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Abstract: RNA-binding proteins (RBPs) play an important role in regulating biological processes,
such as gene regulation. Understanding their behaviors, for example, their binding site, can be
helpful in understanding RBP-related diseases. Studies have focused on predicting RNA binding by
means of machine learning algorithms including deep convolutional neural network models. One
of the integral parts of modeling deep learning is achieving optimal hyperparameter tuning and
minimizing a loss function using optimization algorithms. In this paper, we investigate the role of
optimization in the RBP classification problem using the CLIP-Seq 21 dataset. Three optimization
methods are employed on the RNA–protein binding CNN prediction model; namely, grid search,
random search, and Bayesian optimizer. The empirical results show an AUC of 94.42%, 93.78%,
93.23% and 92.68% on the ELAVL1C, ELAVL1B, ELAVL1A, and HNRNPC datasets, respectively, and
a mean AUC of 85.30 on 24 datasets. This paper’s findings provide evidence on the role of optimizers
in improving the performance of RNA–protein binding prediction.

Keywords: RNA-binding proteins; bioinformatics; proteins; deep learning; convolutional neural
network (CNN); optimization; grid search; random search optimizer; Bayesian optimizer; machine
learning; artificial intelligence

1. Introduction

RNA-binding proteins (RBPs) are proteins that bind to the double- or single-stranded
RNA in cells and participate in forming ribonucleoprotein complexes. It is estimated that
there are more than 1500 RNA-binding proteins in the human genome [1]. The interaction
of proteins and RNA is essential for regulating gene expression at transcriptional and post-
transcriptional levels [2]. Dysregulation in the interaction can cause cellular defects, leading
to many diseases, such as cancerous tumors [3], genetic diseases [4], and neurological
disorders, such as Alzheimer’s disease [5]. Thus, it is important to identify RNA–protein
binding sites in order to understand the binding effect.

Various experimental techniques are available for the detection of RBP sites, such as
crosslinking immunoprecipitation (HITS-CLIP), light-activated-ribonucleotide-enhanced
crosslinking and immunoprecipitation (PAR-CLIP), and individual-nucleotide resolution
crosslinking and immunoprecipitation (iCLIP) [6].

Although effective, such high-throughput technologies are costly, time-consuming,
and sensitive to experimental variance. In addition to high-throughput sequencing methods
that rely on crosslinking and immunoprecipitation, other experimental techniques are
also used, such as electrophoretic mobility shift assays (EMSAs) [7], high-throughput
imaging [8], and RNA-Bind-n-Seq [9].
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Some studies propose enhancements to the scientific protocol in RBP binding sites.
For example, the detailed steps of the PAR-CLIP protocol presented by Garzia et al. [10]
to enhance and improve the experimental steps. For the enrichment of RBP binding sites,
the study suggests using the kernel density algorithm PARalyzer to detect the density of
thymidine-to-cytidine conversions that help in discriminating crosslinked from co-isolated
non-crosslinked input RNAs. However, optimization algorithms for RNA–protein binding
sites prediction were not employed.

Recently, several computational algorithms have been introduced in order to enhance
the accuracy of RBP-binding-site detection. Deep learning has recently been a major
research field in solving computational biology problems [11,12]. This is due to its capacity
to uncover hidden patterns in complex biological data [13]. In particular, convolutional
neural networks (CNNs) have demonstrated promising results for bioinformatics prediction
tasks, including peptides [14], splice sites [15], and RNA–protein binding sites [6]. CNNs
have been the primary mechanism for extracting RBP information in deep-learning-based
approaches [6].

For example, iDeep trains a hybrid deep network with deep belief networks (DBNs)
and CNNs using the CLIP-Seq datasets [16]. iDeepE combines a global and local CNNs to
predict RNA–protein binding sites and motifs using only RNA sequences. The research
investigated the impact of parameter optimization on the performance of the RNA–protein
binding model using grid search, which improved the dropout probability, window size,
and regularization [17]. DFpin is a cascade structure of deep forest learning for protein-
binding-site prediction with feature-based redundancy removal [18]. The method works by
analyzing the mono-nucleotide composition of the RNA fragments. DeepBtoD is ensemble
learning for RNA-binding protein prediction using integrated deep learning [19]. This deep
learning method learns high-level features using a self-attention mechanism and integrates
local and global information from RNA sequences to enhance the prediction.

The advent of high-throughput sequencing technology has yielded vast datasets.
The incorporation of deep learning algorithms in this field presents an opportunity to
generate entirely data-driven predictions of binding sites. While statistical methods can
be effectively utilized to identify enriched peaks in crosslinking and immunoprecipitation
experiments, the application of CNNs provides distinct advantages. CNNs are capable
of automatically learning features directly from raw data. This is particularly useful
in situations where the relationships between genomic regions and binding events are not
easily characterized by manually crafted features. Additionally, CNNs excel in capturing
intricate spatial patterns within the data.

CNNs are a type of deep neural network with an architecture of many convolutions,
pooling, and fully connected layers. There are numerous parameters to be set in order to
control the model learning process. Those parameters are referred to as hyperparameters,
and include the number of hidden layers, activation function, learning rate, batch size,
and optimizer. The performance of CNNs is highly dependent on setting the optimal values
for the network hyperparameters. With the increasing complexity of data, this task is far
from trivial. Hyperparameter optimization can be achieved using various methods, such
as manual setting, grid search, random search, Bayesian optimizer [20], and Tree Parzen
Estimators [21].

Random search is a simple algorithm and easy to implement. Its basic idea is testing
random inputs of the objective function. Its efficacy stems from its lack of reliance on
prior assumptions about the underlying structure of the problem, as opposed to methods
like Bayesian optimization. Bayesian optimizer is a sequential model-based approach
that aims to identify the global optimum with the fewest trials possible. In Bayesian
optimizer, a prior assumption about the potential objective functions is established. It then
undergoes successive improvement using the Bayesian posterior. Bayesian optimizer has
demonstrated success in many applications such as environmental monitoring, information
extraction, and experimental design [22].
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Several studies have demonstrated the effectiveness of optimization and heuristic
methods such as Bayesian optimizer, grid search, and random search methods in improving
model prediction. Calvet et al. [23] demonstrated the effect of optimization algorithms in
solving bioinformatics problems such as molecular docking and protein structure predic-
tion. They suggested the combination of multiple heuristic and optimization algorithms
to solve modern computational problems. In classifying bioactive compounds, Czar-
necki et al. [24] demonstrated that random search optimization can lead to improved
performance compared to grid and heuristic approaches. Bayesian optimizer has attracted
interest due to its usefulness in tuning hyperparameters for deep learning [25]. It is used
to fine-tune the search where domain knowledge, such as parameter selection, is com-
plemented with computational approaches and model analysis. It is an iterative global
optimization method which aims to maximize an objective function over a limited set of
variables and constraints [26].

Bayesian optimizer had been applied in biochemical applications, for the production
of mRNA molecules [26], and in bioinformatics, for the assembly of RNA sequences [25]
and for improving genetic expression quantitative trait loci (eQTL) analysis [27], aptamer
(RNA/DNA oligonucleotide molecules) discovery [28], and generating RNA secondary
structures [29].

Many solutions based on CNNs for determining RBP sites have been introduced in
the literature [1,6,13,30]. The task of RBP-binding-site detection is a binary classification
problem, where it is required to classify input sequences into either positive (binding) or
negative (non-binding), as shown in Figure 1. Given an RNA sequence, our model can take
the RNA sequence (input features) as an input representing the genetic information stored
in RNA, and indicate whether it binds to a specific protein (output label).

Figure 1. RBP binding sites as a binary classification problem.

However, there are limited studies that have investigated the role of optimization in
computational biology areas, especially in the problem of RNA–protein binding prediction.
To bridge this gap, we investigate how random search optimization, grid search, and
Bayesian optimizer can contribute to achieve better hyperparameters, automatically fine-
tuned for selected datasets. To the best of our knowledge, the role of the CNN optimization
method in increasing the accuracy of RBP site prediction has not been evaluated.

This paper provides the following contributions: (1) it presents an empirical evaluation
of three gold-standard hyperparameter-tuning optimization methods, random search
optimizer, grid search, and Bayesian optimizer, in the context of RNA–protein-binding
prediction. We investigate the impact of the hyperparameter-tuning method on improving
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the model performance. (2) It presents an optimized deep CNN model for RNA–protein
binding site prediction.

Our focus in this study is the task of recognizing RNA sequences with RBP binding
sites. However, it is worth mentioning other related tasks, such as identifying RNA–protein
interactions that detect protein sites binding to RNA [31–35] and the prediction of residue–
base contacts between proteins and RNAs [36,37]. The distinction between our task and the
other two related tasks lies primarily in the directionality of the interaction being analyzed.
Predicting RNA-binding sites on proteins focuses on identifying regions on RNA-binding
proteins that are likely to interact with RNA molecules. It involves predicting specific
amino acid residues or structural domains on the protein that are involved in binding to
RNA. This can help understand protein–RNA interactions, protein function, and potentially
aid in drug design or modifying protein behavior. Conversely, predicting protein-binding
sites on RNA aims to identify regions on RNA molecules that are likely to interact with
specific proteins. It involves predicting RNA sequences or structural motifs that serve as
binding sites for particular proteins. Understanding these sites is crucial for deciphering
RNA–protein interactions and their roles in various biological processes.

To facilitate navigation, this paper is structured as follows: We begin by outlining the
overall research methodology, encompassing the data preprocessing steps and preparation
of the random search optimizer, grid search optimizer, and Bayesian optimizer. Next, we
delve into the optimized CNN model designed for RPB prediction, followed by a thorough
discussion of our empirical findings.

2. Materials and Methods

In this paper, an optimized RNA–protein-binding CNN prediction model is proposed
using the CLIP-Seq 21 dataset. Three optimization methods are employed, and the empirical
results are reported. Optimization approaches have been proven to be efficient means
of finding optimal hyperparameters and training choices for deep learning CNN models.
In this study, we investigate three very widely used optimization approaches, namely, grid
search, random search optimizer, and Bayesian optimizer, on an RNA–protein-binding
CNN prediction model. First, the overall model architecture and the empirical approach to
modeling the RNA–protein-binding problem is demonstrated. Secondly, we walk through
the preprocessing steps to prepare the CLIP-Seq 21 dataset. Next, we present the optimized
CNN model with an emphasis on random search, grid search, and Bayesian optimizer to
develop the CNN model.

2.1. Model Architecture

In this study, we compare the performance of three widely used optimization tech-
niques for hyperparameter tuning of machine learning models: grid search, random search,
and Bayesian optimization. We investigate a set of hyperparameters including learning rate,
activation function, number of neurons, optimizer, dropout rate, etc. Such hyperparameters
can significantly influence the performance of a machine learning model. Our goal is to
find the combination of these hyperparameters that results in the best model performance.
In this section, we present the modeling approach for predicting RBP binding sites using
hyperparameter optimization methods. The modeling process begins with essential pre-
processing steps required to prepare the dataset. Initially, we encode the sequence and
secondary structure using one-hot encoding. These encoded representations are then input
into CNNs to capture abstract motif features. Subsequently, the learned abstract features
are utilized in a classification layer to predict RBP binding sites on RNAs. We empirically
assess three optimization methods to evaluate the overall model performance and to ana-
lyze the impact of random search optimizer, grid search optimizer, and Bayesian optimizer
on classification learning and hyperparameter tuning. Our comprehensive evaluation is
based on verified RBP binding sites obtained from the large-scale representative CLIP-Seq
datasets. The overall architecture of the proposed model is illustrated in Figure 2.



Curr. Issues Mol. Biol. 2024, 46 1364

Figure 2. Model architecture.

2.2. Preprocessing

Various algorithms in machine learning exhibit limitations in directly processing label
data. Instead, they necessitate the conversion of all input and output variables to numerical
formats. In developing an optimized RNA–protein-binding CNN prediction model, we
first encode the RNA sequence and secondary structure into one-hot encoding. It is highly
important for a machine learning model that categorical data are transformed into one-hot
encoding where binary features are created for different categories of the data, i.e., one-hot
encoding is a vector representation of a categorical label or feature. This constraint ensures
better implementation and modeling of the machine learning problem, as it learns more
efficiently with numeric forms of data. An illustration of one-hot encoding is presented in
Figure 3.

Figure 3. One-hot encoding.

3. Model Optimization

Hyperparameters are external configurations that influence the learning process but
are not learned from the data. Hyperparameter tuning is simply searching for the best
model architecture from the parameter space to reach the optimal model accuracy. It
is considered the most challenging task in developing a machine learning model [38].
Many scientists adopt a trial and error approach to choosing hyperparameters. However,
this approach is time consuming, especially for high-dimensional data where complexity
expands with each model training iteration. This is true specifically for deep learning
models that may not reach local minima [39]. In this section, we investigate three of
the most well known hyperparameter-tuning/optimization methods that have proven to
be successful with deep learning models; namely, grid search optimizer, random search
optimizer, and Bayesian optimizer.

3.1. Grid Search

Grid search is a hyperparameter-tuning technique employed in machine learning to
systematically explore a predefined set of hyperparameter values for a given model. In a
grid search, a discrete set of values for each hyperparameter of interest is specified, creating
a multidimensional grid. The algorithm then iteratively trains and evaluates the model
with each combination of hyperparameter values within the defined grid. Let Θ represent
the set of hyperparameters, where θi denotes the i-th hyperparameter, and Vi represents
the set of values considered for θi. The grid search process can be described as follows:
For θ1 in V1, for θ2 in V2, . . . , for θn in Vn, train and evaluate the model with hyperparam-
eters {θ1, θ2, . . . , θn}. This exhaustive exploration allows one to systematically assess the
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performance of the model across the entire hyperparameter space, which helps to identify
the combination that optimizes the chosen evaluation metric. Grid search is reliable, easy
to implement, and has proven to be efficient in low-dimensional spaces [40,41]. Its system-
atic approach provides a comprehensive understanding of how different hyperparameter
values impact model outcomes. However, it can be computationally expensive with an
increase in search space dimensionality [42].

3.2. Random Search

Random search is a method that involves employing random combinations of hy-
perparameters to discover the optimal configuration for a constructed model. While akin
to grid search, random search has shown to produce superior outcomes in comparison.
However, a drawback of random search is its propensity to yield higher computational
variance. Given the entirely random selection of parameters, and the absence of a system-
atic sampling approach, luck plays a role in its effectiveness. A visual representation of the
search patterns of random search is illustrated in Figure 4. A walk through the main steps
in random search follows:

1. Define a hyperparameter search space;
2. Specify the number of samples;
3. Randomly select a combination of hyperparameters from the predefined search space;
4. Train and evaluate the model;
5. Select best configuration.

Figure 4. Random optimization vs. Bayesian optimizer.

As random values are chosen at each instance, there is a substantial probability that
the entire action space has been explored due to this randomness, although it can be quite
time consuming to cover every possible combination during grid search. This approach
is most effective when it is assumed that not all hyperparameters hold equal importance.
In this search pattern, random parameter combinations are evaluated in each iteration.
The likelihood of discovering the optimal parameters is relatively greater in random search
due to its randomized exploration approach, potentially allowing the model to be trained on
optimized parameters without encountering aliasing issues. Aliasing occurs when different
combinations of hyperparameters result in similar models in terms of performance.

3.3. Bayesian Optimization

In contrast to random approaches, Bayesian methods maintain a history of previ-
ous evaluation outcomes, which they utilize to construct a probabilistic model linking
hyperparameters to the likelihood of achieving a specific score on the objective function.
This model is referred to as a “surrogate” for the objective function, denoted as p(y|x).
The surrogate function is notably more amenable to optimization compared to the original
objective function. Bayesian techniques operate by identifying the next set of hyperparame-
ters to test on the actual objective function, selecting those hyperparameters that exhibit
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superior performance on the surrogate function. A walk through the steps of Bayesian
optimization follows:

1. Build a surrogate probability model of the objective function (often through a Gaussian
process (GP));

2. Find the hyperparameters that perform best on the surrogate;
3. Apply these hyperparameters to the true objective function. An acquisition function xnext =

argmaxxa(x) is used to determine the next point to evaluate the objective function;
4. Update the surrogate model incorporating the new results after the evaluation of the

objective function;
5. Repeat steps 2–4 until max iterations or time is reached.

Bayesian optimizer proves useful in optimizing functions that lack differentiability,
exhibit discontinuities, and demand significant time for evaluation. The algorithm inter-
nally maintains a Gaussian process model to represent the objective function, employing
the evaluations of the objective function to refine this model. The fundamental principle
underlying Bayesian reasoning is the pursuit of becoming progressively more accurate as
more data becomes available. This is achieved through the continual refinement of the
surrogate probability model following each evaluation of the objective function. Broadly
speaking, Bayesian optimizer methods are efficient due to their judicious selection of the
next set of hyperparameters. The core concept is to invest a bit more time in the hyper-
parameter selection process to minimize the overall calls made to the objective function.
A comparison of the parameter searching approach between random optimization and
Bayesian optimizer is illustrated in Figure 4.

4. Optimized RNA–Protein-Binding CNN Prediction Model

CNNs have recently exhibited impressive performance on non-image data, prompting
the consideration of this approach in our experiment. Our data are three-dimensional,
comprising instances, window length, and one-hot encoding for ACGT. To make it compat-
ible with 2D CNNs, we transformed it into a four-dimensional format: instances, window
length, one-hot encoding for ACGT, and a depth dimension of 1. Numpy was employed for
this reshaping process, ensuring compatibility with CNNs. For hyperparameter optimiza-
tion, we utilized the scikit-learn Python machine learning library. An important element
of CNNs is the kernel, which employs shared parameters for each window, significantly
reducing computational parameters and training time. CNNs process data batch by batch
and window by window within each batch.

After iterating in this manner across the entire image, a feature map, known as a
convolved feature map, is formed. To reduce the dimensions of the feature map, and conse-
quently, the number of parameters and computational load, pooling layers are employed.
These layers condense the features found within sections of the feature map generated by
the preceding convolutional layer. As a result, subsequent operations work on summarized
features rather than the precisely located features produced by the convolutional layer.
This enhances the model’s robustness to minor shifts in the placement of features within
the input image. Various approaches exist for implementing pooling layers, including max
pooling, average pooling, and global average pooling.

Max pooling selects the highest-valued element within a defined region of the feature
map, producing a new smaller feature map containing the most prominent features from
the previous layer. In contrast, average pooling calculates the average value of all elements
in the same region, resulting in a feature map with smoothed representations of the original
features that captures the general trends of the original features.

In contrast to conventional pooling approaches, global average pooling aims to replace
fully connected layers in classic CNNs. It accomplishes this by generating one feature
map for each category in the final convolution layer instead of adding additional fully
connected layers on top. This not only simplifies the architecture but also fosters a more
natural alignment between feature maps and categories. Consequently, each feature map
can be viewed as a “category confidence map”, providing interpretable insights into the
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model’s decision-making process. Furthermore, global average pooling eliminates the need
for parameter optimization at this layer, thereby mitigating the risk of overfitting. For these
reasons, we selected global average pooling in our proposed model.

Figure 5 illustrates the proposed CNN architecture. The input is a single RNA se-
quence, represented as a 3-dimensional array. The first dimension has size 107 (indicating
the RNA sequence length), the second dimension uses one-hot encoding to represent the
four RNA bases (A, C, G, and T), and the third dimension corresponds to a single instance.
The parameters are optimized by the keras_tuner library using three methods: grid search,
random search optimizer and Bayesian optimizer. Dropout was used in our architecture to
minimize the occurrence of overfitting issues.

Figure 5. CNN model architecture.

5. Results

In this section, we present the experimental setup and empirical results of investigat-
ing the role of optimization in RBP with three widely used hyperparameter optimization
algorithms; namely, grid search, random search, and Bayesian optimization. First, we
outline the obtained AUC on 24 datasets using the CLIP-Seq 21 datasets. Then, we investi-
gate further the variation in performance by conducting a comparative study using four
datasets. With each dataset, we run the proposed CNN model prior to and after using
random search optimizer, grid search optimizer, and Bayesian optimizer. We observe the A
receiver operating characteristic curve, or ROC plots to visually analyze and diagnose the
classifier improvement spanning different epochs. For each run, we record the performance
during testing and training to investigate any overfitting indications. The area under
the curve (AUC) is used as a performance metric that measures the classifier’s ability to
distinguish classes. A higher AUC score is an indication of better classifier performance.

5.1. Experimental Setup

The implemented classifiers were built using open-source machine learning libraries:
Keras [43], Tensorflow [44], and supplementary Python libraries. The experiments were
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run on a multi-core processor and highly computational GPUs (RTX and Tesla) utilizing
high-performance AWS EC2 GPU instances.

To validate the performance of the proposed model, we report the testing results
of the AUC scores of the proposed CNN model with random search optimizer across
24 experiments on the RBP-24 dataset [45]. For each experiment of the RBP-24 dataset,
the dataset is balanced, with 50% positive samples and 50% negative samples. In addition,
each experiment is split into 90% for training and 10% for testing. The total number of
samples for each experiment varies, with a minimum of 2410 samples for ALKBH5 and a
maximum of 238,888 samples for ELAVL1C.

5.2. Empirical Results

The empirical results are shown in Table 1 with a mean AUC of 85.30. The proposed
model achieved the best AUCs of 94.42%, 93.78%, 93.23%, and 92.68% on the ELAVL1C,
ELAVL1B, ELAVL1A, and HNRNPC datasets, respectively.

Table 1. Empirical results of the proposed CNN model with random search optimizer.

# RBP Optimized CNN Model

1 ALKBH5 66.8

2 C17ORF85 75.2

3 C22ORF28 79.8

4 CAPRIN1 76.8

5 Ago2 77.6

6 ELAVL1H 91.26

7 SFRS1 88.42

8 HNRNPC 92.68

9 TDP43 90.25

10 TIA1 84.89

11 TIAL1 84.83

12 Ago1-4 85.56

13 ELAVL1B 93.78

14 ELAVL1A 93.23

15 EWSR1 88.4

16 FUS 93.2

17 ELAVL1C 94.42

18 IGF2BP1-3 78.24

19 MOV10 82.83

20 PUM2 88.32

21 QKI 83.82

22 TAF15 88.40

23 PTB 89.76

24 ZC3H7B 78.92

Mean 85.30

Due to the complexity of the datasets and the extended runtime required for executing
each experiment with various optimization methods across all datasets, we chose to conduct
an empirical study with four randomly selected datasets. The aim was to further explore
how optimization affects deep learning models for RNA prediction. These datasets included
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HNRNPC, C22ORF28, ELAVL1A, and AGO2. We initially created our deep CNN model
without using automated optimization and documented the experimental AUC results.
Following that, we repeated the experiment for the aforementioned datasets, employing the
three optimization methods reported in Table 2. Our empirical results indicate a measurable
increase in the AUC score after employing random search optimizer and Bayesian optimizer.
Table 2 and Figure 6 outline a comparison of the deep learning models’ performance prior
to and after employing optimization.

Table 2. CNN model’s AUC results with different optimizers.

Dataset
CNN Model

(No Optimizer)
CNN+ Grid

Search
CNN+ Bayesian

Optimizer
CNN+ Random
Optimization

HNRNPC 84.9 68.4 90.28 92.68

C22ORF28 76.16 69.5 77.57 79.8

ELAVL1A 88.931 71.1 88.97 93.23

ALGO2 54.92 71.2 70.14 77.62

Figure 6. Model performance comparison prior to and after optimization.

ROC plots are used to compare the classifier performance during testing vs. training
when running each dataset. Such a comparison can be accomplished by comparing the
classifier’s AUC performance over many epochs during training and testing. When a
classifier reaches a high AUC during the training phase but significantly drops in the
testing phase, it is considered a sign of overfitting. This issue takes place when deep
learning models learn well during training but fail to generalize in the testing phase.
Figures 7–10 are the ROC plots demonstrating the performance on the four RPB datasets,
HNRNPC, C22ORF28, ELAVL1A, and AGO2, during training and testing. In each plot,
the performance of the CNN model without hyperparameter optimization is illustrated
with a blue line running over multiple epochs. The orange and the blue lines illustrate the
prediction performance of the CNN model with Bayesian optimizer and random search
optimizer, respectively. The yellow line illustrates grid search optimizer. Grid search
optimizer, however, outperformed the CNN model with no optimizer on the testing set
on HNRNPC and AGO2 and fell short on the ELAVL1A and C22ORF28 datasets. Mostly,
applying hyperparameter optimization on the CNN classification model demonstrated an
improved mapping of hyperparameter values, hence improving the prediction capability
of the CNN model.

In all datasets, it was prominently apparent that random search optimizer achieved a
better performance compared to Bayesian optimizer and grid search. Our analysis showed
that the plain CNN model’s performance during training outperformed the one with
Bayesian optimizer. However, this observation does not hold true during model testing,
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where it shows clear signs of overfitting problems. However, random search optimizer and
Bayesian optimizer demonstrate a more stable trade-off between training and testing. All
in all, the proposed CNN model with random search optimizer showed the best learning
capability among the trained models.
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Figure 8. Training vs. Testing loss for C22ORF28 dataset.
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Figure 10. Training vs. testing AUC for AGO2 dataset.

6. Conclusions

In this paper, we investigated the impact of three optimization methods on RNA–
protein-binding prediction, which is an important problem investigated in the field of
bioinformatics and chemoinformatics related to the effect of RNA and protein binding on
gene expression. We empirically tested multiple datasets and showed that hyperparameter
optimization techniques improved the model performance and had a positive impact on
model learning. Our approach also minimizes the time researchers need to spend trying
to tune machine learning problems for different tasks. First, we introduced an optimized
deep CNN model for RNA–protein binding site prediction. Then, we delivered empirical
results of the optimization techniques, shedding light on their pivotal role in refining the
performance of deep learning prediction models on the CLIP-Seq 21 dataset.

Moreover, an empirical comparative analysis was presented, demonstrating the effec-
tiveness of random search optimizer, grid search, and Bayesian optimizer within the context
of the CNN model for RNA–protein binding site prediction. This comparative study not
only highlights the advantages of optimization but also provides valuable insights into the
nuanced interplay between optimization strategies and model performance.

This research advances our understanding of RNA–protein binding site prediction
by proving the impact of optimization techniques. It serves as a valuable resource for
researchers and practitioners in the field, paving the way for more accurate and efficient
predictive models in RNA–protein interaction studies. The deep learning models presented
in this study address the task of recognizing RNA sequences with RBP binding sites.
Further downstream analysis involves using alignment algorithms to locate and display
binding motifs. Our models could be integrated into a comprehensive framework, to be
investigated in future work.
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