed. Non-redundant
sequences were obtained with BlastClust [31].

The resulting non-redundant translated sequences of the transcriptome were func-
tionally annotated by assigning them the function of the highest match resulting from the
alignment with BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, ccessed
on 1 July 2023) using an E-value threshold of 10-5. The reference canine genome was used
as a model for further analyses (Genome GCA_000002285.4 of Canis familiaris). Global
expression profiles were compared for each transcriptome set to identify differentially
expressed genes employing DESeq2, with a p-value of 0.05, selecting those with a log2-fold
change ≥ 2. High-quality (HQ) sequences were mapped to the reference transcriptome
(unigenes) with the RSEM package [32]. This program uses short sequence mapping tools
such as Bowtie2 and yields the normalized expression profile as TPM (transcripts per
million) and FPKM (fragments per kilobases of contigs/genes per million mapped reads).
The resulting counts were processed with the R/Bioconductor DESeq package [33], which
normalizes samples by pairwise comparison using an algorithmic expression based on the
hypothesis that most genes are not differentially expressed.

2.3. Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR)

Total RNA was isolated (extracted) from MDCK cells using the TRI-reagent (Invitrogen,
Cat. 15596018, Waltham, MA, USA). RT-qPCR was performed by a one-step method
employing the Power SYBR®Green qPCR kit (Applied Biosystems, Cat. 4389986, Waltham,
MA, USA) according to the manufacturer’s instructions. Triplicate samples were subjected
to qPCR by using the StepOne Real-Time PCR System (Applied Biosystems, Cat. 4376357,
Waltham, MA, USA). qPCR conditions were: (1) an initial cycle of 5 min at 42 ◦C; (2) one
cycle of 5 min at 92 ◦C; (3) 40 cycles of amplification (30 s at 92 ◦C and 30 s at 62 ◦C); (4) a
melt curve (15 s at 95 ◦C); (5) 1 min at 60 ◦C; (6) 15 s at 95 ◦C. Primers for each target are
shown in Table 1. Subsequent sequencing confirmed the identity of each amplicon. The
results were calculated using the 2−∆∆CT method (Livak and Schmittgen, 2001) with the
expression level of the endogenous PRP0 as the reference housekeeping control gene.

Table 1. Primers for RT-qPCR assays.

MYDGF
forward 5′-CTTGTGGGCTGCGTTGCTGCTG-3′

reverse 5′-GACTCATCTGCCACTTCTCGTTGG-3′

MYO9A
forward 5′-CTTCGAGCTATGGGCCTTCAGGAG-3′

reverse 5′-GTAGTGGGTCAATGGTGTCAGGGC-3′

DCXR
forward 5′-GCGTCTACTGCTCCACCAAGGGTG-3′

reverse 5′-GGTCACTCAGCAGGAAGAGGATGG-3′

UBE4B
forward 5′-CATGTCCCAGGTGGATGTGGATTC-3′

reverse 5′-CTGTCTGGTGACCGAGCTGCTGC-3′

PRP0
forward 5′-GCAGGTGTTTGACAATGGCAGC-3′

reverse 5′-GCCTTGACCTTTTCAGCAAGTGG-3′

2.4. RhoA Protein Activation Assay

Cells were seeded at confluency (2 × 105 cells/cm2) in a cell culture plate of a 6-
well (Costar, Cat. 3516, Corning, NY, USA) and cultured in CDMEM for 24 h to form
mature monolayers. Then, they were starved by incubation in depleted media (DMEM

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
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supplemented with 1% FBS) for 24 h before ouabain treatments. The level of GTP-loaded
RhoA was measured with G-Lisa Assay Biochem Kit (Cytoskeleton, Cat. BK124, Denver,
CO, USA) in samples derived from control and ouabain-treated cells (ouabain 10 nmol/L,
1 h). A total of 50 µg of protein was subjected to the G-LISA™ assay. Absorbance was read
at 490 nm.

2.5. Transepithelial Electrical Resistance (TER)

The degree of TJ permeability to ionic solutes was assessed by measuring the TER of
the cells grown on trans-well permeable supports. Monolayers were grown on trans well®

culture inserts (Costar, Cat. 3415, Corning, NY, USA) by seeding MDCK cells at a density
of 1 × 105 cells/cm2 and left to mature for 24 h and incubated in DMEM supplemented
with 1% FBS for an additional 24 h before addition of treatments to media. TER was
measured before and after 1, 2, and 3 days of ouabain treatment using an EVOM (Epithelial
Voltameter; World Precision Instruments). Measurements are expressed as ohms per square
centimeter (Ω·cm2).

2.6. Measurement of Gap Junctional Intercellular Communication by Dye Transfer Assays

Dye transfer assays consisted of impalement and injection, with glass micropipettes, of
individual cells from mature monolayers grown on glass coverslips. Coverslips on which
cell monolayers had been grown were placed in a translucent chamber filled with PBS
plus Ca2+ (1.8 mM) solution at room temperature. Micropipettes were elaborated from
borosilicate glass capillaries tubes (Kimax, cat 34500-99, Rockwood, TN, USA) on a vertical
David-Kopf puller (DKI-700c, Tujunga, CA, USA). Those with a tip electrical resistance of
5–10 MOhms were backfilled with a saline solution containing 120 mM KCl, 5 mM NaCl,
1 mM MgCl2, 5 mM HEPES (pH 7.4), and Lucifer Yellow (Cat 67764-47-5, Sigma-Aldrich,
St. Louis, MO, USA) (1%). After filling up, pipettes were attached to the holder device,
which was mounted to a micromanipulator (PCS-750; Burleigh Instruments, NY, USA). For
the impalement of cells, the chamber was mounted on the stage of an inverted microscope
(Diaphot 300; Nikon, Tokyo, Japan) equipped with epifluorescence. Three independent
trials were made. On each trial, a given number of repeats were made per coverslip. In each
repeat, cells were randomly chosen from among those constituting the monolayer, then
impaled and injected, one at a time, using a pneumatically driven microinjecting device
(IM300; Narishige, NY, USA). After injections, the coverslips were rinsed with PBS and
fixed by dipping into 4% paraformaldehyde, then rinsed (3×) with PBS and mounted using
VECTASHIELD® (H-1000; Vector Laboratories, Burlingame, CA, USA). Eight-bit images
of the fluorescent cells were acquired at room temperature using a Zeiss M200 inverted
microscope equipped with a Plan-NeoFluar 63× N.A. 1.25 objective lens, an AxioCam
MRm camera, and software Axovision 4.8 (AXOVISION GmbH, Hanover, Germany). The
captured images were imported into FIJI Is Just ImageJ software (release 2.8, NIH, Bethesda,
MD, USA) to adjust the brightness and the contrast and GIMP (release 2.8.10, NIH) to
compose the figures.

2.7. Materials and Chemicals

Ouabain (Sigma-Aldrich 11018-89-6) 1 mM stock was prepared in DMSO. Subsequent
dilutions were made with PBS without Ca2+. Lucifer Yellow was obtained from Sigma-
Aldrich (67764-47-5) and dissolved in a solution containing (100 mM KCl, 5 mM NaCl,
10 mM HEPES, 1 mM CaCl2, pH 7.4). C3 transferase from Clostridium botulinum (Sigma-
Aldrich, Cat. CT3-A, St. Louis, MO, USA) was prepared as a 10 mM stock in water and
used at a concentration of 1µM. Y-27632 (Merck KGaA, Cat 688000, Darmstadt, Germany)
was prepared as a 10 mM stock in water and used at a concentration of 1µM.

2.8. Statistical Analysis

Statistical tests were performed with Prism, version 6 (GraphPad Software, San Diego,
CA, USA). The results are expressed as the mean± S.E. Statistical significance was estimated
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with a two-tailed Student’s t-test or one-way analysis of variance (ANOVA) followed by
Bonferroni’s multiple comparison test (*: p < 0.05, **: p < 0.01, and ***: p < 0.001). All
experiments were repeated at least three times. The number of independent experiments is
represented by n.

3. Results
3.1. Ouabain Modifies Gene Expression in Epithelial Cells

Our initial aim was to investigate whether ouabain, at a concentration in the nanomolar
range, causes transcriptional changes and, if so, identify those undergoing differential
expression. To accomplish this objective, as outlined in Section 2 we employed the mRNA-
seq technique to analyze and compare the transcriptomes of mature MDCK cell monolayers
that were either treated with ouabain at a concentration of 10 nmol/L for 30 min, employing
as control untreated MDCK cells. Figure 1A,B show the results in the form of an MA plot
and a volcano plot. Figure 1C,D also show, in the form of a heatmap, the genes up- and
down-regulated by treatment with ouabain. A more detailed version of Figure 1C, which
show the list of genes included, is available as a supplement (Figure S1). Table 2 presents
a compilation of ten transcripts that exhibited the most significant fold changes when
subjected to ouabain treatment, encompassing both upregulated and downregulated genes.
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Figure 1. Differentially regulated transcripts by the effect of ouabain: (A) MA plot; (B) volcano plot;
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Duplicate samples are shown. Transcripts in ouabain-treated MDCK cells are shown in left blue;
control, untreated cells are indicated with red. Down-regulation is indicated with violet color, while
up-regulation is shown in yellow according to color key present in (D).
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Table 2. List of genes whose expression is modified by treatment with ouabain 10 nmol/L, as revealed
by mRNA-seq.

Number Gene Description Acc. No. Fold Change

1 MYDGF Myeloid derived growth factor XM_849589 4.53

2 TM2D1 TM2 domain-containing protein 1-like,
transcript variant X2 XM_003639021 3.61

3 DCDX D-dopachrome decarboxylase-like XM_003639927.2 2.99

4 DCXR Dicarbonyl/L-xylulose reductase XM_038675393.1 2.62

5 FH Fumarate hydratase transcript variant 1 XM_537215.4 2.60

6 MRPL39 Mitochondrial ribosomal protein L39
transcript variant X2 XM_005638779.1 2.07

7 UBE4B Ubiquitination factor E4B transcript variant X1 XM_844731.3 0.43

8 MTMR4 Myotubularin related protein 4
transcript variant X5 XM_005624734.1 0.32

9 UBTF Upstream binding transcription factor,
RNA polymerase I XM_537622.5 0.19

10 MYO9A Myosin IXA XM_544755.4 0.16

MYDGF oversees the synthesis of myeloid-derived growth factor, a protein manu-
factured by monocytes and bone marrow-derived macrophages. This protein has exhib-
ited cardioprotective and regenerative attributes after instances of myocardial infarction
(MI) [34]. Its functionality revolves around stimulating the proliferation of cardiomyocytes
through the activation of the c-Myc/FoxM1 pathway [35].

TM2D1 encodes for BBB, a β-amyloid binding protein that functions as a receptor
for β-amyloid. This protein contains a G protein-coupling module and is associated with
neuronal apoptosis, a well-known factor in the development of Alzheimer’s disease. There
is evidence suggesting that the binding of β-amyloid to BBB triggers a G protein-regulated
cell death program [36].

DCDX codes for a protein known as D-dopachrome decarboxylase-like or D-Dopachrome
tautomerase, which primarily acts as an enzyme involved in melanogenesis, converting
2-carboxy-2,3-dihydroindole-5,6-quinone (D-dopachrome) into 5,6-dihydroxyindole [37,38].
Interestingly, DCDX shares similarities with macrophage migration inhibitory factor (MIF),
a cytokine associated with inflammatory reactions and immune responses [39–41].

DCXR encodes for Dicarbonyl/L-xylulose reductase, an enzyme primarily responsible
for converting L-xylulose into xylitol [42]. Recent observations suggest that DCXR may have
a role in cell adhesion, potentially contributing to tumor progression and metastasis [43].

FH is the gene that codes for fumarate hydratase, an enzyme involved in the Krebs
cycle, catalyzing the conversion of fumarate to L-malate [44]. In addition to its role in
energy metabolism, FH has been implicated in the cellular response to DNA double-strand
breaks and acts as a tumor suppressor [45]. Mutations in the FH gene are associated with
hereditary renal cancer [46].

MRPL39 is a nuclear gene that encodes mitochondrial ribosomal protein L39, a com-
ponent of the large subunit of the mitochondrial ribosome, which is essential for protein
synthesis within mitochondria [47]. Dysregulation or mutations in MRPL39 can lead to
mitochondrial dysfunction, associated with various human diseases such as metabolic
disorders, neurodegenerative diseases, and cancer [48].

UBE4B encodes for Ubiquitin Conjugating factor E4B, a cytosolic E3/E4 ubiquitin
ligase [49], which plays a role in linking ubiquitination and sorting mechanisms for the
degradation of epidermal growth factor receptor (EGFR) [50]. Decreased expression of
UBE4B is correlated with low cellular differentiation in neuroblastoma tumors [51]. In
tumor cell lines, transient depletion of UBE4B results in increased levels of EGFR and
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activation of the downstream MAPK/ERK signaling pathway [52]. MTMR4 is the gene
responsible for producing myotubularin-related protein 4 (also known as FYVE-DSP2), a
dual specificity protein phosphatase containing the FYVE domain. MTMR4 dephosphory-
lates phosphatidylinositol 3-phosphate [53,54] and plays a role in regulating sorting from
early endosomes [55].

UBTF codes for upstream binding transcription factor, RNA polymerase I (also nown
as nucleolar transcription factor 1). It is involved in recognizing the ribosomal RNA gene
promoter (TATA box) to activate RNA polymerase I transcription, working in cooperation
with the transcription factor SL1/TIF-IB complex [56,57].

MYO9A is the gene responsible for encoding myosin-IXA, an unconventional type
of myosin that possesses both motor and signaling functions, distinguishing it from con-
ventional myosins. This distinction arises from a domain present in its tail region, which
inactivates Rho (specifically isoforms A, B, and C) by converting its active, GTP-bound
state to an inactive, GDP-bound state [58–61]. Due to its role in inhibiting Rho, myosin-IXA
is considered a negative regulator of Rho [62].

To validate these results, we assessed by quantitative RT-PCR (RT-qPCR) the expres-
sion of a set of selected transcripts. These included a pair of genes (MYDGF and DCXR),
which increased its level of expression, and another (MYO9A and UBE4B), which decreased
it. As shown in Figure 2, in all these cases, the results obtained with the RT-qPCR tech-
nique were correlated with those obtained by mRNA-seq. From these results, we therefore
conclude that ouabain, in a concentration within the physiological range (10 nmol/L),
effectively induces changes in the transcriptome of epithelial cells.
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3.2. Downregulation of MYO9A Suggests the Participation of Rho/ROCK Signaling in the
Modulation of Epithelial Properties by Ouabain

Among the transcripts significantly altered by ouabain, MYO9A captured our interest
due to its known involvement in biological processes related to intercellular connections
and epithelial differentiation. In Table 3, an assembly of Gene Ontology (GO) terms [63,64]
is presented, outlining MYO9A’s association with biological processes specific to epithelial
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structure, cell–cell interactions, and Rho signaling. Additionally, Figure 3 visually por-
trays the outcomes of computational interaction analysis carried out through the STRING
Database (https://string-db.org/, accessed on 11 May 2023) [65]. This figure illustrates the
connection of MYO9A (indicated by the green arrow) with various members of the Rho
family, such as RhoA (depicted by the pink arrow), along with several Guanosine Exchange
Factors (GEFs) (denoted by the blue arrow), pivotal components of the Rho/ROCK signal-
ing pathway. These findings prompted us to contemplate the potential involvement of the
Rho/ROCK signaling pathway in mediating ouabain’s effects on intercellular connections.

Table 3. List GO terms describing biological processes for MYO9A related to epithelial morphology
cell–cell contacts and Rho signaling (accessible through http://geneontology.org/, accessed on 11
May 2023).

Biological Process GO-Term

Apical junction assembly GO:0043297
Cell adhesion GO:0007155

Cell junction assembly GO:0034329
Cell–cell junction organization GO:0045216
Epithelial cell differentiation GO:0030855

Epithelium development GO:0060429
Establishment of epithelial cell apical/basal polarity GO:0045198

Establishment or maintenance of cell polarity GO:0007163
Morphogenesis of an epithelium GO:0002009
Rac protein signal transduction GO:0016601

Regulation of cell-substrate adhesion GO:0010810
Rho protein signal transduction GO:0007266
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3.3. Ouabain Induces a Temporary Reduction in the Amount of mRNA of MYO9A

We first sought to determine how the amount of MYO9A’s mRNA changes over time
of treatment with ouabain. Therefore, we employed RT-qPCR to measure the mRNA levels
of MYO9a at longer time intervals (24 and 48 h) compared to the previously established
validation period of 30 min for the mRNA-seq assay. Figure 4 illustrates the average
relative expression values of MYO9A’s mRNA, obtained from cell samples subjected to
ouabain treatment (represented by red circles) and untreated cells (represented by white
circles) at various treatment durations, including the 30 min time point. As mentioned
earlier, ouabain treatment initiates a decrease in the mRNA levels of MYO9A as early as
30 min. Following 24 h of treatment, ouabain further reduces the mRNA levels of MYO9A.
However, after 48 h of ouabain treatment, this effect diminishes as the mRNA levels of
MYO9A become indistinguishable from those observed in untreated cells.
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3.4. Ouabain Enhances the Amount of GTP-Loaded RhoA

Next, we assessed whether ouabain promotes the activation of RhoA. For this purpose,
we used the reagents and procedures of a kit (G-LISA RhoA Activation Assay Biochem Kit,
Cytoskeleton Inc., Denver, CO, USA), as detailed in Section 2, and estimated the values
of GTP-loaded RhoA by luminometry measurements from samples obtained from cells in
mature monolayers that were either untreated or treated with ouabain 10 nmol/L for 1 h.
A treatment time that in previous studies has rendered a maximum effect [20]. As shown
in Figure 5, treatment with ouabain effectively induced a statistically significant increase in
the level of GTP-loaded RhoA.
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Figure 5. Ouabain promotes activation of RhoA. Bars are proportional to the average value (±S.E.) of
the amount of GTP-loaded RhoA obtained by luminometry of 9 independent tests in which cells in
mature monolayers were either treated with ouabain 10 nmol/L for 1 h (red bar) or not (white bar).
(*) denotes a statistically significant difference (p < 0.05). The grey circles denote the individual values
obtained in each case. Student, t-test, equal variances assumed.

The results mentioned earlier, which encompass the temporary decrease in MYO9A
mRNA and the upsurge in RhoA-GTP levels, support the notion that Rho/ROCK are
included in the signaling pathways by which ouabain modulates intercellular contacts in
epithelial cells. These observations spurred us to delve into whether Rho/ROCK signaling
is engaged in the two distinct biological processes previously recognized as being impacted
by ouabain: the integrity of tight junctions and the communication through gap junctions.

3.5. Involvement of RhoA-ROCK on Ouabain-Promoted Enhancement of Tight Junction Sealness

In previous research reports, we demonstrated that ouabain leads to an increase in tight
junction sealness (TJS) [18]. To investigate whether the Rho/ROCK pathway is involved in
the signaling process through which ouabain affects TJS, we conducted experiments using
two inhibitors: exoenzyme C3 transferase (C3), which selectively deactivates RhoA/B/C
proteins through ribosylation [66,67], and Y-27632 (Y27), a potent inhibitor of ROCK1
(Ki = 140 nmol/L) and ROCK2 (IC50 = 800 nmol/L) [68,69].

To assess TJS, we measured the transepithelial electrical resistance (TER) of mature
monolayers of MDCK cells. These cells were either treated with ouabain alone (10 nmol/L)
or in combination with a 1 h pretreatment of either Y27 (1 µM) or C3 (1 µM). We obtained
the average values from three independent trials, each consisting of five repetitions for
each combination and treatment time point (0, 24, 48, and 72 h).

Figure 6A shows the mean values (±S.E.) or TER for each experimental combination
at each treatment time point. It is evident that ouabain induces a significant increase in TER,
which persists for up to 72 h of treatment. In contrast, the control (no treatment) and the
treatments with either Y27 or C3 show no significant changes over time. Figure 6B compares
the average TER values of each combination after 72 h of ouabain treatment. The average
TER value for monolayers treated with ouabain at 10 nmol/L for 72 h (621.6 ± 40.0 Ω·cm2,
n = 12) is significantly higher (p > 0.005) than that of untreated cells (448.0 ± 35.0 Ω·cm2,
n = 12). Treatment with either C3 or Y27 alone does not result in significant changes
compared to the untreated cells. However, the value of TER in monolayers treated with
ouabain + C3 (431.7 ± 32.0 Ω·cm2, n = 12) was significantly lower (p < 0.005) than that
obtained from monolayers treated with ouabain only. Likewise, the value obtained from
monolayers treated with ouabain + Y27 (464.2± 35.0 Ω·cm2, n = 12) was significantly lower
(p < 0.005) than that obtained from monolayers treated with ouabain. From these results,
it follows that both C3 and Y27 effectively abolished the enhancement of TJS induced by
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ouabain, which in turn supports the hypothesis that RhoA/ROCK are included in the
signaling cascade by which ouabain acts on TJS.
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3.6. Involvement of RhoA-ROCK on Ouabain-Promoted Enhancement of Gap Junctional
Intercellular Communication

To assess the extent of gap junctional intercellular communication (GJIC), we con-
ducted GJIC dye transfer assays following the methodology outlined elsewhere [20] and
described in detail in Section 2. This procedure involves randomly selecting a cell from
a mature monolayer and injecting it with lucifer yellow, which, if there is a gap junc-
tional communication, will eventually diffuse to neighboring cells. The average number
of stained cells per injection serves as an estimation of GJIC intensity. To obtain reliable
results, we performed multiple repetitions for each experimental combination, both with
and without treatment involving ouabain, as well as pretreatment with C3 or Y7. Like TJS
analysis, we conducted statistical comparisons of the values obtained for each experimental
combination. In this case, the treatment with ouabain lasted only one hour, as previous
research demonstrated that this duration yields the maximum intensity of GJIC induced
by ouabain [20].

To investigate the involvement of RhoA and/or ROCK in the signaling pathway
through which ouabain affects intercellular junctional gap communication (GJIC), we
conducted experiments to determine if the inhibitors C3 and Y27 would eliminate the
enhancement of GJIC induced by ouabain, as previously reported [20].

Figure 7A displays representative images of the dye transfer trials under each experi-
mental condition, while Figure 7B presents a comparison of the average number (±S.E.) of
stained cells per trial for each experimental combination.



Curr. Issues Mol. Biol. 2023, 45 7550Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 14 
 

 

 
Figure 7. Inhibition of RhoA and ROCK activation abolishes the enhancement of GJIC induced by 
ouabain. (A) Phase contrast images of representative dye transfer trials of each of the different treat-
ments to probe the effect of C3 and Y27 with or without ouabain. The green color is from staining 
with lucifer yellow. (B) Box plot shows the abolishment of the enhancing effect of GJIC induced by 
ouabain, caused by Rho and ROCK inhibitors C3 and Y27. Continuous and dotted lines inside boxes 
denote mean and median of number of cells stained. The number above each bar indicates the num-
ber of trials. The combination treatments are indicated in the below boxes. (***) denotes a statistically 
significant difference (p < 0.0001). Multiple comparisons versus control group (Holm–Sidak 
method). 

As observed in Figure 7A, the addition of ouabain at a concentration of 10 nmol/L to 
the extracellular medium for a duration of 1 h leads to a significant increase in the average 
number of stained cells compared to the corresponding value obtained from untreated 
control cells. The addition of only C3 or Y27 does not result in a statistically significant 
change compared to the control cells. However, when combined with ouabain, the addi-
tion of C3 significantly reduces the response observed with ouabain alone. Similarly, treat-
ment with Y27 causes a significant reduction in the enhancement produced by ouabain 
alone.  

These findings indicate that, like the modulation of TJS, the signaling cascade acti-
vated by ouabain to regulate GJIC involves the participation of RhoA/ROCK. 

4. Discussion 
Although ouabain has been utilized by humans for centuries, our understanding of 

its properties has significantly evolved in recent decades. Originally considered to be a 
poison, it is now regarded as a hormone with relatively limited knowledge about its var-
ious roles. In addition to its well-documented cardiotonic effects, ouabain has been asso-
ciated with numerous physiological processes of significant importance. Notably, its in-
fluence on fundamental biological processes such as proliferation, viability, and cell dif-
ferentiation has sparked interest in further exploring the molecular components and 
mechanisms it activates, both in normal physiological states and pathological conditions 
like cancer. As previously described, ouabain exerts its diverse effects by interacting with 

Figure 7. Inhibition of RhoA and ROCK activation abolishes the enhancement of GJIC induced
by ouabain. (A) Phase contrast images of representative dye transfer trials of each of the different
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As observed in Figure 7A, the addition of ouabain at a concentration of 10 nmol/L to
the extracellular medium for a duration of 1 h leads to a significant increase in the average
number of stained cells compared to the corresponding value obtained from untreated
control cells. The addition of only C3 or Y27 does not result in a statistically significant
change compared to the control cells. However, when combined with ouabain, the addition
of C3 significantly reduces the response observed with ouabain alone. Similarly, treatment
with Y27 causes a significant reduction in the enhancement produced by ouabain alone.

These findings indicate that, like the modulation of TJS, the signaling cascade activated
by ouabain to regulate GJIC involves the participation of RhoA/ROCK.

4. Discussion

Although ouabain has been utilized by humans for centuries, our understanding of
its properties has significantly evolved in recent decades. Originally considered to be
a poison, it is now regarded as a hormone with relatively limited knowledge about its
various roles. In addition to its well-documented cardiotonic effects, ouabain has been
associated with numerous physiological processes of significant importance. Notably, its
influence on fundamental biological processes such as proliferation, viability, and cell
differentiation has sparked interest in further exploring the molecular components and
mechanisms it activates, both in normal physiological states and pathological conditions
like cancer. As previously described, ouabain exerts its diverse effects by interacting with
Na+/K+-ATPase, which serves a dual function as both a pump and a receptor. Depending
on the concentration, ouabain can inhibit the pumping activity of Na+/K+-ATPase or act as
a receptor, leading to the activation of various signaling pathways [70,71].
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In this study, our first purpose was to investigate whether ouabain in a concentration
that does not inhibit the pumping capacity of Na+/K+-ATPase can induce changes to the
transcriptome of epithelial cells (MDCK) organized as mature epithelial monolayers, and if
so, to be able to identify novel signaling pathway components, besides those already de-
scribed (cSrc and Erk 1/2), which modulates intercellular contacts in epithelial cells [18–24].

As described above, we found that treatment with ouabain 10 nM for 30 min caused a
relatively moderate effect on the transcriptome, both in terms of the number of transcripts
affected and the magnitude of their fold change. Among the transcripts that underwent
noteworthy alterations, there were no initial indications of any candidates involved in the
regulation of intercellular connections or signaling. Nevertheless, the inclusion of MYO9A
in these modified transcripts prompted us to formulate and subsequently investigate the
notion that Rho and/or ROCK might be implicated in the signaling cascade through which
ouabain brings about changes in tight junction or gap junction connections. The subsequent
confirmation that the application of Rho inhibitors and ROCK abolishes the modulating
effect of ouabain on both TER and GJIC lends support to this hypothesis. These findings
hold significance as they broaden our understanding of the constituents that form the
signaling pathways prompted by ouabain. Furthermore, they corroborate our overarching
theory that one of ouabain’s physiological roles is to accentuate the epithelial phenotype.

Nevertheless, it is important to note that these deductions are presently restricted to
ouabain-dependent modulation of tight junctions and gap junctions. This is because, up
to this point, we have not assessed whether Rho/ROCK also partake in the modification
of other attributes and processes influenced by ouabain, such as the adjustment of apical-
basolateral polarity, cilliogenesis, or the regulation of ion channel expression.

Besides our findings, there are additional accounts detailing ouabain’s capacity to
induce alterations in transcript expression. However, these instances pertain to diverse
cell types and alternate experimental conditions. For instance, it has been observed that in
quiescent vascular smooth muscle cells, exposure to 1 mM ouabain prompts the activation
of early response genes like c-Fos and c-Jun [72]. In normal rat kidney epithelial cells
(NRK), a 3-h treatment with 1 mM ouabain heightened mRNA levels of Na+/K+-ATPase
α1 and β1 subunits [73]. Similarly, in cerebellum granule cells, a 3 h exposure to 1 mM
ouabain triggered increased mRNA levels of genes involved in intracellular signaling and
transcription regulation, including Npas4, Fos, Junb, Atf3, and Klf4 [74]. Likewise, in
neuron-like cells (PC12), stimulation with 100 nM ouabain hampers cell growth while
elevating the expression of proto-oncogenes c-myc and c-fos [75]. Furthermore, treatment
of neonatal rat cardiac myocytes with 100 µM ouabain results in heightened mRNA levels
of c-fos, c-jun, and the transcription factor AP-1 [76]. It is notable that the concentrations
employed to investigate ouabain’s effects in these references vastly exceed the concentration
utilized in our study. Furthermore, several of these reports attribute the capacity to induce
shifts in gene expression to an imbalance in intracellular Na+ and K+ concentrations [72,77].
Therefore, the role of ouabain in these cases is attributed to the inhibition of Na+/K+

ATPase’s pumping function rather than its activation as a receptor.
Our results lend more support to the notion that ouabain activates the receptor function

of Na+/K+ ATPase because the concentration of 10 nM does not cause inhibition of the
Na+/K+ ATPase [78]. Additional reports have also documented that ouabain, when
present in nanomolar concentrations, induces modifications within the transcriptome.
A recent investigation, for instance, uncovered that subjecting human pluripotent stem
cell-derived neurons to 30 nM ouabain led to changes in gene expression, involving the
activation of MAP-kinase ERK1/2 as well as the transcription factor cAMP response
element-binding protein (CREB) [79]. While the ouabain concentration employed in this
study (30 nmol/L) resembled that of our own (10 nmol/L), notable disparities in outcomes
emerged, particularly regarding the quantity and diversity of affected genes. It is important
to acknowledge that a direct comparison is inherently limited due to variations in cell types
(neurons versus epithelial cells) and treatment durations (16 h versus 1 h).
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On the other hand, in relation to the findings of the mRNA-seq assay, a more com-
prehensive examination of the significance of the modified transcripts could potentially
provide deeper insights into additional biological processes influenced by ouabain. Some
of these processes, such as cell viability, apoptosis, and migration, have thus far remained
beyond the focus of our investigation. Consequently, detailing the transcripts subject to al-
teration by ouabain serves as a valuable point of reference for enriching our comprehension
of the diverse physiological mechanisms that ouabain elicits within epithelial cells.

In summary, as depicted in Figure 8, this study has provided evidence that ouabain,
administered at a dose consistent with its hormonal and physiological range, triggers
alterations in the transcriptome of MDCK cells organized as a confluent monolayer. These
alterations include a reduction in the mRNA levels of MYO9A. Concurrently, ouabain
incites modifications in intercellular connections, leading to heightened communication
through gap junctions and enhanced integrity of tight junctions. The sequence of activation
events responsible for these changes involves the participation of RhoA/ROCK signaling.
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