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Abstract: HER2-positive breast cancer is one of the most prevalent forms of cancer among women
worldwide. Generally, the molecular characteristics of this breast cancer include activation of human
epidermal growth factor receptor-2 (HER2) and hormone receptor activation. HER2-positive is
associated with a higher death rate, which led to the development of a monoclonal antibody called
trastuzumab, specifically targeting HER2. The success rate of HER2-positive breast cancer treatment
has been increased; however, drug resistance remains a challenge. This fact motivated us to explore
the underlying molecular mechanisms of trastuzumab resistance. For this purpose, a two-fold
approach was taken by considering well-known breast cancer cell lines SKBR3 and BT474. In the
first fold, trastuzumab treatment doses were optimized separately for both cell lines. This was done
based on the proliferation rate of cells in response to a wide variety of medication dosages. Thereafter,
each cell line was cultivated with a steady dosage of herceptin for several months. During this period,
six time points were selected for further in vitro analysis, ranging from the untreated cell line at the
beginning to a fully resistant cell line at the end of the experiment. In the second fold, nucleic acids
were extracted for further high throughput-based microarray experiments of gene and microRNA
expression. Such expression data were further analyzed in order to infer the molecular mechanisms
involved in the underlying development of trastuzumab resistance. In the list of differentially
expressed genes and miRNAs, multiple genes (e.g., BIRC5, E2F1, TFRC, and USP1) and miRNAs
(e.g., hsa miR 574 3p, hsa miR 4530, and hsa miR 197 3p) responsible for trastuzumab resistance were
found. Downstream analysis showed that TFRC, E2F1, and USP1 were also targeted by hsa-miR-8485.
Moreover, it indicated that miR-4701-5p was highly expressed as compared to TFRC in the SKBR3 cell
line. These results unveil key genes and miRNAs as molecular regulators for trastuzumab resistance.
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1. Introduction

Cancer continues to pose a substantial global health threat despite advancements in
diagnosis and treatment [1]. In a recent update in 2020, there were an estimated 19.3 million
new cases and 10.0 million cancer-related deaths [2], an increase from 18.1 million cases
and 9.6 million deaths in 2018 [3]. This rise can be attributed to factors such as popula-
tion growth, increased exposure to risk factors like smoking and obesity, and changing
reproductive patterns due to economic development and urbanization. Lung cancer is the
most frequently diagnosed and deadliest, followed closely by breast cancer. Breast cancer
is the most common cancer in women worldwide, with over 2.3 million new cases in 2020,
significantly contributing to cancer-related mortality [4]. Breast cancer is now recognized
as a diverse group of diseases with distinct clinical behaviors, molecular components, risk
factors, prognostic markers, and responses to treatment. Molecular classification relies
on markers like estrogen receptors (ER), progesterone receptors (PR) and HER2 and Ki67
proliferation rate [5]. As a result, breast cancer has been categorized into five subtypes:
luminal A, luminal B, triple-negative, and two HER2-positive types. Breast cancers with
HER2 overexpression constitute 15–25% of cases, being aggressive and challenging to treat.
Trastuzumab was approved by the FDA in 1998 and demonstrated a 37% relative improve-
ment in overall survival with an increase of about 9% in the probability of 10-year OS
when combined with chemotherapy [6]. Mutations in PIK3R1, activating PI3K/Akt/mTOR,
drive trastuzumab resistance, especially in HER2-overexpressing breast cancer [7]. Approx-
imately 70% of HER2-positive breast cancer patients develop resistance to trastuzumab
within a year of treatment initiation, despite initial responsiveness [8].

In this context, the present study aimed to comprehensively investigate the molecular
mechanisms underlying trastuzumab resistance using a two-fold approach. Initially, well-
established breast cancer cell lines, namely SKBR3 and BT474 [9], were used to mimic the
in vitro conditions representative of HER2-positive breast cancer. Optimal trastuzumab
treatment doses were determined for each cell line based on their respective proliferation
rates in response to a wide range of medication dosages. Subsequently, both cell lines were
continuously cultivated with a steady dosage of trastuzumab over several months, leading
to the development of trastuzumab-resistant cell lines. To capture the dynamic changes
occurring during the acquisition of resistance, six distinct time points were selected for fur-
ther analysis, encompassing the progression from the untreated cell line at the outset to the
fully resistant cell line at the termination of the experiment. Concurrently, a second stage
of the study involved the extraction of nucleic acids from the aforementioned cell lines
for subsequent high-throughput microarray experiments targeting gene and microRNA
expressions. The resulting expression data were subjected to comprehensive bioinformatics
analyses to unravel the intricate molecular mechanisms underpinning the development
of trastuzumab resistance. Through this approach, we focused on the 25 genes and mi-
croRNAs with the most statistically significant changes in expression levels across time,
implicated in the development of trastuzumab resistance, and demonstrated crucial roles
in protein–protein interactions. Notably, among the identified genes and microRNAs,
BIRC5, E2F1, TFRC, and USP1 emerged as the top candidates influencing trastuzumab
resistance, while miR-574-3p, miR-4530, miR-8485, and miR-197-3p were identified as the
key microRNAs regulating this process. In-depth investigations using the prediction by the
miRDB database [10] highlighted the miR-4701-5p targeting TFRC and the targeting of E2F1
and USP1 by hsa-miR-8485. Moreover, the expression revealed substantial upregulation of
miR-4701-5p compared to TFRC in the SKBR3 cell line, providing crucial insights into the
intricate regulatory mechanisms governing trastuzumab resistance. Overall, the findings of
this study shed light on the critical molecular players and pathways driving trastuzumab
resistance in HER2-positive breast cancer, offering valuable insights into potential ther-
apeutic targets and strategies for overcoming treatment challenges associated with this
aggressive subtype of breast cancer.
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2. Materials and Methods
2.1. Breast Cancer Cell Lines

SKBR3 and BT474 human breast cancer cell lines were chosen for this study due to
their HER2 receptor overexpression, trastuzumab sensitivity [11–13], and potential for
trastuzumab resistance [14,15]. These certified, mycoplasma-tested cell lines, obtained from
American type cell collection, were used as controls and parental lines for drug-resistant
cell line development. Despite sharing HER2 overexpression, their genetic backgrounds
and origins differ.

2.2. Cell Culture Conditions

Cells were cultured in DMEM/F12 with 10% FBS and antibiotics to prevent contamina-
tion. Adherent cell cultures were maintained in T75 flasks at 37 ◦C with 5% CO2. Parental
cell lines were cryo-preserved at 80–90% confluence with 10% DMSO/FBS. Fresh medium
or trypsin-EDTA was used to maintain cell lines as needed.

2.3. Drug Resistance Development Conditions and Monitoring

A long-term, consistent dose of trastuzumab (Herceptin) was used to develop drug-
resistant cell lines with a strong response. Initial experiments used a proliferation assay
to test various drug doses (ranging from 0.05 µg/mL to 500 µg/mL) on two cell lines.
As indicated in Figure 1, increasing the dose to more than 5 µg/mL and 10 µg/mL did
not substantially decrease the proliferation rate. Consequently, doses of 5 µg/mL and
10 µg/mL were selected based on the aforementioned results and literature [16]. Control
cells were cultured similarly without drug exposure. Regular proliferation assays were
conducted, and cell samples were preserved for analysis. Over time, cells became more
resistant, with SKBR3 cells starting to be more sensitive than BT474. Six key time points
were chosen for further investigation, including a control.

2.4. RNA Extraction

Total RNA was extracted from frozen cell pellets using the MirVana TM Isolation Kit
as per the manufacturer’s instructions, aiming to study mRNA and microRNA changes in
the same material, as recommended by Agilent for microarray experiments.

2.5. Gene Expression Microarray Experiments

Gene expression microarray experiments utilized Agilent’s SurePrint G3 Human
GE 8x60K v2 Microarrays, encompassing over 50,000 biological features, including long
intergenic non-coding RNAs (linc RNAs). Labeled cRNA was generated from 200 ng of
input, purified with the RNeasy Mini Kit, and quantified. Microarray slides were washed,
scanned using an Agilent Scanner, and analyzed with Feature Extraction software.

2.6. MicroRNA Microarrays Experiments

MicroRNA expression experiments utilized Sure Print G3 Unrestricted miRNA 8x60K
microarrays by Agilent Technologies, 5301 Stevens Creek Boulevard Santa Clara, CA, USA,
designed based on the miRBase-microRNA database. One Color approach was employed
with two replicates for each cell line and time point. RNA labeling and hybridization
followed standard protocols, and microarray data were analyzed with Agilent Scanner and
Feature Extraction software, all meeting quality control standards.

2.7. Gene and microRNA Expression Microarrays Data Analysis

Gene and microRNA expression data from BT474 and SKBR3 cell lines were separately
analyzed. A total of 34,756 genes and 2549 microRNAs were examined, with some genes
and microRNAs having multiple measurements. In particular, for each of the six time points,
two separate replicates were placed on two (out of three) different slides in a balanced
design to allow within-slide pairwise comparisons between the time points. Additionally,
for some genes and microRNAs, there were multiple probes. Measurements resulting from



Curr. Issues Mol. Biol. 2024, 46 2716

all the replicates and probes were analyzed for each gene and microRNA. In particular,
a linear model with slide and time-point factor (and a probe effect for genes with multiple
probes) was used for genes. The model included slide, time point, and probe factors for
microRNAs. The slide effect accounted for slide-to-slide variations and served as a normal-
ization factor. ANOVA was used for genes with multiple measurements, and LIMMA [17]
was employed for genes with non-replicated probes to enhance error variance estimation.
In the analysis, the null hypothesis of no mean expression difference among all time points
was tested first for both genes and microRNAs. The Benjamini–Hochberg procedure [18]
was used to correct for multiple testing (FDR = 0.05). Upon rejection of the null hypothesis,
Tukey’s multiple-testing procedure α = 0.05 was applied to conduct pairwise comparisons
between time points.

Figure 1. Plots representing the relationship between drug dose (“dose [µg/mL]”axis on the lo-
gorithmic scale) and proliferation intensity, presented as a percentage of the proliferation rate of
drug-treated cells compared to the control untreated cells, based on proliferation assay measure-
ments (“mean %” axis). Proliferation rates were measured based on six biological replicates and two
technical replicates. The experiment was carried out in three independent repetitions.
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2.8. Association of miRNA Target Genes

Based on the list of identified top 25 most significant genes and top 25 most significant
miRNAs from both cell lines, we derived the miRNA target gene pairs using the miRDB
database [10]. The miRDB database uses a Target score for target prediction, where the
score is assigned by the miRNA target prediction program based on support vector ma-
chines (SVMs) and high-throughput training datasets. We then examined the relationship
between miRNAs and their target genes by considering the distribution of log2FC scores
for each pair.

2.9. Bioinformatics Analysis of Statistically Processed Microarray Data

Two initial gene datasets were generated by analyzing microarray data from BT474
and SKBR3 cell lines. Genes with p-values below 0.05 were chosen, resulting in 8874 genes
for BT747 and 13,892 genes for SKBR3. A subsequent dataset was created by selecting
5674 genes that exhibited altered expression in both cell lines, meeting the same p-value
threshold. To identify enriched Gene Ontology (GO) terms, the topGO package in R [19]
was employed. It used a combination of “elim” and “weight” algorithms [20], considering
the hierarchical structure of the GO database. The Fisher exact test assigned p-values for
each GO term enrichment. Similarly, KEGG pathway enrichment analysis was conducted to
identify pathways affected by trastuzumab treatment in BT747 and SKBR3 cell lines. Due to
the complexity of KEGG pathways, the Fisher exact test was applied. Only genes analyzed
with the SurePrint G3 Human GE 8x60K v2 Microarray were included. Additionally,
protein–protein interaction analysis was performed by mapping gene names to Ensemble
and Uniprot IDs, creating proteome networks based on various databases. The focus was
on explaining the connections between the top 25 significant genes in each cell line via the
proteomic network, seeking the shortest path within 17 hops. Eight sub-network images
were generated for essential genes in both cell lines using the top four significant genes as
reference points.

3. Results

In this section, we first describe the cancer cell response to trastuzumab, observing,
notably, a temporal decline in the response. Six time points were selected within the
studied time period for further microarray experiments. The microarray experiment results
fulfill the acceptable quality control metrics for all the samples across different time points
for RNA and miRNA. Next, we discuss the results of the microarray expression data,
revealing statistically significant genes and miRNA, and their role in the development of
trastuzumab resistance.

3.1. Identification of the Molecular Changes That Occur during the Emergence of
Trastuzumab Resistance
3.1.1. Cell Culture: Drug Resistance Development Conditions and Monitoring

Cell cultures were maintained in Dulbecco’s Modified Eagle Medium (DMEM) sup-
plemented with F12 nutrient mixture, 10% fetal bovine serum (FBS), and antibiotics to
prevent bacterial contamination. The cells were incubated in T75 treated flasks at 37 ◦C with
5% CO2. Before any passage, the parental cell lines were cultured without drug treatment
until they reached 80–90% confluence and then cryo-preserved in 10% DMSO/FBS in liquid
nitrogen. Additional vials were frozen as a backup at an early passage number. A pro-
longed and consistent dosage of trastuzumab (Herceptin, Roche , Engelhorngasse 3, Vienna,
Austria) was administered to establish drug-resistant cell lines and determine an adequate
response. Initial experiments evaluated the proliferation intensity following exposure to a
wide range of drug doses (0.05 µ/mL–500 µg/mL) in both cell lines (Figure 1).

The cell response to Herceptin was assessed via a proliferation assay using the BioTek
Cytation TM 3 imaging reader. Based on the preliminary findings and existing literature,
two treatment doses (5 µg/mL and 10 µg/mL) were chosen. The control cell lines were
cultured alongside the resistant cells, following the same procedures except for drug expo-
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sure. Regular proliferation assays were performed monthly to monitor the development
of resistance by observing changes in cell response to the drug. At each time point, cell
samples were preserved in liquid nitrogen or frozen at −80 ◦C for future analysis. At the
commencement of the study, both the SKBR3 and BT474 cell lines showed differing levels
of sensitivity to the drug, with the BT474 primary tumor cells displaying greater sensitivity
compared to the metastatic SKBR3 cells, as evidenced by a 72% and 50% proliferation rate,
respectively. Despite the difference, this indicates a successful establishment of sensitivity
to trastuzumab. By the study’s conclusion, both cell lines exhibited increased proliferation
intensity, with the SKBR3 cells reaching 92% and the BT474 cells reaching 89% as compared
to untreated controls when exposed to a 100 µg/mL drug concentration. Furthermore,
there was a discernible trend indicating a decrease in the cells’ responsiveness to the drug
over time, suggestive of the development of resistance during the duration of exposure
(Figure 2). Six specific time points, including the control, were selected for subsequent
microarray experiments.

Figure 2. Diagrams presenting changes in proliferation rates at different time points of the experiment
during the whole time of cell exposure to trastuzumab. The charts represent the relationship between
drug dose (“[µg/mL]”axis) and proliferation intensity (y-axis) presented as a decimal fraction of
the proliferation of drug-treated cells compared to the control untreated cells and are based upon
proliferation assay measurements, with each curve corresponding to a particular time point. “Control”
means cells purchased from ATCC and confirmed to be trastuzumab sensitive and able to develop
resistance. Control cell lines were not treated with the drug at any time in the experiment and
reaction for the drug was stable. T2, T4, T5, and T7 were treated at for 2, 4, 5, and 7 months,
respectively. The time points were selected based on the significant increase in proliferation rates
(decreased reaction for the drug) to the previous month, reflecting a gradual development of resistance
to trastuzumab.
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3.1.2. RNA Extraction and Quality Evaluation

For each designated time point, total RNA was isolated from frozen cell pellets using
the MirVana TM Isolation Kit (Ambion, Life Technologies, Carlsbad, CA, USA) as directed
in the online protocol https://assets.fishersci.com/TFS-Assets/LSG/manuals/MAN00111
31_A27828_magmax_mirvanatotalrna_manualextration_ug.pdf, accessed on 15 March 2024.
This approach aimed to enable the examination of both mRNA and microRNA in the same
material, in accordance with Agilent’s recommendations for microarray experimentation.
Each RNA sample underwent rigorous assessment of its concentration and quality using
the NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA) to ensure
acceptable purity (260/280 nm: 1.9–2.1; 260/230 nm: 1.8–2.2). Additionally, Agilent
Bioanalyzer was employed to evaluate concentration and integrity, ensuring a minimum
RNA Integrity Number (RIN) of 7 for all samples (Figure S1). Repeated extractions and
assessments were conducted for samples that failed the quality checks.

3.1.3. Gene Expression Microarrays Experiment

The gene expression microarray analysis was conducted using the Sure Print G3
Human GE 8x60K v2 Microarrays from Agilent Technologies, designed to detect a wide
array of biological features, including long intergenic non-coding RNAs (linc RNAs).
Labeled cRNA targets were prepared from 200 ng of input using the One Color Low Input
Quick Amp Labeling Kit and One-Color Spike-In Kit from Agilent Technologies, followed
by purification with the RNeasy Mini Kit from Qiagen. The quality of the cyanine3CTP-
labeled cRNA was assessed to ensure samples had an activity exceeding 6 pmol/µg,
meeting the manufacturer’s standard for high-quality samples. Table 1 presents the results
of labeled cRNA quality control. The hybridization procedure was performed overnight,
with two replicates for each cell line at every time point. Microarray slides were washed
using GE Wash Buffers and then scanned with an Agilent Scanner version C (G2505C).
Feature Extraction software was utilized for image analysis, yielding raw data files, quality
control PDFs for each array, and a comprehensive summary protocol. All arrays exhibited
satisfactory quality control metrics, enabling a robust comparative analysis across different
time points without the need for dye-swap experiments.

Table 1. The results of labeled cRNA quality control. R—repeated extraction; the number of “R”
means the number of extraction repetitions.

Sample ID RNA ng/µL Yield µg 260/280 DyeConc.
ng/µL

Activity
pmol/µg

BT474
controlRR 351.3 10.539 2.19 7.5 21.34927412

SKBR3
controlRRR 426.7 12.801 2.18 8.7 20.38903211

SKBR3 T2 221.4 6.642 2.23 2.6 11.74345077
BT474 T2 269.2 8.076 2.25 3.5 13.00148588

SKBR3T5C 241.4 7.242 2.21 3.2 13.25600663
BT474 T5 378.6 11.358 2.22 6.8 17.96090861
SKBR3 T7 333.3 9.999 2.23 4.9 14.70147015
BT474 T7R 354.5 10.635 2.21 5.8 16.36107193
SKBR3T3R 374.4 11.232 2.2 5.6 14.95726496

BT474 T3RR 387.3 11.619 2.19 6.2 16.00826233
SKBR3T4R 311.6 9.348 2.2 5.2 16.68806162
BT474 T4R 443.5 13.305 2.2 8.6 19.39120631

3.1.4. MicroRNA Expression Microarray Experiment

The microRNA expression microarray experiment was conducted by utilizing the Sure
Print G3 Unrestricted miRNA 8x60K microarrays (Agilent Technologies), encompassing
probes for almost all known human microRNAs based on the miRBase database. Following
the One Color approach, two replicates were performed for each cell line and time point.

https://assets.fishersci.com/TFS-Assets/LSG/manuals/MAN0011131_A27828_magmax_mirvanatotalrna_manualextration_ug.pdf
https://assets.fishersci.com/TFS-Assets/LSG/manuals/MAN0011131_A27828_magmax_mirvanatotalrna_manualextration_ug.pdf
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Starting from 100 ng of input, dephosphorylated and labeled RNA was prepared using
the miRNA Complete Labeling and Hybridization Kit along with the microRNA Spike In
Kit, followed by desalt procedures with the Micro Bio-Spin P6 Gel Column. The hybridiza-
tion mixture, including Hyb Spike In, underwent overnight hybridization. Subsequently,
microarray slides were washed and scanned in an Agilent Scanner version C (G2505C).
Feature Extraction software was employed for image analysis (GRID: 070156DF20141006),
confirming satisfactory quality control rates across all arrays.

3.2. Analysis of the Molecular Changes That Occur during the Emergence of
Trastuzumab Resistance
3.2.1. Gene Expression Analysis

It is essential to note that only about one-third (5675/17,091 = 33%) of the genes
with statistically significant expression-level changes in SKBR3 or BT474 were common
to both cell lines. About 19% (3199/17,091) of the genes were unique to the SKBR3 cell
line, while about 48% (8217/17,091) were specific to BT474. Furthermore, a substantial
fraction (5675/8874 = 64%) of the genes important for BT474’s resistance development were
also found to have statistically significantly altered expression levels in SKBR3, but the
reverse was less true, with only 41% (5675/13,892) of genes related to SKBR3’s resistance
development identified in BT474 (Figure 3).

Figure 3. (A) Venn diagram shows the number of genes uniquely significant in SKBR3 and BT474
cell lines for trastuzumab resistance and the number of genes common to both. (B) Venn diagram to
display the percentage of significant genes unique to SKBR3 and BT474 cell lines, the percentage of
common significant genes, the percentage of genes significant in one cell line but important in the
other (with an arrow), and the percentage of unique genes for each cell line among all significant
genes in that cell line.

This disparity could be attributed to a significant imbalance in the number of signifi-
cant transcripts found in both cell lines, with SKBR3 having more relevant genes identified
as compared to BT474. In the second part of the statistical analysis, once the global null
hypothesis of no change in expression levels across time was rejected for a gene, pairwise
comparisons between all time points were conducted for that gene separately for each
cell line (Table S1). The comparisons between T2 vs. T0 and T3 vs. T0 yielded the most
statistically significant results, indicating that the most important global gene expression
changes occurred at the beginning of trastuzumab treatment. This was followed by a
temporary decrease in activity at T3, with more balanced gene expression modifications
thereafter. Similar trends were observed in SKBR3 (Table S2), with the largest changes in
gene expression occurring at the start of Herceptin exposure and a secondary increase in
activity at T4. Pairwise comparisons are presented in (Figure 4).
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Figure 4. Bar chart presenting the number of genes (y-axis) with statistically significant differences
between different pairs of time points (x-axis) for the two cell lines.

In both cell lines, the majority of genes at each time point of drug resistance devel-
opment were downregulated as compared to the parental cell line (Table 2), suggesting a
potential role for tumor-suppressive genes in the process.

Table 2. Number of genes for which statistically significant changes of expression levels across time
were obtained and which were either up-regulated or down-regulated.

BT474 SKBR3

Time-Point Up % of
Signif

Down % of
Signif

Up % of
Signif

Down % of
Signif

T2 vs. T0 174 2 7288 98 1328 14 8345 86
T3 vs. T2 614 74 220 26 4670 73 1694 27
T4 vs. T3 1790 95 86 5 648 7 8330 93
T5 vs. T4 892 32 1881 68 7788 83 1544 17
T7 vs. T5 1389 60 936 40 1645 61 1048 39

However, a different pattern emerged when considering sequential changes through-
out the process. In BT474, 98% of genes were initially downregulated at the beginning of
drug exposure (T2 vs. T0) (Table 3), followed by two instances of global gene overexpres-
sion (74% at T3 vs. T2 and 95% at T4 vs. T3) before more balanced changes toward the end
of the process (60% vs. 40% in both T5 vs. T4 and T7 vs. T5). In SKBR3, while the global
gene expression changes appeared more variable, they shared some similarities with BT474.
The majority of genes (86%) were initially downregulated (T2 vs. T0) (Table 3), followed by
a reverse situation (73% overexpressed at T3 vs. T2) and balanced expression patterns at
the end (40% vs. 60% in T7 vs. T5) (Figure S2, Table 3).
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Table 3. Number of genes for which statistically significant changes of expression levels across time
were obtained and which were either up-regulated or down-regulated at a specific time point when
compared with the control (parental) cell line.

BT474 SKBR3

Time-Point Up % of
Signif

Down % of
Signif

Up % of
Signif

Down % of
Signif

T2 vs. T0 174 2 7288 98 1328 14 8345 86
T3 vs. T0 267 4 6763 96 500 9 5091 91
T4 vs. T0 342 7 4568 93 402 4 10,596 96
T5 vs. T0 562 10 5250 90 550 7 7523 93
T7 vs. T0 502 8 5783 92 341 4 7273 96

These results suggest that trastuzumab had an inhibitory effect at the initial stages
of the experiments, but as time progressed, cells seemed to adapt to the drug treatment,
resulting in increasing global gene expression and dynamic changes throughout the process.
A more detailed investigation focused on the most statistically important genes in the
subsequent part of the gene expression profile analysis. The top 25 significant genes
(Table 4, remaining significant genes are listed in Table S3) were identified for both BT474
and SKBR3 cell lines, and it was found that 80% of the top 25 genes in BT474 were among
the top 200 in SKBR3. Conversely, as much as 92% of the genes were common. These
findings underscore the consistency of the results and the substantial overlap between both
cell lines, suggesting shared patterns in the development of drug resistance.

Table 4. List of the 25 genes with the most statistically significant changes during the whole period of
trastuzumab resistance development in both cell lines: BT474 and SKBR3.

Top 25 Most Significant in BT474 Cell Line

Gene Adj p-Val Gene Adj p-Val

KLK11 7.6 × 10103 ZNF195 2.0 × 10−51

IGF2BP1 3.4 × 10−72 C6orf48 2.2 × 10−51

GSTM3 1.6 × 10−65 ADM 2.7 × 10−51

IGFBP3 3.5 × 10−64 RND3 2.7 × 10−51

TNFRSF11B 1.1 × 10−63 CBPB 1.9 × 10−50

RASD1 3.8 × 10−61 PLA2G16 1.5 × 10−49

CHAF1B 3.8 × 10−58 2F1 1.5 × 10−49

TRIT1 1.7 × 10−56 KIAA0586 3.4 × 10−49

PMP22 8.1 × 10−55 ADK 3.7 × 10−49

PSN1 1.4 × 10−53 TFRC 4.0 × 10−49

PLAT 2.5 × 10−53 CNP 8.2 × 10−48

BIRC5 2.7 × 10−52 RO1L 3.1 × 10−47

USP1 2.0 × 10−51

Top 25 Most Significant in SKBR3 Cell Line

Gene Adj p-Val Gene Adj p-Val

CCL2 7.7 × 10108 HN1 6.6 × 10−90

F8A1 2.7 × 10104 C20orf24 8.3 × 10−90

E2F1 1.0 × 10102 EXO1 1.1 × 10−88

GINS2 6.4 × 10100 KIAA0101 4.3 × 10−88

YWHAH 6.4 × 10100 TFRC 2.6 × 10−87
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Table 4. Cont.

Top 25 Most Significant in SKRBR3 Cell Line

Gene Adj p-Val Gene Adj p-Val

PRMT6 7.7 × 10100 NACC2 1.5 × 10−86

DTL 7.8 × 10−99 DDIT4 2.5 × 10−86

GSTP1 4.4 × 10−98 CNOT10 2.8 × 10−86

BIRC5 6.5 × 10−98 FAHD1 7.3 × 10−84

DOLK 6.5 × 10−98 USP1 7.3 × 10−84

SAP30 7.5 × 10−92 MGST2 1.7 × 10−83

RPP40 1.3 × 10−91 BRCA1 2.5 × 10−83

RTN4IP1 3.9 × 10−90

Research on the association between specific genes and the development of
trastuzumab resistance in the BT474 cell line has yielded crucial insights. Among the
25 most significant genes identified (Table S4), CHAF1B stands out, with its steadily in-
creasing expression during trastuzumab exposure, indicating a role in DNA replication
and cell division, possibly as an effector. E2F1, a key transcription factor controlling cell
cycle and apoptosis, appears linked to the molecular mechanism driving drug resistance.
TRIT1, a mitochondrial tRNA modifier and potential tumor suppressor, shows expression
changes suggesting complex regulation. ADM’s role, despite its distinct expression pattern,
remains unclear due to its multifunctional nature. Additional candidates of interest include
BIRC5 and USP1, both prominent in both cell lines and potentially involved in apoptosis
prevention. IGFBP3’s role in extending IGF’s half-life, a factor in HER2 signaling pathway
crosslinking with trastuzumab resistance, is noteworthy. IGF2BP1’s mRNA binding and
translational regulation may also play a role. GSTM3 and RASD1, while having complex
expression patterns, are associated with drug resistance. Genes like KLK11, CENPE, TFRC,
and KIAA0586, though not fully understood, could be indirectly involved. Some genes with
diverse expression profiles (CEBPB, SNHG32, TNFRSF11B) or unclear functions (PMP22,
PSEN1, PLAT, ZNF195, RND3, and ERO1L) require further investigation into the context
of drug resistance development. Table S5 presents the 25 genes with the most statistically
significant differences associated with trastuzumab resistance in the SKBR3 cell line, each
accompanied by a brief description of their molecular functions. However, it is worth
noting that only eight of these genes (CCL2, F8A1, PRMT6, DTL, RTN4IP1, RAB5IF, EXO1,
FAHD1) were among the top 25 genes with the most statistically significant differences,
while the remaining 15 are listed in Table S17 (PFDN6, LOXL2, MRPS23, HMOX1, WASHC5,
PPIP5K2, AHSA1, DNAJA3, RAD50, SRRT, SUZ12, PSMD6, PCNA, TSFM, FAM25). Several
genes, such as BIRC5, E2F1, TFCR, GSTP1, YWHAH, DTL, DOLK, NACC2, DDIT, BRACA1,
and DNAJA3, seem to play crucial roles in trastuzumab resistance development. BIRC5
and E2F1 were also significant in the BT474 cell line, suggesting a common mechanism.
Furthermore, some genes are linked to the p53 pathway, a well-known tumor suppressor.
For example, NACC2 represses transcription and inhibits MDM2, stabilizing TP53. DDIT4 is
involved in p53-mediated apoptosis regulation and may connect to HER2 signaling through
mTOR. DNAJA3 interacts with both p53 and HER2 and stimulates Hsp70 chaperone activity.
Other genes involved in DNA repair and damage response, like BRCA2, PCNA, and RAD50,
are also implicated in trastuzumab resistance. While some genes have unclear associations,
such as CCL2 and MGST2 related to immune response, they require further investigation.
Additionally, Supplementary Materials (Supplementary Tables S3–S6) highlight the most
statistically significant changes in gene expression during trastuzumab resistance develop-
ment, including long non-coding RNAs and proteins with limited information, offering
avenues for future research into the molecular mechanisms of resistance.
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3.2.2. MicroRNA Expression Analysis

The primary objective of the microRNA expression analysis was to identify microRNAs
that played a statistically significant role at all stages of trastuzumab resistance development.
Surprisingly, for nearly all tested microRNAs, the differences in expression levels over
time were statistically significant, with 99.6% in BT474 and 99.3% in SKBR3 cell lines
found to yield significant results at the significance level of 0.05 (adjusted for multiple
testing). In contrast, gene expression analysis showed a more limited number of significant
transcripts, only 25% in BT474 and about 40% in SKBR3 (Table 5). This disparity suggests
that microRNA molecules play a substantial role in trastuzumab resistance development,
highlighting their involvement in complex regulatory networks.

Table 5. Expression of the genes and microRNAs undergoing statistically significant expression
changes during the development of trastuzumab resistance in both quantitative and percentage terms.

Genes BT474 SKBR3

all 34,756 34,756
significant p0.05 8874 13,892
significant p0.05 (%) 25.50% 40.00%
significant p0.01 4018 7529
significant p0.01 (%) 11.60% 21.70%

MicroRNAs

all 2549 2549
significant p0.05 2540 2541
significant p0.05 (%) 99.60% 99.70%
significant p0.01 2532 2537
significant p0.01 (%) 99.30% 99.50%

Statistical analysis was used to examine microRNA expression changes in two cell
lines, BT474 and SKBR3, during the development of drug resistance. Pairwise comparisons
between different time points were conducted for each microRNA with a statistically
significant test of the global null hypothesis of no change in expression across time (Figure 5).
In the BT474 cell line, the T7 vs. T5 comparison showed statistically significant results for
88.2% of microRNAs, and 12.7% for T4 vs. T2. In the SKBR3 cell line, the T5 vs. T4, T4
vs. T0, and T7 vs. T5 comparisons yielded the highest significant results (96.8%, 83.5%,
and 83.4%, respectively), while T7 vs. T2 yielded the lowest fraction of 11.8%. Both cell
lines displayed a similar pattern of microRNA expression changes, but SKBR3 cells seemed
to respond faster to changing conditions than BT474 cells (Table S6).

In the next phase of our microRNA expression profile analysis, we delved into the
detailed study of the 25 microRNAs with the most statistically significant changes (Table 6,
remaining significant miRNAs are in Table S8), focusing on their role in trastuzumab resis-
tance within BT474 and SKBR3 cell lines. Surprisingly, 24 of the top 25 microRNAs in BT474
were also among the top 200 in SKBR3, suggesting substantial overlap in their resistance
patterns. However, for the reverse scenario, we found less than 48% common microRNAs,
indicating a stronger representation of BT474 results in SKBR3. Gene expression analysis
further revealed that SKBR3 had a more complex network of genes and pathways involved
in trastuzumab resistance, possibly affecting microRNA engagement and leading to this
disparity in results.
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Figure 5. Bar chart presenting the number of microRNAs (y-axis) with statistically significant
differences between different pairs of time points (x-axis) for the two cell lines.

Table 6. Top 25 most statistically significantly expressed microRNAs during the whole process of
trastuzumab resistance development separately for both biological models: BT474 and SKBR3.

Top 25 Most Significant in BT474 Cell Line

microRNA Adj p-Val microRNA Adj p-Val

hsa-miR-574-3p 2.2 × 10213 hsa-miR-6775-3p 2.4 × 10177

hsa-miR-1207-5p 4.5 × 10204 hsa-miR-466 2.2 × 10174

hsa-miR-8485 4.3 × 10197 hsa-miR-4649-3p 2.9 × 10173

hsa-miR-6886-3p 6.5 × 10196 hsa-miR-1281 2.4 × 10172

hsa-miR-6088 3.4 × 10190 hsa-miR-6743-3p 5.9 × 10171

hsa-miR-4254 5.6 × 10190 hsa-miR- 4436b-5p 5.5 × 10170

hsa-miR-4701-5p 2.2 × 10185 hsa-miR-4530 2.0 × 10166

hsa-miR-3151-3p 4.5 × 10184 hsa-miR-3162-3p 5.3 × 10166

hsa-miR-197-3p 1.7 × 10182 hsa-miR-483-3p 1.7 × 10164

hsa-miR-1825 4.5 × 10180 hsa-miR-4725-5p 1.9 × 10164

hsa-miR-6834-3p 4.5 × 10180 hsa-miR-663a 1.1 × 10163

hsa-miR-4281 5.7 × 10180 hsa-miR-6794-3p 2.9 × 10163

hsa-miR-3591-3p 1.3 × 10177
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Table 6. Cont.

Top 25 Most Significant in SKBR3 Cell Line

microRNA Adj p-Val microRNA Adj p-Val

hsa-miR-7977 1.1 × 10235 hsa-miR-5100 4.5 × 10163

hsa-miR-6826-5p 2.2 × 10214 hsa-miR-4530 7.4 × 10163

hsa-miR-7975 6.5 × 10203 hsa-miR-6869-5p 2.1 × 10161

hsa-miR-6165 1.7 × 10190 hsa-miR-6085 3.0 × 10161

hsa-miR-5739 4.6 × 10185 hsa-miR-15b-5p 1.6 × 10156

hsa-miR-574-3p 4.6 × 10185 hsa-miR-20a-5p 1.6 × 10156

hsa-let-7a-5p 3.2 × 10179 hsa-miR-574-5p 5.1 × 10155

hsa-miR-6749-5p 5.6 × 10176 hsa-miR-8485 1.7 × 10153

hsa-miR-3162-5p 8.4 × 10173 hsa-miR-197-3p 7.0 × 10152

hsa-miR-1202 1.5 × 10171 hsa-miR-6090 8.0 × 10149

hsa-miR-4284 2.6 × 10168 hsa-miR-29c-3p 1.3 × 10148

hsa-let-7e-5p 2.1 × 10167 hsa-miR-4455 4.2 × 10148

hsa-miR-24-3p 1.5 × 10165

Upon further analysis, we found that the eight most crucial microRNAs identified
in the BT474 cell line were also among the top 50 (Table S8) microRNAs in the SKBR3
cell line. These microRNAs include hsa-miR-6886-3p, hsa-miR-4254, hsa-miR-4701-5p,
hsa-miR-3151-3p, hsa-miR-6834-3p, hsa-miR-4281, hsa-miR-4649-3p, and hsa-miR-3162-
3p. Additionally, two microRNAs with highly statistically significant changes discovered
in the SKBR3 cell line, hsa-miR-6826-5p, and hsa-miR-6869-5p, were found within the
top 50 (Table S8) important microRNAs in the BT474 cell line. These microRNA molecules
may play a role in the development of trastuzumab resistance mechanisms. Four microR-
NAs, including hsa-miR-574-3p, hsa-miR-4530, hsa-miR-8485, and hsa-miR-197-3p, were
identified among the 25 microRNAs with the most statistically significant results of the
test of the global null hypothesis of no change in expression across time in both cell lines,
suggesting their crucial role in trastuzumab resistance. Three of the four microRNAs (hsa-
miR-574-3p, hsa-miR-4530, hsa-miR-8485) were among the 34 and 38 microRNAs (Table S7)
in BT474 and SKBR3 cell lines, respectively, for which all pairwise timepoint comparisons
were statistically significant. This underscores their potential importance in trastuzumab
resistance development. Noteworthily, for hsa-miR-8485, all pairwise comparisons were
significant in both cell lines.

3.2.3. Analysis of miRNA Regulation of Genes

In our research, we employed a comprehensive approach by selecting the 25 genes
and miRNAs with the most statistically significant changes from their respective cell lines.
Our objective was to identify potential interactions between miRNAs and target genes
using the miRDB database [10]. The miRDB predicted three pairs of miRNA-gene targets,
as indicated in (Table 7).

Table 7. Pair of significant genes and miRNAs where miRNA target genes were predicted by
miRDB database.

miRNA.Name Gene.Symbol Target.Score

hsa-miR-4701-5p TFRC 69

hsa-miR-8485 E2F1 89

hsa-miR-8485 USP1 51

It is important to note that the miRDB predictions are assigned scores ranging from
50 to 100, with higher scores indicating greater statistical confidence in the prediction
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outcomes. Intriguingly, we observed that among these miRNA-gene pairs, four of the
miRNAs and genes belonged to the top 25 genes and miRNAs with the most statistically
significant changes identified in both cell lines. To gain deeper insights into the regulatory
dynamics at play, we conducted an analysis of the association between miRNA-gene target
pairs (miR-4701-5p-TFRC in Figure 6, figures for the remaining pairs from (Table 7) are
presented in Supplementary Figure S17), and the distribution of log2 fold change (log2FC)
values at their respective time points (Figure 6A) and average of time points (Figure 6B).
This allowed us to investigate the extent to which miRNAs exerted control over gene
expression within the context of the specific cell line under study.

Figure 6. (A) Box plot and (B) line plot of the distribution of log2 fold change (log2FC) values of
miRNA−target−gene pair, at their average and respective time points.

3.2.4. Gene Ontology Terms (GO Terms) Enrichment Analysis

This study leveraged high-throughput experiments to identify thousands of genes
associated with trastuzumab resistance development in breast cancer. These genes exhibited
diverse expression patterns throughout the study. The researchers conducted a Gene
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Ontology (GO) enrichment analysis [21] to gain insights into the underlying biological
processes. The analysis focused on molecular function (MF) and biological process (BP) GO
terms [22] separately for two cell lines, SKBR3 and BT474. SKBR3 showed 193 enriched MF
GO terms (Table 8) and 600 enriched BP GO terms (Table 9), while BT474 had 103 (Table 10)
and 354 (Table 11), respectively. Further investigation involved in-depth scrutiny of the top
20 statistically significant and the top 20 most overrepresented MF and BP GO terms for both
cell lines. Gene significance density plots were generated to visualize gene distribution by
p-value. To ensure result consistency within each cell line, the study examined the overlap
between the most significant and most enriched GO terms. A comparative analysis between
SKBR3 and BT474 included checking the overlap of GO terms, verifying enriched terms,
and comparing gene significance density plots. Lastly, a global analysis was performed to
categorize significant GO terms by molecular functions and biological processes, shedding
light on the major functional groups driving trastuzumab resistance. Figures S3 and S4
depict density plots revealing the distribution of the top 20 statistically significant MF
GO terms in the BT474 cell line. Five exhibits a symmetric distribution, encompassing
broad actions like DNA binding and protein homodimerization. In contrast, most GO
terms display a left-sided asymmetric distribution, including specific functions like DNA
replication origin binding and mRNA 5′-UTR binding. Notably, a deeper analysis reveals
that 10 of these terms are common between the most significant and enriched categories,
emphasizing their importance in BT474. These findings highlight the crucial roles of
these molecular functions in the studied process, as evidenced by their asymmetric gene
significance enrichment profiles. Figures S5 and S6 display density plots of the top 20 most
significant molecular function (MF) Gene Ontology (GO) terms in the SKBR3 cell line. Most
SKBR3 MF GO terms exhibit symmetric distributions, while only nine show asymmetric
distributions, with NADH dehydrogenase and single-stranded DNA binding being notable.
Among these terms, nucleosomal DNA binding stands out as the most influential in the
SKBR3 cell line despite some data inconsistency. Comparing the most significant Molecular
Function Gene Ontology (GO) terms in two different cell lines, BT474 and SKBR3, revealed
limited overlap, suggesting cell line-specific mechanisms in trastuzumab resistance. Three
common GO terms were found, such as single-stranded DNA binding, RNA binding,
and structural constituents of ribosome. However, their distribution patterns varied.
SKBR3 displayed more asymmetric plots and a higher percentage of enriched GO terms,
possibly due to its larger dataset. Despite differences, a substantial proportion of shared
molecular functions implies the existence of some universal mechanisms contributing to
trastuzumab resistance, albeit influenced by cell line-specific factors.

Figures S7 and S8 include density plots showcasing the top 20 most significant bio-
logical process (BP) Gene Ontology (GO) terms associated with the BT474 cell line. Like
the molecular function (MF) GO terms, many BP GO terms exhibit asymmetric gene
significance distributions. For example, “sister chromatid cohesion”, “DNA replication
initiation”, and “SRP-dependent cotranslational protein targeting to the membrane” dis-
play left-skewed plots. In contrast, 8 out of the top 20 BP GO terms exhibit relatively
symmetric distributions, including “cell division”, “cell proliferation”, and “DNA repair”.
Interestingly, there is no direct correlation between the number of genes within a particular
GO term and its gene significance distribution. However, there’s a tendency for these
terms to occupy higher hierarchical positions. When comparing the most significant and
enriched GO terms for BT474, only 4 out of 20 BP GO terms overlap. These common
terms include “DNA replication initiation”, “regulation of transcription involved in G1/S
transition of the mitotic cell cycle”, “NLS-bearing protein import into the nucleus”, and
“positive regulation of pri-miRNA transcription by RNA polymerase II”. Furthermore, all
these terms exhibit an asymmetric profile of gene significance enrichment, suggesting their
importance in trastuzumab resistance in the BT474 cell line. Moving on to the SKBR3
cell line, Figures S9 and S10 depict density plots for the top 20 most significant BP GO
terms. Unlike the MF GO terms, most BP GO terms in SKBR3 show asymmetric gene
significance distributions, with left-skewed plots for terms such as “mitochondrial transla-
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tional elongation” and “mitotic cytokinesis”. Conversely, 8 out of 20 BP GO terms display
relatively symmetric gene significance distributions, including “cell division” and “DNA
repair”. Unlike the BT474 cell line, there is no clear correlation between gene significance
distribution, the number of genes in a GO term, or its hierarchical level in SKBR3. Notably,
there is no overlap between the most significant and most enriched GO terms for SKBR3,
indicating the complexity of processes involved in trastuzumab resistance in this cell line.
Comparing the most significant BP GO terms between SKBR3 and BT474, 7 out of 20 are
shared, such as “cell division”, “DNA repair”, and “regulation of signal transduction by p53
class mediator”. However, the gene significance density plots reveal diversity, with some
terms showing asymmetric distributions in one cell line and symmetric distributions in the
other. This underscores the importance of certain biological processes, like “G1/S transition
of mitotic cell cycle”, in drug resistance development. In summary, while commonalities
exist in the main processes contributing to trastuzumab resistance between SKBR3 and
BT474, specific aspects and regulatory components differ, highlighting the cell line-specific
nature of these mechanisms. Nevertheless, universal biological processes are shared across
both cell lines, emphasizing their significance in trastuzumab resistance.

Table 8. Top 10 most significant and enriched resp. Molecular Function Gene Ontology (GO) terms
out of a total of 193 that have been identified for the SKBR3 cell line. A complete list of significant
and enriched GO terms in Table S10.

MF GO Term Analysis for SKBR3 Cell Line

Top 10 Most Significant MF Top 10 Most Enriched MF
GO Terms GO Terms

ID Term Adjusted
p-Value

ID Term %
Signif/All

GO:0003723 RNA binding 1.0 × 10−30 GO:0061608 nuclear import signal
receptor activity

100.00

GO:0003735 structural constituent
of ribosome

1.9 × 10−17 GO:0008097 5S rRNA binding 100.00

GO:0045296 cadherin binding 2.1 × 10−13 GO:0016884 carbon-nitrogen ligase
activity, with glutamine as
amido-N- donor

100.00

GO:0031625 ubiquitin protein
ligase binding

5.5 × 10−13 GO:0140142 nucleocytoplasmic
carrier activity

95.00

GO:0005524 ATP binding 2.2 × 10−9 GO:0000339 RNA cap binding 94.00
GO:0019899 enzyme binding 5.0 × 10−9 GO:0005123 death receptor binding 94.00
GO:0031492 nucleosomal DNA

binding
4.6 × 10−8 GO:0031492 nucleosomal DNA binding 93.00

GO:0003697 singl-strandd DNA
binding

8.4 × 10−8 GO:0030515 snoRNA binding 93.00

GO:0005525 GTP binding 2.0 × 10−7 GO:0008353 RNA polymerase II
carboxy-terminal domain
kinase activity

93.00

GO:0008565 protein transporter
activity

2.3 × 10−7 GO:0003688 DNA replication
origin binding

93.00
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Table 9. Top 10 most significant and enriched resp. BP GO terms out of a total of 600 that have
been identified for the SKBR3 cell line. Top 300 list of significant and top 20 enriched GO terms
in Table S12.

BP GO Term Analysis for SKBR3 Cell Line

Top 10 Most Significant BP Top 10 Most Enriched BP
GO Terms GO Terms

ID Term Adjusted
p-Value

ID Term %
Signif/All

GO:0051301 cell division 2.5 × 10−15 GO:0000920 cell separation
after cytokinesis

100

GO:0006364 rRNA processing 2.6 × 10−14 GO:1904874 positive regulation of
telomerase RNA
localization to Cajal body

100

GO:0070125 mitochondrial
translational elongation

2.1 × 10−12 GO:0000054 ribosomal subunit export
from nucleus

100

GO:1902036 regulation of
hematopoietic stem cell
differentiation

3.3 × 10−12 GO:0070525 tRNA threonylcarbamoy-
ladenosine metabolic
process

100

GO:0070126 mitochondrial
translational termination

5.2 × 10−12 GO:0051315 attachment of mitotic
spindle microtubules
to kinetochore

100

GO:0043488 regulation of
mRNA stability

1.0 × 10−11 GO:0060707 trophoblast giant cell
differentiation

100

GO:1901796 regulation of signal
transduction by p53
class mediator

2.4 × 10−11 GO:0090646 mitochondrial tRNA
processing

100

GO:0016579 protein deubiquitination 7.7 × 10−11 GO:0090151 establishment of protein
localization to
mitochondrial membrane

100

GO:0038061 NIK/NF-kappaB
signaling

1.3 × 10−10 GO:0072425 signal transduction
involved in G2 DNA
damage checkpoint

100

GO:0031145 anaphase-promoting
complex-dependent
catabolic process

2.5 × 10−10 GO:0016024 CDP-diacylglycerol
biosynthetic process

100

Table 10. Top 10 most significant and enriched resp. Molecular Function Gene Ontology (GO) terms
out of a total of 103 that have been identified for the BT474 cell line. A complete list of significant and
top 20 enriched GO terms in Table S9.

MF GO Term Analysis for BT474 Cell Line

Top 10 Most Significant MF Top 10 Most Enriched MF
GO Terms GO Terms

ID Term Adjusted
p-Value

ID Term %
Signif/All

GO:0005515 protin binding 1.3 × 10−12 GO:0003688 DNA rplication origin
binding

86.00

GO:0003697 single-stranded
DNA binding

2.1 × 10−5 GO:0030983 mismatched DNA binding 86.00
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Table 10. Cont.

MF GO Term Analysis for BT474 Cell Line

Top 10 Most Significant MF Top 10 Most Enriched MF
GO Terms GO Terms

ID Term Adjusted
p-Value

ID Term %
Signif/All

GO:0003677 DNA binding 3.9 × 10−5 GO:0097617 annealing activity 85.00
GO:0003688 DNA replication

origin binding
5.3 × 10−5 GO:1990825 sequence-specific

mRNA binding
80.00

GO:0030983 mismatched
DNA binding

5.3 × 10−5 GO:0008242 omega peptidase activity 77.00

GO:0003682 chromatin binding 7.6 × 10−5 GO:0043138 3′-5′ DNA helicase activity 75.00
GO:0003723 RNA binding 1.3 × 10−4 GO:0031996 thioesterase binding 73.00
GO:0097617 annealing activity 1.4 × 10−4 GO:0004303 estradiol 17-beta

dehydrogenase
activity activity

73.00

GO:0030331 estrogen receptor binding 9.0 × 10−4 GO:0000400 four-way junction
DNA binding

69.00

GO:0048027 mRNA 5′-UTR binding 1.1 × 10−3 GO:0031994 insulin-like growth factor
I binding

69.00

Table 11. Top 10 most significant and enriched resp. BP GO terms out of a total of 354 that have been
identified for the BT474 cell line. A complete list of significant and enriched GO terms in Table S11.

BP GO Term Analysis for BT474 Cell Line

Top 10 Most Significant BP Top 10 Most Enriched BP
GO Terms GO Terms

ID Term Adjusted
p-Value

ID Term %
Signif/All

GO:0051301 cell division 2.5 × 10−10 GO:0090161 Golgi ribbon formation 82.00
GO:0007062 sister chromatid cohesion 1.3 × 10−9 GO:0006744 ubiquinone biosynthetic

process
79.00

GO:0000082 G1/S transition of mitotic
cell cycle

2.8 × 10−8 GO:2000651 positive regulation of
sodium ion
transmembrane
transporter activity

77.00

GO:0008283 cell proliferation 2.1 × 10−7 GO:0048715 negative regulation of
oligodendrocyte
differentiation

75.00

GO:0006270 DNA replication initiation 4.1 × 10−7 GO:0031573 intra-S DNA damage
checkpoint

73.00

GO:0006614 SRP-dependent
cotranslational protein
targeting to membrane

4.3 × 10−7 GO:0000083 regulation of
transcription involved in
G1/S transition of mitotic
cell cycle

71.00
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Table 11. Cont.

BP GO Term Analysis for BT474 Cell Line

Top 10 Most Significant BP Top 10 Most Enriched BP
GO Terms GO Terms

ID Term Adjusted
p-Value

ID Term %
Signif/All

GO:0000184 nuclear-transcribed
mRNA catabolic process,
nonsense-mediated decay

1.9 × 10−6 GO:0006607 NLS-bearing protein
import into nucleus

71.00

GO:0019083 viral transcription 2.3 × 10−6 GO:0035461 vitamin transmembrane
transport

71.00

GO:0006364 rRNA processing 1.7 × 10−5 GO:0060576 intestinal epithelial cell
development

70.00

GO:0000083 regulation of
transcription involved in
G1/S transition of mitotic
cell cycle

2.1 × 10−5 GO:0003183 mitral valve
morphogenesis

70.00

In the final phase of the Gene Ontology study, significant GO terms were analyzed
separately for the BT474 and SKBR3 cell lines to uncover common molecular and cellular
factors driving resistance to trastuzumab. The analysis revealed that critical molecular func-
tions related to drug resistance included receptor binding (such as estrogen, retinoic acid,
and death receptors), protein kinase activities, GTPase-related functions, and ATP/ATPase
mechanisms. Additionally, significant functions were linked to transferase activities, RNA
processing, DNA replication and repair, and p53 binding. Key biological processes in-
volved cell cycle regulation, mitochondrial function, apoptosis, microRNA activity, stress
response, viral infection, microtubule organization, and DNA damage repair. Several path-
ways, including Wnt signaling and insulin receptor pathways, were also affected during
trastuzumab treatment and resistance development. For a detailed list of GO terms, refer
to the Supplementary Materials.

3.2.5. KEGG Pathways Enrichment Analysis

Section 2.1 highlights the complexity of trastuzumab resistance, involving numer-
ous genetic factors. To gain deeper insights into the underlying biological processes and
functional interpretation of high-throughput data, Section 3.2.4 focuses on Gene Ontology
(GO) enrichment analysis. This method helps identify significant molecular functions
and biological processes driving trastuzumab resistance, shedding light on the primary
mechanisms at play. Additionally, the section delves into KEGG Pathways enrichment
analysis, initiated by Professor Minoru Kanehisa in 1995 as part of the Japanese Human
Genome Program [23]. KEGG Pathways database offers manually curated pathway maps
encompassing molecular interactions, reactions, and networks involving genes, proteins,
RNAs, chemical compounds, and more. These pathways span various categories, including
replication, metabolism, transcription, and cellular processes, providing a comprehensive
understanding of biological processes [24]. This analysis examines genes identified as
significant in trastuzumab resistance development in BT474 and SKBR3 cell lines. Notably,
the study reveals that Herceptin treatment significantly affects 9 pathways in BT474 and a
striking 75 pathways in SKBR3. This discrepancy aligns with findings from the GO term
analysis and gene expression studies, underscoring the complexity of trastuzumab resis-
tance. The complete list of significant KEGG Pathways for both cell lines can be found in the
Supplementary Materials. A comprehensive comparative analysis was conducted on the
significance of various pathways in the BT474 and SKBR3 cell lines (Table S13 and Table S14,
respectively), focusing on their response to trastuzumab treatment. Three common key
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pathways were identified, cell cycle, cellular senescence, and DNA replication, signifying
their importance in both cell lines. Examining overrepresented pathways (Table S15 and
Table S16, respectively), SKBR3 displayed a notably higher percentage of genes significantly
affected within KEGG pathways (ranging from 76% to 94%) compared to BT474 (ranging
from 43% to 65%).

Four pathways—DNA replication, cell cycle, colorectal cancer, and bladder cancer—were
prominent in both cell lines, highlighting their significance. Furthermore, in the SKBR3
cell line, the 20 most significant and 20 most overrepresented KEGG pathways shared
seven pathways related to molecular activities (e.g., DNA replication, cell cycle, apoptosis)
and tumor development (e.g., pancreatic cancer, colorectal cancer). Interestingly, eight
pathways (Table 12) were found to be involved in drug resistance development in both
cell lines, underscoring the substantial overlap between these biological cell lines. Notably,
the SKBR3 cell line revealed greater complexity in molecular activities induced by Herceptin
exposure compared to BT474. These findings emphasize common resistance mechanisms
while acknowledging the unique aspects of each cell line’s response to treatment.

Table 12. KEGG Pathways common for both BT474 and SKBR3 cell lines (order is based on lower
adjusted p-value).

ID Pathway

path:hsa04110 Cell cycle—Homo sapiens (human)
path:hsa03460 Fanconi anemia pathway—Homo sapiens (human)
path:hsa04218 Cellular senescence—Homo sapiens (human)
path:hsa04115 p53 signaling pathway—Homo sapiens (human)
path:hsa03030 DNA replication—Homo sapiens (human)
path:hsa05169 Epstein–Barr virus infection—Homo sapiens (human)
path:hsa05219 Bladder cancer—Homo sapiens (human)
path:hsa05210 Colorectal cancer—Homo sapiens (human)

3.2.6. PPI Network Analysis

Integrating various “omics” data is essential for understanding intricate cellular-level
biological processes. In this study, a straightforward ID mapping method was employed
to link genomic data to proteomic data, focusing on protein-coding genes in the complete
human genome and proteome. To navigate complex biological interactions, the study
favored protein–protein interaction (PPI) networks over genomic networks due to their
higher density and connectivity. Unlike gene–gene interaction networks, PPI networks
provided a more reliable means to identify the shortest path between essential genes associ-
ated with trastuzumab resistance. The statistical analysis of the PPI network, particularly
the Gold set of interactions, is summarized in (Table 13). The study then delved into
detailed PPI network analyses for the top 25 significant genes in BT474 and SKBR3 cell
lines, complemented by literature-reported trastuzumab resistance-related genes. The re-
sults revealed a close and complex interplay among these significant genes, i.e., BIRC5
(Figure 7), (Figure 8), E2F1 (Figures S11 and S12), USP1 (Figures S15 and S16), and TFRC
(Figures S13 and S14), shedding new light on the pathways and networks involved in
trastuzumab resistance development.
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Table 13. Statistical parameters obtained by protein–protein interaction analysis in BT474 and SKBR3
cell lines).

PPI Statistics SKBR3 BT474

Total Genes 6588 7009
Total Unmapped Genes 128 142
Total Mapped Genes 6460 6867
Total Proteins Mapped 5871 6020
Total Unique Proteins Mapped 5871 6013
Total Edges Mapped 20,904 20,718
Total Nodes 6730 6667
Total Edges 16,421 16,301

Figure 7. Protein–protein interaction (PPI) sub-network focused on the BIRC5 gene, incorporating
the top 25 most significant genes in the BT474 cell line and genes associated with trastuzumab
resistance development.

Remarkably, BIRC5, E2F1, and RB1 are pivotal players at the core of these networks,
engaging with numerous proteins. As depicted in Figures 7 and 8, BIRC5 forms five direct
connections shared across both cell lines: caspase 9 (CASP9), exportin (XPO1), Aurora
kinase (AURKA), cyclin-dependent kinase 1 (CDK1), and inner centromere protein (IN-
CENP) [25]. CASP9, linked to apoptosis, AURKA, involved in cell cycle regulation and
tumorigenesis, and CDK1, essential for cell cycle progression, are vital contributors. XPO1
stands out due to its multiple connections and its role in regulating protein transport.
In SKBR3 cells, BIRC5 also connects directly with DIABLO and BECN1, influencing apopto-
sis and autophagy [14]. Additionally, BIRC5 interacts indirectly with BRCA1, TFRC, IGFBP3
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via AURKA, and RAC1 via CASP9, forming numerous connections via XPO1, including
MYC, RB1, E2F1, and IGF2BP1 [14].

Figure 8. Protein–protein interaction (PPI) sub-network focused on the BIRC5 gene, incorporating
the top 25 most significant genes in the SKBR3 cell line and genes associated with trastuzumab
resistance development.

4. Discussion

The primary aim of this research was to delve into the molecular mechanisms respon-
sible for developing resistance to trastuzumab, a drug used in breast cancer treatment.
Traditional studies on Herceptin resistance mainly focused on identifying differences be-
tween resistant and sensitive cells [26–28]. However, this approach has limitations because
cells can actively adapt to changing environments and treatment conditions. To address
this, we proposed a novel approach combining a longitudinal investigation of in vitro
resistance development with high-throughput microarray technology. Our comprehensive
analysis of gene expression data encompassed over 34,000 genes and identified 8873 and
13,891 genes significantly contributing to trastuzumab resistance in two breast cancer cell
lines, BT474 and SKBR3, with 5675 genes common to both cell lines. Further analysis
grouped these genes into various molecular functions and biological processes using Gene
Ontology terms. Additionally, we identified significant signaling pathways through KEGG
Pathway analysis, with eight pathways commonly affected in both cell lines. Our study
highlights the complexity of trastuzumab resistance development, emphasizing the need
for a multi-dimensional understanding of the process. This research contributes valuable
insights into potential targets for more effective breast cancer treatments [29,30]. In both cell
lines, four genes—BIRC5, E2F1, USP1, and TFRC—emerged as highly significant transcripts
within the top 25. BIRC5 and E2F1 exhibited a distinct expression pattern throughout the
study. They initially decreased upon drug exposure and then gradually increased, mirror-
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ing the gradual development of drug resistance. This pattern aligns with existing research
on BIRC5’s role in trastuzumab resistance, where the overactive PI3K/Akt [31] pathway
leads to survivin overexpression, contributing to resistance [32]. In patients with HER2-
overexpressing breast cancer, higher pretreatment survivin RNA levels correlated with
poorer responses to trastuzumab, indicating BIRC5’s involvement in primary Herceptin
resistance [32]. E2F1, a member of the E2F transcription factor family, shares similarities
with survivin (BIRC5) in contributing to trastuzumab resistance. E2F1 regulates cell growth
and apoptosis, often activated in response to DNA damage [33]. Fanconi anemia DNA
repair pathway emerged as crucial in trastuzumab resistance through KEGG pathway
analysis. E2F1 can also activate BIRC5, a known resistance factor. E2F1 is linked to HER2
signaling and trastuzumab actions, with research showing its involvement in proliferative
breast tumors. Interestingly, E2F1 expression levels rise during trastuzumab exposure, indi-
cating its potential role in drug resistance through independent HER2 pathway activation.
While the roles of BIRC5 and E2F1 in drug resistance in HER2 breast cancer are understood,
the involvement of USP1 and TRFC remains unclear. USP1 has been linked to cancer devel-
opment and metastasis but not yet to trastuzumab resistance. Interestingly, USP1 inhibitors
have shown promise in leukemia treatment. Suppressing USP1 leads to the degradation of
the ID1 transcription factor, crucial for cancer progression. The high representation of USP1
in molecular function and biological process gene ontology terms suggests its significant
role in trastuzumab resistance mechanisms. Unlike USP1, current scientific literature does
not mention TFRC’s role in Herceptin resistance development. Recent research has revealed
TFRC’s involvement in various cancer-related signaling pathways, notably the endocytosis
pathway, which is significant in trastuzumab resistance. While TFRC’s contribution to
Gene Ontology terms is less pronounced than USP1, it plays a role in the “response to drug”
biological process. This study emphasizes the importance of further investigating both
genes in trastuzumab resistance development, as their correlation with drug resistance
is not yet clear, and their molecular functions in the context of cancer progression and
trastuzumab resistance require deeper exploration.

Understanding the molecular mechanisms behind resistance to Herceptin is critical.
This study identified several genes, such as BIRC5, BRCA1, RB1, ERBB2, and others, as sig-
nificant players in trastuzumab resistance, supporting previous research. New candidate
genes like E2F1, USP1, and TFRC were also highlighted. Some genes, like IGF2BP1 and
GSTP1, showed potential involvement but require further confirmation. Surprisingly, this
study did not confirm the involvement of certain previously reported genes in resistance.
The findings suggest that primary Herceptin resistance may be linked to alterations in
downstream components of HER2 signaling pathways or antiapoptotic proteins, rather
than HER2 receptor activity itself. In contrast, acquired resistance may involve changes at
the receptor level, such as epitope masking or upregulation of receptor components. Some
intrinsic resistance mechanisms may overlap with acquired resistance, aligning with earlier
research. Overall, this study underscores the complexity of trastuzumab resistance involv-
ing both HER2-dependent and independent pathways. Our study significantly advances
our understanding of trastuzumab resistance by identifying new molecular contributors
and genetic pathways. This knowledge informs future cancer genetics and molecular
medicine research, potentially leading to effective adjuvant therapies. However, clinical
validation is crucial, as preclinical and in vitro findings may not always translate. Addition-
ally, we uncovered unexplored long non-coding RNAs and proteins, offering opportunities
for further basic research.

This study unequivocally demonstrates the substantial role of microRNA molecules
in developing resistance to trastuzumab. In both cell lines, more than 99.6% of the tested
human microRNAs exhibited statistically significant expression changes during the devel-
opment of drug resistance, even when applying stringent statistical criteria. Notably, using
a more rigorous threshold for medical purposes revealed a high percentage of significant
microRNAs, emphasizing the specificity of microRNA action. MicroRNA molecules play
crucial roles in cellular processes such as proliferation, development, metabolism, differ-
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entiation, and apoptosis [34,35]. Their ability to target multiple mRNAs due to imperfect
matching and their widespread regulatory influence on protein-coding genes further high-
light their complexity [34]. Despite constituting only a small portion of the human genome,
microRNAs are predicted to regulate a substantial portion of protein-coding genes. Four mi-
croRNAs, specifically hsa-miR-574-3p, hsa-miR-4530, hsa-miR-8485, and hsa-miR-197-3p,
ranked among the top 25 most significant microRNAs in both cell lines, underscoring their
significant involvement in the development of trastuzumab resistance. In silico analysis was
conducted to identify potential targets of specific microRNAs (miRNAs) associated with
Herceptin resistance in breast cancer cell lines. For hsa-miR-574-3p, TargetScan predicted
potential targets such as RAC1, BIRC5, E2F1, PMP22, and EGFR [36]. Luciferase reporter
assays confirmed direct regulation of RAC1 and EGFR by miR-574-3p, both implicated in
Herceptin resistance [37]. Similarly, miR-4530 showed potential targets, including FOXO1,
MAPK4, and AKT predicted by miRDB [10] whereas Target Scan predicted BIRC5, TFRC,
HER2, ESR2, and AURKA [36], some of which are involved in HER2 signaling and were
important in Herceptin resistance. Another miRNA, hsa-miR-8485, was found to potentially
target genes like BIRC5, E2F1, USP1, RAC1, EPHA2, PTEN, and CCND1 [10,36], where,
E2F1 and USP1, being from the top four, were highly significant in both cell lines. Addition-
ally, miR-4701-5p was identified as targeting TFRC [10], which was highly significant in
both cell lines. These findings provide insights into the molecular mechanisms underlying
Herceptin resistance in breast cancer. The Hsa-miR-197-3p, a microRNA, plays a crucial role
in cancer progression, particularly in breast, bladder, and thyroid cancers. Multiple studies
emphasize the influence of long non-coding RNAs (ncRNAs) on regulating miR-197-3p
expression. LIFR-AS1 inhibits cell proliferation, migration, and invasion in breast cancer
by repressing miR-197 [38]. Similar results were observed in bladder [39] and thyroid can-
cers [40], where miR-197-3p downregulation led to decreased cell proliferation, migration,
and invasion due to the actions of specific ncRNAs. Notably, miR-197-3p is linked to the
PTEN/PI3K-Akt pathway [40], which plays a key role in HER2 signaling. This suggests that
miR-197-3p might be involved in an alternative pathway compensating for trastuzumab’s
therapeutic effects, a drug targeting HER2. Additionally, miR-197 targets MAPK1, a gene
associated with trastuzumab resistance. Overexpressing miR-197 can reverse drug resis-
tance by inhibiting MAPK1, as seen in gastric cancer cells [41]. Overall, miR-197-3p has a
significant role in trastuzumab resistance development, potentially through its regulation of
MAPK1 and involvement in alternative signaling pathways [41]. Furthermore, miR-197-3p
directly regulates other genes implicated in trastuzumab resistance, including FOXJ2 [42],
MTHFD1 [43], RAN [44], TUSC2 [45], and FUS1 [46], though their specific roles in drug
resistance and cancer progression require further investigation. These findings support
the hypothesis that miR-197-3p is a key player in developing resistance to trastuzumab,
a critical drug in breast cancer treatment.

In summary, our study suggests that nearly all known human microRNAs may play a
role in developing resistance to the drug trastuzumab. We identified four microRNAs that
are particularly important in both biological cell lines studied. Two of these microRNAs
are confirmed to be involved in either HER2 signaling or drug resistance, supporting
our findings’ reliability. The other two highly significant microRNAs, which have limited
existing information, were identified through computational analysis as potential regulators
of genes associated with trastuzumab resistance. However, further research is needed to
validate these hypotheses and understand the underlying mechanisms.

5. Conclusions

The current study conducted high-throughput microarray experiments to investigate
the intricate dynamics of gene and microRNA expression changes during the development
of trastuzumab resistance in two prominent breast cancer cell lines, BT474 and SKBR3.
The analysis of a pool of 34,000 genes revealed distinct patterns of differential expression,
with 8874 and 13,892 genes implicated in resistance development in BT474 and SKBR3,
respectively. Remarkably, our findings highlighted the significant involvement of key
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genes, including BIRC5, E2F1, USP1, and TFRC, which are crucial players in both cell lines,
particularly within the context of HER2 signaling. Moreover, the identification of novel
contributors to Herceptin resistance, such as IGF2BP1, GSTM3, RASD1, KLK11, GSTP1,
YWHAH, DTL, DOLK, NACC2, DDIT, and DNAJA3, among the top 25 significant genes,
suggests the existence of previously unrecognized mechanisms in drug resistance. Im-
portantly, our research also underscored the role of established genes, including BIRC5,
E2F1, BRCA1, RB1, ERBB2, EPHA2, IGFBP3, ADAM10, FOXM1, RAC1, MYC, CCND1,
PTEN, TP53, MAP2K4, and PI3KCA in contributing to resistance. Notably, protein–protein
interaction analysis illuminated the pivotal roles of BIRC5, E2F1, and RB1 as central hubs
within networks linked to Herceptin resistance. Furthermore, the significant impact of long
non-coding RNAs and microRNAs in this resistance context was evident, indicating their
potential as vital regulators in the process. Gene Ontology analysis highlighted enriched
molecular functions such as receptor binding, protein kinase activities, and DNA repli-
cation, while biological processes encompassed crucial aspects like cell cycle regulation,
apoptosis, and DNA damage repair. Pathway analysis brought to light 9 and 75 affected
networks in BT474 and SKBR3, respectively, with the convergence of eight common path-
ways, notably including cell cycle and p53 signaling. Notably, our investigation revealed
HER2-dependent and independent resistance mechanisms, thereby ruling out the involve-
ment of epitope masking and other ERBB receptors. Noteworthy complexities observed
in SKBR3 possibly arose from disparities in the cancer stage, considering the primary vs.
metastatic distinction. Intriguingly, our study highlighted the significant role of microRNAs
in Herceptin resistance, with hsa-miR-574-3p, hsa-miR-4530, hsa-miR-8485, and hsa-miR-
197-3p emerging as critical contributors, including some previously unreported microRNAs
specific to each cell line. These comprehensive findings shed light on the multifaceted
landscape of trastuzumab resistance in breast cancer, providing valuable insights for the de-
velopment of more effective therapeutic strategies and personalized treatment approaches.
Admittedly, the findings have been obtained based on an analysis of a limited amount
of material (that included, due to resource constraints, only two independent cell-line
replicates at each time point). Evaluation of their credibility should take this aspect of the
study into account. In this respect, further validation of the findings would be important.
For instance, an in vivo validation and analysis of gene expression at the protein level
could be used to ensure the accuracy and comprehensiveness of the microarray-based
findings. An investigation of the expression of identified DEGs in samples of patients
included in clinical databases and of the association with patients’ outcomes could shed
light on the relevance of the study’s findings to clinical practice. These extensions are left
for future research.
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