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Abstract: Modulation of the human gut microbiome has become an area of interest in the nutraceu-
tical space. We explored the effect of the novel foundational nutrition supplement AG1® on the
composition of human microbiota in an in vitro experimental design. Employing the Simulator of
Human Intestinal Microbial Ecosystem (SHIME®) model, AG1® underwent digestion, absorption,
and subsequent colonic microenvironment simulation under physiologically relevant conditions in
healthy human fecal inocula. Following 48 h of colonic simulation, the gut microbiota were described
using shallow shotgun, whole genome sequencing. Metagenomic data were used to describe changes
in community structure (alpha diversity, beta diversity, and changes in specific taxa) and community
function (functional heterogeneity and changes in specific bacterial metabolic pathways). Results
showed no significant change in alpha diversity, but a significant effect of treatment and donor and an
interaction between the treatment and donor effect on structural heterogeneity likely stemming from
the differential enrichment of eight bacterial taxa. Similar findings were observed for community
functional heterogeneity likely stemming from the enrichment of 20 metabolic pathways character-
ized in the gene ontology term database. It is logical to conclude that an acute dose of AG1 has
significant effects on gut microbial composition that may translate into favorable effects in humans.
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1. Introduction

Prebiotics were first defined in 1995 by Gibson and Roberfroid as being nondigestible
food ingredients that beneficially impact the host through selective stimulation of beneficial
colonic bacteria [1]. Interestingly, this first definition restricted the concept of prebiotics to
a select few carbohydrate compounds, namely β-fructans and galacto-oligosaccharides [2].
The concept of what qualifies as a prebiotic has evolved since 1995 and experimental
evidence suggests that other phytochemicals beyond just fibers can act as prebiotics [3–5].
Phytochemicals behave much like prebiotics in the fact that they are non-digestible food
components and exert health benefits through the modulation of the gut microbiota [6–8].
Interestingly, phytochemicals can act like traditional prebiotics when they contain glyco-
sidic residues as the glycosides can be cleaved from the parent molecule and undergo
fermentation [4,8]. However, many other phytochemicals without clear glycosidic residues
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can be metabolized by gut microbiota to yield metabolites, resulting in favorable health
benefits to the host [9]. Regardless of this, the health benefits largely come from favor-
able metabolite formation as well as significant modifications to the intestinal microbial
ecology [7].

Previously, we described the prebiotic potential of the novel foundational nutrition
product known as AG1® (AG1). We showed that AG1 had the potential to demonstrate
physical indications of fermentation and increase the production of short-chain fatty acids
(SCFAs) [10]. From these data, it is clear that the chemical composition of AG1 is fermentable
and could likely exert a prebiotic effect on human gut microbiota. AG1 contains various
phytonutrients (e.g., fibers, polyphenols, etc.), which could act as prebiotics from adap-
togens, like ashwagandha (Withania somnifera) and functional mushrooms [e.g., shiitake
(Lentinula edodes) and reishi (Ganoderma lucidum)], two probiotics (Lactobacillus acidophilus
UALa-01 and Bifidobacterium bifidum UABb-10), and various vitamins and minerals [11].
Prebiotics, probiotics, and micronutrients have all been shown to exert beneficial effects on
the gut microbiome [12–14].

Considering previous experimental data on AG1 and the growing evidence that
various phytochemicals can act as prebiotics [3–5], the primary objective of the current
experiment was to detail the specific effects of AG1 on gut microbial community com-
position by observing changes in community structure and function. Using the in vitro
experimental design of the Simulator of Human Intestinal Microbial Ecosystem (SHIME®)
model, we sought to examine how AG1 shifts gut microbial community dynamics through
shallow whole genome sequencing (WGS) via the shotgun sequencing methodology ap-
proach. This approach allows for observations of in-depth changes in community structure
and function resulting from an acute treatment with a novel nutraceutical, AG1 [15]. We
hypothesized that AG1-treated stool inocula would exhibit favorable shifts consistent with
a synbiotic treatment.

2. Materials and Methods
2.1. Experimental Product and Model

AG1® (AG1; Athletic Greens International, Carson City, NV, USA) is a novel founda-
tional nutrition supplement containing a mixture of vitamins, minerals, prebiotics, probi-
otics, and phytonutrients. A recommended dose of AG1 designed for human consumption
is 12 g per serving. For the current experiment, a dose of 6 g/reactor was chosen to mitigate
physical complications that would impact the mechanical and biological factors of the
SHIME® model. The placebo group only received the blank control medium used to deliver
AG1. The ingredients in AG1 are available online [11] and have undergone evaluation and
verification via NSF testing (Ann Arbor, MI, USA) to ensure the product meets strict quality,
purity, safety, and label accuracy standards [16].

Briefly, we employed the SHIME® model, which is jointly registered by ProDigest and
Ghent University in Belgium [17]. This model was chosen as it emulates the chemical and
physiological conditions of the human gastrointestinal tract to simulate realistic conditions
anticipated in humans. Employing this model allows for consistent digestive conditions
and controls for experimental variables that could differ significantly when carried out in
humans, confounding the potential results. AG1 was exposed to a gastric phase in which
the test product was subjected to normal stomach physiological conditions. Following the
gastric phase, physiological conditions were shifted toward conditions of the duodenum
briefly and then transferred to a dialysis membrane to emulate absorption of the digested
fraction. The non-digested fraction was subsequently transferred to a mixture of a colonic
medium and human fecal inocula. Human fecal inocula was derived from three indepen-
dent and seemingly healthy human donors. Health status was determined using the study
site and the testimonies provided by donors. Colonic simulations were performed under
physiological conditions of the proximal colon for 48 h. For more detailed information on
the methodology, please refer to our previous publication [10]. The study was conducted
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in accordance with the Declaration of Helsinki and approved by the Ethics Committee of
the University Hospital Ghent (reference number: ONZ-2022-0267).

2.2. DNA Extraction, Library Preparation, and Sequencing

Genomic DNA was extracted from samples taken at the start (0 h) as well as after
48 h of colonic simulation using the CTAB-Phenol-Chloroform methodology [18]. After
final precipitation, the DNA was resuspended in PCR water and stored at −20 ◦C for a
further analysis.

Genomic DNA samples were profiled with shotgun metagenomic sequencing. Se-
quencing libraries were prepared using the Nextera XT DNA Library Preparation Kit
(Illumina, San Diego, CA, USA) and IDT Unique Dual Indexes with a total of 1 ng DNA
input following the manufacturer’s protocol. Genomic DNA was fragmented using a pro-
portional amount of the Illumina Nextera XT fragmentation enzyme. Unique dual indexes
were added to each sample followed by 12 cycles of PCR to construct libraries. DNA
libraries were purified using AMpure magnetic Beads (Beckman Coulter, Brea, CA, USA)
and eluted in an EB buffer (QIAGEN, Hilden, Germany). DNA libraries were quantified
using a Qubit 4 fluorometer and Qubit dsDNA HS Assay Kit. The final pool was quantified
using qPCR using the Qubit 4 fluorometer and Qubit™ dsDNA HS Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA). Libraries were then sequenced on the Illumina
NovaSeq platform, 2 × 150 bp.

2.3. Bioinformatics

A bioinformatic analysis was performed using CosmosID-HUB software version
1.0.0. Initial QC, adapter trimming, and preprocessing of metagenomic sequencing reads
were carried out using BBduk [19]. The system utilizes a high-performance data mining
k-mer algorithm that rapidly disambiguates millions of short sequence reads into the
discrete genomes engendering the particular sequences. The pipeline has two separable
comparators: the first consists of a precomputation phase for reference databases and the
second is a per-sample computation. The input to the precomputation phase is databases
of reference genomes, virulence markers, and antimicrobial resistance markers that are
continuously curated by CosmosID scientists. The output of the precomputational phase
is a phylogeny tree of microbes, together with sets of variable-length k-mer fingerprints
(biomarkers) uniquely associated with distinct branches and leaves of the tree. The second
per-sample computational phase searches the hundreds of millions of short sequence reads,
or alternatively contigs from draft de novo assemblies, against the fingerprint sets. This
query enables the sensitive yet highly precise detection and taxonomic classification of
microbial NGS reads. The resulting statistics are analyzed to return the fine-grain taxonomic
and relative abundance estimates for the microbial NGS datasets. To exclude false positive
identifications, the results are filtered using a filtering threshold derived based on internal
statistical scores that are determined by analyzing a large number of diverse metagenomes.
Relative abundances were calculated by dividing the specific count of a taxon by the
total number of reads per sample. No transformations were applied. An unsupervised
reduction technique was applied to only explore bacterial taxa with filtered results, which
only contained calls that met the threshold for high confidence on the organism called
within the sample.

The quality-controlled reads were then subjected to a translated search against a
comprehensive and non-redundant protein sequence database, UniRef 90. The UniRef
90 database, provided by UniProt [20], represents a clustering of all non-redundant pro-
tein sequences in UniProt, such that each sequence in a cluster aligns with 90% identity
and 80% coverage of the longest sequence in the cluster. The mapping of metagenomic
reads to gene sequences was weighted by mapping quality, coverage, and gene sequence
length to estimate community-wide weighted gene family abundances as described by
Franzosa et al. [21]. Gene families are then annotated to MetaCyc reactions (Metabolic
Enzymes) to reconstruct and quantify MetaCyc metabolic pathways [22] in the community
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as described by Franzosa et al. [21]. The UniRef 90 gene families were also regrouped to
Enzyme Commission Enzymes, Pfam protein domains, CAZy enzymes, and GO Terms
to obtain an exhaustive overview of gene functions in the community. Lastly, to facilitate
comparisons across multiple samples with different sequencing depths, the abundance
values are normalized using total sum scaling (TSS) normalization to produce copies per
million (CPM) units.

2.4. Statistics

Statistical calculations were performed using in-house R-based applications by ProDi-
gest. All analyses were run in R 4.2.2 (https://www.r-project.org/) [23]. Species rel-
ative abundance data were used to calculate the Shannon Diversity, Chao1 Diversity,
and Simpson Diversity indices. Alpha diversity metrics were calculated using the phy-
loseq (https://github.com/joey711/phyloseq) and vegan (https://cran.r-project.org/
web/packages/vegan/index.html) packages in R. Differences between the AG1-treated
microbiota and the blank-control-treated microbiota were assessed after 48 h of colonic
simulation via the paired t-test. Compositional heterogeneity in the community structure
data was determined using the Bray–Curtis Dissimilarity Index and statistically evaluated
using the adonis2 function in the vegan R package. Adonis is a permutational multivariate
analysis of variance (PERMANOVA) using Bray–Curtis and Jaccard distance measures to
assess microbial community compositional differences when different categorical groups
are provided. A total of 1000 permutations were performed, and the adjusted p-values are
reported. To visualize the compositional heterogeneity, partial least squares-discriminate
analyses (PLS-DA) were used using the plsda and plotIndiv functions in the mixOmics
R package (http://mixomics.org/). The linear discriminant effect size (LEfSe) method
was used to identify the key bacterial groups that likely accounted for heterogeneity in
the community due to being statistically enriched in one of the treatment groups relative
to the other. Differences between the AG1-treated communities and the blank-treated
communities after 48 h of colonic simulation were analyzed via a linear discriminant
analysis (LDA).

Similar methodology and subsequent statistical analyses were also performed to assess
compositional heterogeneity in the community functionality data. This methodology was
applied to both the gene ontology (GO) terms as well as the MetaCyc pathway database.

3. Results
3.1. Community Structure
3.1.1. Alpha Diversity

To observe changes in community structure, changes in alpha diversity were exam-
ined (Figure 1). To ensure species richness and evenness, rare taxa were all taken into
consideration, and the Shannon Diversity Index, the Simpson’s Diversity Effects, and the
Chao1 Diversity Index were calculated for both the AG1-treated microbiota as well as the
blank-control-treated microbiota following 48 h of colonic simulation. All three measures
failed to reach statistical significance (p = 0.1876, p = 0.2845, p = 0.1794, respectively). Fur-
ther, the total observed bacterial abundance was analyzed, but failed to reach statistical
significance (p = 0.2608).

3.1.2. Beta Diversity

Overall heterogeneity in the community structure was visualized (Figure 2) and
statistically evaluated. Ordination (PLS-DA) of the data demonstrated a clear donor and
treatment effect. Running an adonis (Table 1) to statistically evaluate the variation in the
community structure showed that both the treatment and specific donor source significantly
impacted overall community heterogeneity (p < 0.001 and p < 0.001, respectively) and that
the interaction between those two variables was significant as well (p < 0.001). Moreover, a
majority (79.1%) of the variation in community heterogeneity was explained by the donor,
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followed by the treatment (7.0%), and the interaction between the two variables explained
8.2% of the variation in community heterogeneity.
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Figure 2. A PLS-DA ordination visualizing the effects of treatment and donor influencing com-
munity structural heterogeneity following 48 h of colonic simulation. Numbers 1 through 9 refer
to AG1-treated samples and numbers 10 through 18 refer to blank-control-treated samples. Num-
bers 1 through 3 and 10 through 12 refer to Donor A, numbers 4 through 6 and 13 through 15 refer to
Donor B, and numbers 7 through 9 and 16 through 18 refer to Donor C.

Table 1. Results of the adonis on community structural heterogeneity.

Variable Sum of Squares R2 F Adjusted p-Value

Treatment 0.2342 0.06964 14.4451 <0.001
Donor 2.6596 0.79093 82.0295 <0.001

Treatment/Donor 0.2743 0.08158 8.4608 <0.001
Residual 0.4689 0.13943
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3.1.3. Specific Taxonomic Differences

We extended the specific taxonomical investigations to all phylogenetic levels. Using
the LEfSe methodology and subsequent LDA (Figure 3), we identified eight statistically
significant taxa that differed between the AG1- and blank-control-treated microbiota. Of
these, Faecalibacterium prausnitzii, Microcoleaceae, Waltera intestinalis, and Arthrospira were
enriched in the AG1-treated samples. Conversely, Tannerella, Collinsella, Clostridia, and
Ruminococcaceae were enriched in the blank-treated samples (Figure 4).
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Figure 4. The relative abundances of the taxa captured in the LEfSe analysis for the 48 h time point.

3.2. Community Function
3.2.1. Community Functional Heterogeneity

To understand the general differences in how the microbial community was func-
tioning due to AG1 treatment after 48 h of colonic simulation, functional heterogeneity
was visualized via ordination and subsequently statistically evaluated. This was run for
both GO Terms (Figure 5) as well as for data using the MetaCyc database (Figure 6). For
the GO Terms (Table 2), there was a significant treatment effect (p = 0.034) and donor
effect (p < 0.001), with a significant interaction between the two variables (p = 0.025). A
majority (43.6%) of the variation in community functional heterogeneity was explained
by the donor, followed by the treatment (7.1%), and the interaction between the two vari-
ables explained 12.1% of the variation in community functional heterogeneity. Results for
the MetaCyc database were different (Table 3). There was no significant treatment effect
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(p = 0.051). However, there was a clear donor effect (p < 0.001) but no interaction between
the treatment effect and donor (p = 0.496). A majority (24.4%) of the variation in community
functional heterogeneity was explained by the donor, followed by the treatment (8.6%), and
the interaction between the two variables explained 9.3% of the variation in community
functional heterogeneity.
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Table 3. Results of the adonis on community functional heterogeneity using the MetaCyc database.

Variable Sum of Squares R2 F Adjusted p-Value

Treatment 0.12389 0.08555 1.7761 0.051
Donor 0.35297 0.24375 2.5301 <0.001

Treatment/Donor 0.13418 0.09266 0.9618 0.496
Residual 0.83704 0.57803

3.2.2. Specific Community Functional Pathways

Using the LEfSe methodology and subsequent LDA statistical analysis, we identified
20 functional pathways from the GO Terms that were explicitly enriched in the AG1-treated
microbiota communities and no pathways that were enriched in the blank-control-media-
treated microbiota communities (Figure 7). For the MetaCyc pathway database, a total of
five functional pathways were enriched in the AG1-treated samples while nine functional
pathways were enriched in blank-control-media-treated samples (Figure 8).
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Figure 7. The enrichment of several significant functional pathways was identified using the GO
Term database and was dependent on treatment with AG1. All pathways enriched were observed
only in the AG1-treated samples.
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4. Discussion

From the totality of the data, it is reasonable to conclude that an acute dose of AG1 has
an overall significant impact on the gut microbiome’s community composition. Regarding
community structure, we did not observe a significant impact on alpha diversity, but did
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see a significant treatment effect and donor effect, and an interaction between the treatment
and donor effect on structural heterogeneity. Several significant taxa were enriched or
diminished by the AG1 treatment and explain the significant heterogeneity observed.
Further, similar findings were observed regarding community functional heterogeneity.
There was a significant treatment effect and donor effect, and an interaction between the
treatment and donor effect on functional heterogeneity that corresponded to significantly
enriched functional pathways.

Total abundance, Shannon Diversity, Simpson’s Diversity Effects, and the Chao1 Di-
versity Index all failed to demonstrate significant changes in community diversity. Despite
this, there was a general trend that AG1 supplementation reduced community diversity.
While increased alpha diversity is generally a beneficial phenomenon [24], species diversity
tends to decrease during succession [25]. This occurrence is likely attributed to the primary
succession process observed when the bioreactors were seeded with fecal inocula. In a
chronic paradigm, this phenomenon would likely not be observed as diversity tends to
increase after primary succession, at least in plant communities [26,27]. Further, treatment
with prebiotics might have also impacted alpha diversity. It is implied that prebiotics can
reduce alpha diversity by favorably selecting bacteria capable of fermentation, resulting
in decreased species richness and evenness, especially in vitro [28–30]. These theories are
probable as we also saw a generalized increase in the total number of bacteria observed.
Prebiotic interventions have been shown to increase relative abundances in gut microbial
communities [31].

We then turned to look at beta diversity, which measures variation in taxonomic
composition in a community rather than just taxonomic richness or evenness [32]. When
investigating the community structure accounting for the dependence each taxon has on
one another, we were able to see the significant heterogeneity within the AG1-treated
communities relative to the blank-control-treated communities. The heterogeneity in com-
munity structure was driven by the enrichment and diminishment of specific taxa caused
by AG1 supplementation. Of the enriched taxa, two were likely transient microbiota and
two were resident microbiota. The two likely transient taxa, Microcoleaceae and Arthrospira,
were cyanobacteria in nature. Interestingly, the genus Arthrospira encompasses Spirulina.
AG1 contains various whole-food products including Spirulina; it is theorized that these
two taxa were found to be enriched in the microbial communities treated with AG1 simply
because these microbes entered the colon microenvironment from the test product. The two
resident taxa were F. prausnitzii and W. intestinalis. F. prausnitzii is a well-known microbe
with many purported health benefits due to its ability to synthesize butyrate [33–35]. There-
fore, increased F. prausnitzii is promising and has been shown to increase in abundance
when prebiotics are taken [36]. W. intestinalis is a prevalent gut bacterial species in humans
with a distant relation to Kineothrix alysoides. Genetically, W. intestinalis is suggested to have
a diverse metabolic potential within the microbiome [37]. Moreover, W. intestinalis harbors
genes for the biosynthesis of Ruminococcin A, which has anti-Clostridium spp. activity [38].

It is then not surprising that Clostridia was not enriched in the AG1-treated sam-
ples. However, decreases in Clostridia make it hard to ascertain the repercussions in
humans as the taxon is incredibly large and diverse [39]. Beyond Clostridia, Tannerella
and Collinsella were also shown to decrease in AG1-treated microbial communities. The
genus Tannerella is known for its oral pathogen Tannerella forsythia, and, although beyond
the scope of the current experiment, prebiotics have been shown to lower Tannerella and
improve lipid metabolism in mice [40]. Decreases in Collinsella have clear implications
for human health as increased Collinsella abundances are linked with low fiber intake and
correlated to circulating insulin [41], in increased abundances in the gut microbiome of
patients with atherosclerosis [42], shown to increase gut permeability and be associated
with rheumatoid arthritis [43], and known to be proinflammatory and a risk factor for
Alzheimer’s disease [44]. The last taxa shown to be decreased in the AG1-treated samples
was Ruminococcacea, which was surprising. Generally, Ruminococcaceae has been shown to
be associated with health benefits [45,46]. To fully understand the biological ramifications
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of AG1, the gut microbiome needs to be evaluated in humans, in sufficient sample sizes,
and in a chronic/long-term dosing paradigm.

Lastly, we sought to look at how changes in community structure translated into
changes in the microbiome’s functionality. The effect of AG1 on community functional
heterogeneity was significant using the GO Terms and close to significance when using the
MetaCyc database. Interestingly, the ordination of community functionality showed that
the magnitude of the treatment was highly donor-specific. Regardless, the two databases
suggested that AG1 enriched different genes and likely resulted in different metabolic
potential within the microbiome. In both databases, the genes appeared to be potentially
related to protein biosynthesis, transcription, and translation, and DNA synthesis and
replication. The ultimate biological effects of these genetic processes on a host are not able
to be determined in an in vitro experimental design and further testing must be performed
in a clinical setting to evaluate any effect if there is one at all.

This study had several limitations that warrant interpretation of the data to be taken
with caution. The primary limitation is the small sample size of the study given the fact
that the human microbiome is incredibly diverse and metabolically complex, leading
to large amounts of variability [47–50]. Further, this is an in vitro model of the human
gastrointestinal tract and only a simulation of the colonic environment. Many dynamics that
occurred within the community could play out differently in vivo. Finally, the ecological
parameters could have biased some of the experimental outcomes. Namely, since fresh
stool inocula were used to seed the bioreactors, the community was put under a primary
succession event. A chronic dosing paradigm should be used in the future to account for
succession (whether it is primary or secondary) and to account for a more longitudinal
effect of AG1 on the gut microbiome. Further, pooling of donor stool samples to mitigate
individuality and creating a “universal” microbiome could be a solution to mitigate the
massive variation between donors but would come with unique benefits and shortcomings
with its interpretation. Despite these limitations, the SHIME® model does an impressive job
emulating the physiological and biological environment of the digestive tract. Therefore,
the current data are invaluable for future, subsequent clinical studies.

5. Conclusions

The objective of the study was to observe changes in human gut microbial community
composition in an in vitro setting. Data showed that AG1 had no overall effect on alpha
diversity but was able to induce shifts in community structure relative to the blank con-
trol. These shifts occurred in several taxa that could be considered favorable to the gut
microbiome (e.g., increased F. prausnitzii). The shifts in community structure coincided
with shifts in community function; thus, it is reasonable to conclude that an acute dose of
AG1 could induce shifts in the gut microbiome. Subsequent clinical testing is needed to
confirm whether these perceived favorable shifts translate to humans.
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