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Abstract: Streptococcus pneumoniae (S. pneumoniae) is a bacterial species often associated with the
occurrence of community-acquired pneumonia (CAP). CAP refers to a specific kind of pneumonia
that occurs in individuals who acquire the infection outside of a healthcare setting. It represents
the leading cause of both death and morbidity on a global scale. Moreover, the declaration of
S. pneumoniae as one of the 12 leading pathogens was made by the World Health Organization (WHO)
in 2017. Antibiotics like β-lactams, macrolides, and fluoroquinolones are the primary classes of
antimicrobial medicines used for the treatment of S. pneumoniae infections. Nevertheless, the efficacy
of these antibiotics is diminishing as a result of the establishment of resistance in S. pneumoniae against
these antimicrobial agents. In 2019, the WHO declared that antibiotic resistance was among the
top 10 hazards to worldwide health. It is believed that penicillin-binding protein genetic alteration
causes β-lactam antibiotic resistance. Ribosomal target site alterations and active efflux pumps
cause macrolide resistance. Numerous factors, including the accumulation of mutations, enhanced
efflux mechanisms, and plasmid gene acquisition, cause fluoroquinolone resistance. Furthermore,
despite the advancements in pneumococcal vaccinations and artificial intelligence (AI), it is not
feasible for individuals to rely on them indefinitely. The ongoing development of AI for combating
antimicrobial resistance necessitates more research and development efforts. A few strategies can be
performed to curb this resistance issue, including providing educational initiatives and guidelines,
conducting surveillance, and establishing new antibiotics targeting another part of the bacteria.
Hence, understanding the resistance mechanism of S. pneumoniae may aid researchers in developing
a more efficacious antibiotic in future endeavors.
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1. Introduction

Pneumonia is a respiratory condition characterized by the accumulation of pus and
fluid in the alveoli of the lungs [1]. Community-acquired pneumonia (CAP) is a commonly
seen subtype of pneumonia. This infection is acquired in non-hospital settings and is a
significant global cause of mortality and morbidity. According to the World Health Or-
ganization (WHO), lower respiratory tract infections (LRTIs), which include CAP, have
been identified as the third leading cause of mortality [2,3]. Over 100 pathogens, including
bacteria, viruses, and fungi, are causative agents in the onset of CAP. Nevertheless, Strepto-
coccus pneumoniae (S. pneumoniae) remains the predominant etiological agent responsible
for bacterial CAP [4]. This pneumococcus is also associated with other additional disorders,
including bacteremia, otitis media, and meningitis. There exists a correlation between
the presence of pneumococcus and death rates seen in cases of bacterial meningitis, with
reported values ranging from 16% to 37%. Approximately 30% to 50% of adult survivors
continue to have enduring residual symptoms [5,6].

S. pneumoniae is a Gram-positive bacterium that exhibits opportunistic behavior by
colonizing the mucosal surfaces of the upper respiratory tract (URT) in humans [7]. The
presence of the bacteria has been shown to be associated with elevated levels of illness
and mortality, especially among those in certain vulnerable populations, such as children
below the age of two, individuals with impaired immune systems, and older adults [8].
Despite being a commensal bacterium, S. pneumoniae has the potential to induce significant
morbidity when it transits from its primary reservoir on mucosal surfaces and disseminates
to sterile sites, such as the lungs, leading to the development of pneumonia. Currently,
it is concerning that S. pneumoniae was frequently identified as the prevalent bacterial co-
infection in individuals with coronavirus disease 2019 (COVID-19). The interplay among
co-pathogens like S. pneumoniae, SARS-CoV-2, and the host poses a significant challenge to
the diagnosis, treatment, and prognosis of COVID-19 on a global scale [9]. Moreover, the
WHO classified S. pneumoniae as one of the twelve bacterial strains that need immediate
development of novel therapeutic approaches in 2017 [7].

The primary antibiotic agents used for the eradication of S. pneumoniae are β-lactams,
macrolides, and fluoroquinolones. However, the efficacy of these antimicrobials is dimin-
ishing as a result of the establishment of resistance in S. pneumoniae against these drugs [10].
According to a 2014 investigation conducted by the WHO on antibiotic resistance, pneumo-
coccus was identified as one of the nine microorganisms that pose a worldwide concern [11].
According to a study conducted by Van Boeckel et al. in 2014 [12], there was a significant
rise in global antibiotic use from 2000 to 2010. The usage of antibiotics rose by over 30%,
reaching a total of almost 70 billion standard units, up from roughly 50 billion units. The
antibiotics commonly used in 2020 were penicillin, macrolides, and cephalosporins. In
2010, the use of antibiotics in India amounted to 13 billion standard units, while China
consumed 10 billion and the United States consumed 7 billion standard units. It is worth
noting that a standard unit refers to the number of doses sold, as defined by the IMS Health
database, which includes pills, capsules, or ampoules [12].

For almost four decades, penicillin G has served as the fundamental therapeutic
approach for managing pneumococcal illness. The prevalence of penicillin-resistant pneu-
mococci, first observed in the 1960s, has shown a significant surge in the last decade [13–15].
According to a study conducted in 1997, around 33% of pneumococci have shown resis-
tance to penicillin [15]. Regrettably, it has been shown that tetracyclines, clindamycin,
chloramphenicol, and trimethoprim-sulfamethoxazole (TMP-SMX) sometimes exhibit little
efficacy when used against bacteria that have developed resistance to penicillin [13–15].
The capacity of pathogens to evade the lethal effects of certain medications is influenced by
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patterns of antibiotic use [16]. The high prevalence of pneumococcus resistance to β-lactams
and macrolides in Southern Europe’s nations is a matter of great worry, with estimates
suggesting that it may surpass 20% [17,18].

Most penicillin-sensitive and penicillin-resistant S. pneumoniae are vulnerable to ri-
fampicin, fluoroquinolones, and carbapenems and have been extensively studied and
documented in previous research [14–16,19]. The susceptibility of the majority of strains
to carbapenems exceeds 90% [15]. However, it has been observed that there have been
12 instances where pneumococcus has shown a loss of sensitivity to fluoroquinolones,
despite the fact that current fluoroquinolones have demonstrated effectiveness against
over 99% of isolates [15]. Vancomycin continues to exhibit efficacy against all strains of
pneumococci. However, several strains of S. pneumoniae have shown a degree of tolerance
towards vancomycin, hence indicating the potential emergence of vancomycin resistance
in the near future [14,15].

The management of pneumococcus poses challenges due to many factors, including
the extensive use of antibiotics, the emergence of several resistant strains, the phenomena
of serotype replacement and capsular remodeling, and the horizontal transfer of genes
associated with antibiotic resistance [8]. This review provides insight into the resistance of
S. pneumoniae to anti-pneumococcal drugs.

2. Etiology

Streptococcus pneumoniae exhibits facultative anaerobic characteristics. It has the ability
to display either alpha-hemolytic or beta-hemolytic behavior, depending on whether it is
exposed to aerobic or anaerobic circumstances, respectively. This bacterium is classified
under the Streptococcus genus. Additional bacterial species that have been detected in
CAP include Staphylococcus aureus, Hemophilus influenzae, Pseudomonas aeruginosa, Klebsiella
pneumoniae, and anaerobic bacteria. It is noteworthy to observe that the prevalence of
S. pneumoniae seems to be progressively declining as a result of the growing acceptance and
use of pneumococcal vaccinations. Atypical infections, such as Chlamydophila pneumoniae
and Mycoplasma pneumoniae, are gradually becoming significant pathogens, particularly
among the younger adult population [20].

Several risk factors have been found in individuals with CAP. These risk factors
include immunosuppression, heavy alcohol use, advanced age (over 70 years), asthma, and
prolonged exposure to overcrowded settings, among others [21,22].

3. Pathogenesis and Immunopathogenesis of Pneumonia

The onset of bacterial pneumonia often starts with the introduction of a causative
bacterium, such as S. pneumoniae, into the respiratory system of a host (Figure 1). The
pathogen infiltrates the alveoli, undergoes replication, and elicits host immune responses.
The pathogen may obtain access to the lower respiratory tract of the host by several means,
including aspiration, inhalation, direct inoculation, and hematogenous or contiguous
transmission from a nearby source. While direct inoculation resulting from a penetrat-
ing thoracic injury or contiguous spread from an infection site, such as mediastinitis, is
theoretically feasible, it is generally uncommon [23]. Hematogenous dissemination may
develop in individuals with tricuspid endocarditis who engage in intravenous drug misuse.
However, the primary possible pathways consist of the aspiration of a small volume of
bacterial pathogens into the host’s oropharynx, which may occur during sleep, as well as
the inhalation of contaminated droplets. Microaspiration is a phenomenon that may occur
with notable frequency even among individuals who are considered to be in good health.
However, the development of pneumonia as a consequence of microaspiration is quite rare.
The incidence of pneumonia is primarily influenced by factors such as the amount of aspi-
rated material, the concentration of pathogenic bacteria, the frequency of aspiration events,
and the virulence of the aspirated bacteria in relation to the host’s immune system [2]. In
addition to technical safeguards, it is crucial to have both innate and adaptive host defenses
in place to provide protection against such occurrences [24].
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Figure 1. Pathogenesis and immunopathogenesis of pneumonia by S. pneumoniae. The host can
become infected by the pathogen in a number of ways, such as through aspiration, direct inoculation,
breathing in, and hematogenous or contiguous spread from a nearby focus. Once the pathogen
reaches the alveoli, it multiplies and evokes a host response.

The initial stage of the S. pneumoniae life cycle in the host involves nasopharyn-
geal colonization. The bacteria employ various factors, such as polysaccharide capsules,
peptidoglycan-N-acetylglucosamine deacetylase (PgdA), exoglycosidases-neuraminidase A
(NanA), pneumococcal adherence, and virulence proteins, to facilitate their colonization [25].
The first mechanisms used to counteract the invasion of pathogens include the presence
of nose hairs and turbinates, as well as the functional reflexes of coughing and gagging.
Additionally, the tracheobronchial tree, characterized by its branching structure, plays a
crucial role in effectively clearing mucus by the action of cilia. This information is sup-
ported by reference [23]. S. pneumoniae uses the matrix metalloprotease ZmpA to cleave
mucosal IgA to avoid complement activation and clearance by the mucociliary flow [26].
Pneumonia develops when S. pneumoniae moves from the nasopharyngeal site to the lungs’
alveoli [25]. The alveoli serve as a barrier against pathogens, which are effectively countered
by surfactant proteins and alveolar macrophages.

The macrophages and dendritic cells (DCs) serve as the primary immune defense
against the bacteria. The antigen is captured by the DCs by phagocytosis. DCs then
travel to lymph nodes, where immature T and B cells are situated. The antigen processed
by the DCs is then bound to the MHC class II receptor and presented to immature T
cells by binding the MHC class II to the T cell receptor. T cells proliferate, mature, and
activate B cells, which in turn proliferate into antibody-secreting plasma cells [27]. In
the event that these defensive mechanisms prove ineffective, allowing the pathogen to
remain and proliferate, the host will initiate inflammatory responses that give rise to a
multitude of the signs and symptoms often recognized in patients with pneumonia. The
overproduction of proinflammatory cytokines released during innate and adaptive immune
response can cause inflammation and may exacerbate the pathological condition, leading
to sepsis, shock, organ dysfunction, or potentially fatal outcomes. It is believed that the
presence of inflammatory mediators, including tumor necrosis factor (TNF), interleukin-1
(IL-1), interleukin-8 (IL-8), and granulocyte-colony stimulating factor, contributes to the
development of fever and the release and recruitment of neutrophils to the lung [23].
Leakage of fluid into the capillaries of the alveoli may occur, resulting in the accumulation
of fluid in the alveoli and potentially causing a decrease in oxygen levels in the blood
(hypoxemia). Patients may have fatal outcomes due to alterations in lung capacity and
compliance in extreme circumstances [28].
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In general, the development of pneumonia occurs in patients as a result of several
phases of tissue alterations. During the first phase, the development of edema is seen as
a consequence of proteinaceous exudate in the alveoli. This is then followed by a stage
known as red hepatization, characterized by the buildup of red blood cells. Following is
the subsequent phase known as gray hepatization, which is distinguished by the process of
red cell lysis and disintegration, accompanied by the deposition of fibrin and neutrophils.
The subsequent step is characterized by the resolution process, which encompasses the
activities of macrophages, the removal of waste material, and the reduction in inflammatory
reactions [23].

4. Overview of Antibiotic

Antibiotics are pharmaceutical substances that aid in the prevention of infections
caused by bacteria. In order to achieve this objective, one must either eliminate the bacteria
or inhibit their replication or reproduction. The term “antibiotic” often denotes a substance
that is antagonistic to living organisms [29]. A pharmaceutical compound is categorized as
an antibiotic if it has the ability to eradicate bacterial microorganisms residing inside the
human body. During the 1920s, the development of the first antibiotics coincided with the
observation that strep throat, a common bacterial infection, was a contributing factor to
death rates [30]. Moreover, the practice of surgery posed significant risks. Nevertheless,
subsequent to the breakthrough of antibiotics in the 1940s, humans were able to endure
formerly lethal diseases, extend their lifespan, and undertake more secure medical interven-
tions. The vast majority of microorganisms residing inside the human body are considered
to be harmless or nonpathogenic. Certain bacteria may play a role in many physiological
processes inside the human body. However, it is important to note that almost every organ
has the potential to be infected by microbes. Antibiotics have the capability to just address
ailments of bacterial origin, hence rendering them ineffective in combating disorders stem-
ming from viral etiology. Nevertheless, there are instances where distinguishing between a
bacterial or viral disease might provide challenges. Certain antibiotics possess the ability to
effectively combat a wide range of bacterial strains, therefore earning them the designation
of broad-spectrum antibiotics. Certain microbes, referred to as narrow-spectrum [31], are
exclusively targeted by others.

5. Antibiotic Resistance and Its Effects

When antibiotics are provided in a suitable and accurate manner, they may effectively
combat bacterial infections [31]. Nevertheless, it has been shown that a significant propor-
tion, around 50%, of antibiotic use is deemed unnecessary. One of the contributing factors
to the development of antibiotic resistance is the overuse of antibiotics. Over the course
of time, bacteria undergo evolutionary processes that lead to the emergence of highly
resistant strains, sometimes referred to as super bacteria or superbugs. They are modified
to such an extent that antibiotics lose their efficacy. Due to the absence of pharmaceutical
interventions capable of eradicating them, these entities provide a significant reason for
worry. One effective approach to mitigating the proliferation of antibiotic-resistant bacteria
is the judicious and appropriate use of antibiotics [30].

Antibiotics are used to prevent and treat bacterial illnesses. Resistance to antibiotics
arises when bacteria have adapted to the presence and effects of these antimicrobial agents.
Neither people nor animals develop antibiotic resistance; rather, it is only bacteria that
gain this resistance. The aforementioned bacteria have the capability to cause infections
in both people and animals. It is worth noting that the treatment of diseases caused by
these bacteria poses more challenges compared to those caused by non-resistant strains [32].
The phenomenon of antibiotic resistance has been shown to be associated with elevated
mortality rates, prolonged hospitalization periods, and escalated healthcare expenditures.
Hence, there is an urgent need for the fast reformation of the prescription and use of
antibiotics on a worldwide scale. Despite the advancements in pharmaceutical research
and the discovery of novel drugs, the issue of antibiotic resistance continues to pose a



Medicina 2023, 59, 1927 6 of 18

substantial and enduring global menace. Furthermore, in order to mitigate the transmission
of illnesses, it is important to focus on modifying behaviors that promote improved food
hygiene, practicing safer sexual practices, maintaining proper hand hygiene, and obtaining
necessary vaccines [30,33].

The prevalence of antibiotic resistance is escalating to alarmingly high levels on a
global scale. Antimicrobial resistance (AMR) might cost USD 300 billion to USD 1 trillion
globally by 2050. The global proliferation of novel resistance mechanisms poses a signifi-
cant challenge to effectively treating prevalent infectious diseases. The diminishing efficacy
of antibiotics has resulted in increased challenges in the treatment of several illnesses,
including gonorrhea, TB, septicemia, and pneumonia, sometimes rendering them resistant
to available medical interventions [29,34]. Furthermore, the availability of over-the-counter
medications for both human and animal consumption accelerates the emergence and dis-
semination of antibiotic resistance. In nations without standardized treatment guidelines,
both medical practitioners and veterinarians regularly engage in the excessive prescription
of antibiotics, while the general populace tends to exhibit a pattern of excessive use. In
the absence of prompt intervention, the present circumstances may lead to a future charac-
terized by a post-antibiotic era, whereby commonplace ailments and small injuries may
regain their potential to result in fatality [35,36].

6. Prevalence of Antimicrobial Resistance in S. pneumoniae

The implementation of pneumococcal conjugate vaccines (PCV) PCV7 and PCV13 has
successfully decreased invasive pneumococcal infections and provided herd protection for
non-vaccinated people. However, the burden of pneumococcal infections remains high due
to the limited access to vaccines in developing countries and the limited serotype coverage
provided by the established vaccines. It has been noted that antibiotic resistance increased
in the post-PCV era [37,38]. S. pneumoniae, a bacterium well recognized as a significant
contributor to CAP on a worldwide scale, regrettably exhibits resistance to several medica-
tions. The emergence of antibiotic resistance in S. pneumoniae poses a significant concern
to healthcare systems globally as it results in treatment failure. The consequences of this
resistance issue include elevated mortality rates, prolonged morbidity periods, and higher
costs of medical care [39,40]. The early documentation of S. pneumoniae’s resistance to
penicillin, followed by its subsequent resistance to other categories of antibiotics, has posed
challenges in selecting appropriate antibiotic treatments. The susceptibility of S. pneumoniae
to β-lactams and macrolides has shown a gradual decline [41]. The prevalence of resistance
to fluoroquinolones, tetracycline, and trimethoprim-sulfamethoxazole (TMP-SMX) is also
being progressively reported [10].

According to Cherazard et al. 2017 [10], the study conducted in the United States
revealed varying prevalence rates of β-lactam resistance in S. pneumoniae, ranging from
less than 1% to 41.8%, depending on the specific β-lactam medicines. The percentage
range of penicillin is seen to be between 13.8% to 41.8%. The percentage distribution of
cephalosporins is as follows: cefuroxime accounts for 29.9%, ceftriaxone for 11.7%, ceftaro-
line for 0–1%, and imipenem for 23.8%. In addition, it has been shown that the prevalence
of macrolide resistance ranges from 20% to 40%. In contrast to the resistance shown in
S. pneumoniae to the other two antimicrobials, the rate of fluoroquinolone resistance ranged
from less than 1% to 2%, which was the lowest (Table 1).

Based on a report acquired in the United States, it was shown that the prevalence of
resistance to β-lactams exhibited the greatest rate, followed by resistance to macrolides, and
subsequently fluoroquinolones. The resistance mechanisms pertaining to each medicine
are enumerated above.
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Table 1. The prevalence of antimicrobial resistance in S. pneumoniae and the process behind
its development.

Antimicrobial Classes Resistance Mechanism Resistance Prevalence

Beta-lactams
(1) Mutation of penicillin-binding proteins

(2) Non-pbp genes, murM gene
(3) Destruction by beta-lactamases

Penicillin
Penicillin G: 13.8%

Penicillin V: 41.8%

Cephalosporins: <1–29.9%

Cefuroxime: 29.9%

Ceftriaxone: 11.7%

Ceftraroline: 0–<1%

Macrolides (1) Ribosomal alteration
(2) Active efflux pumps 20–40%

Fluoroquinolones
(1) Mutations in gyrA, parC, and parE regions

(2) Efflux pumps
(3) Acquisition of plasmid-encoded genes

<1–2%

7. Action and Resistance Mechanisms for β-Lactams, Macrolides, and
Fluoroquinolones among S. pneumoniae
7.1. β-Lactams

The structural foundation of β-lactam antibiotics consists of a beta-lactam ring, which
is a four-membered ring containing nitrogen. The D-Ala-D-Ala peptide sequence, which
serves as the substrate for cell wall transpeptidases, has a structural conformation akin to
that of a ring. Currently, there are four primary categories of β-lactam compounds [42].
The mechanism of action of these drugs involves the specific targeting and suppression of
cell wall production by their attachment to the enzymes involved. It is important to note
that the beta-lactam ring plays a crucial role in their mode of action. Penicillin-binding
proteins (PBPs) refer to a group of enzymes that are affixed to the cellular membrane. The
PBPs are categorized into 4–6 distinct categories according to the specific bacterial species
they target. The transpeptidases, also known as PBPs, play a vital role in the cross-linking
of the cell wall, which is essential for the organism’s survival [43,44].

The D-Ala-D-Ala peptide terminus serves as the inherent substrate for the transpep-
tidase activity involved in the production of peptidoglycan in the cell wall. This peptide
terminus has a three-dimensional conformation that is replicated by the four-membered
ring structure seen in β-lactam antibiotics. β-lactam medications inhibit the synthesis of
cell walls by forming strong bonds with the active site of transpeptidase (Figure 2) [45].
Cell death occurs as a result of osmotic instability caused by inadequate cell wall syn-
thesis, or the binding of β-lactam to PBP may initiate a series of reactions that ultimately
result in autolysis and cell demise. β-lactam antibiotics have efficacy against both Gram-
positive and Gram-negative bacteria. Nevertheless, the effectiveness of these antibiotics
differs as a result of disparities in the cellular structures of the two bacterial classifications
(e.g., Gram-negative bacteria possess an outer membrane, whereas Gram-positive bacteria
lack one) [42,46].

β-lactam antibiotics, such as penicillin, cephalosporins, and carbapenems, were for-
merly considered very effective antimicrobial agents for the treatment of individuals
infected with S. pneumoniae subsequent to its identification in 1928 by Alexander Fleming.
Previously, it functioned as an antimicrobial agent with a high susceptibility to S. pneumoniae.
Nevertheless, it was in 1967 that the first instance of penicillin resistance in S. pneumoniae
was documented in Australia [47]. The minimum inhibitory concentrations (MICs) of
β-lactams have shown an upward trend over time, and a considerable number of studies
have been published on the emergence of β-lactam-intermediate and β-lactam-resistant
strains of S. pneumoniae. The aforementioned situation has resulted in a decline in the use
of β-lactams as a viable therapeutic alternative [48].
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There exists a notion suggesting that the development of resistance in pneumococcus
and commensal streptococcus may be attributed to a minimum of two distinct phases. The
process involves the selection of commensal streptococci that are resistant to mutations in
their pbp genes, followed by the transfer of these resistant genes to competent pneumococci
by homologous recombination. This information is summarized in Table 1 and shown in
Figures 2–4 [49]. The mutations progressively accumulate inside three transpeptidases
that play a crucial role in the manufacture of the cell wall, specifically known as penicillin-
binding proteins (PBPs). Excessive use of the medication has resulted in a genetic alteration
that modifies the amino acid sequences of the PBP2x, PBP2b, and PBP1a penicillin-binding
proteins (Figure 3) [50]. The presence of even minor and diverse fragments arising from
mutations may significantly impact the modification of pbp genes, leading to the develop-
ment of β-lactam resistance in commensal streptococcus and S. pneumoniae. The modified
bacteria exhibit a competitive edge in the presence of antibiotics as a result of these ge-
netic alterations, which decrease the binding affinity of transpeptidases for the drug while
preserving the enzyme’s functioning [51].

The pbp genes in resistant pneumococcus strains have a mosaic pattern in contrast to
the same sections of susceptible pneumococcus. These mosaic patterns consist of sequence
blocks of varying lengths, which may diverge by up to 20% and 10% at the DNA level,
respectively [51]. The mosaic structure seen in this study may be attributed to the transfer of
genes between species originating from Streptococcus mitis and Streptococcus oralis, which are
believed to be potential donors. These two species coexist in the nasopharynx, which serves
as their shared biological niche. The integration of exogenous DNA from β-lactam-resistant
Streptococcus strains that inhabit the same ecological niche is shown in Figure 4 [49,52].

Furthermore, it has been hypothesized that non-pbp genes, such as the murM gene,
may be associated with the resistance of S. pneumoniae to β-lactam antibiotics. The operon
under consideration is responsible for encoding transferases that facilitate the elongation
of the peptidoglycan stem by adding an L-Ala-L-Ala cross-bridge to the L-Lys residue.
Nevertheless, there is a lack of confidence about the precise mechanism by which these
elongations contribute to β-lactam resistance [53,54]. A further mechanism of resistance
involves the enzymatic degradation of β-lactam antibiotics by bacteria via the production
of beta-lactamase enzymes [55]. The loss of the medication’s capacity to bind to PBPs
and inhibit cell wall construction occurs when beta-lactamases cleave the beta-lactam ring
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(Figure 2). Nevertheless, it is important to note that not all β-lactams possess the ability to
undergo hydrolysis by all beta-lactamases. For example, the staphylococcal beta-lactamase
enzyme exhibits rapid hydrolysis of penicillin and its derivatives. However, it does not
possess the ability to hydrolyze other cephalosporins, such as imipenem [42,43].
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7.2. Macrolides

Following the emergence of penicillin resistance in pneumococcus, macrolides have
emerged as an alternative therapeutic option for treating pneumococcal infections. Macrolides,
including erythromycin, azithromycin, and clarithromycin, are a class of bacteriostatic
antibiotics that exert their antimicrobial effects by binding to the 50S ribosomal subunit,
therefore inhibiting protein synthesis (Figure 5) [56,57]. The primary origin of macrolides
may be attributed to Saccharopolyspora erythraea, a bacteria found in soil that is also re-
ferred to as Streptomyces erythreus. The efficacy of macrolides against the majority of
Gram-negative bacterial species, excluding enterococci, is limited due to challenges associ-
ated with absorption resulting from Gram-negative outer membranes. In addition, they
have shown efficacy against many bacterial species, including Legionella, Campylobacter,
Mycoplasma, Treponema, Bordetella, Chlamydia, Chlamydophila, and Borreli, as indicated by
sources [35,58].
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The 23S ribosomal RNA molecule, among other ribosomal proteins, serves as a partic-
ular target for the macrolides’ attachment to the 50S ribosomal subunit [59]. Macrolides
have inhibitory effects on bacterial protein synthesis, but via distinct mechanisms that
target different phases of the process. The process of peptidyl transfer is hindered by
molecules consisting of 16 members, whereas the movement of peptidyl-tRNA is impeded
by macrolides composed of 14 members. Based on the prevailing idea, it is posited that
macrolides have an inhibitory effect on protein synthesis by inducing the dissociation of
peptidyl-tRNA from ribosomes in the elongation phase [60,61].

The increased prevalence of macrolide resistance in S. pneumoniae is associated with the
widespread use of macrolide antibiotics. The resistance of pneumococcus to macrolides is
thought to be primarily facilitated by two processes. One method involves the modification
of the ribosome via an enzyme carried by the erythromycin-resistant methylase (ermB) gene.
The other mechanism involves the presence of active efflux pumps expressed by macrolide
efflux (mef E/mef A/mel) genes, as shown in Table 1 and depicted in Figure 4 [8].

7.2.1. Ribosomal Alteration

The ribosomal methylase of S. pneumoniae is primarily encoded by ermB, which pro-
duces a gene product responsible for the demethylation of the target site on the 23S rRNA.
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The gene in question is the most often observed predictor of macrolide resistance in S.
pneumoniae [62]. The process of ribosomal methylation, facilitated by the ErmB enzyme,
confers resistance to macrolide, lincosamide, and streptogramin B (MLSB phenotype).
Furthermore, it has been shown that the phenotype plays a crucial role in conferring a
substantial degree of resistance to macrolides. The modification of the binding site for
macrolide and lincosamide via the presence of a specific variation in the ermB gene results
in the acquisition of full resistance to clindamycin in some cases [63].

The presence of inducers such as erythromycin allows for the translation of ErmB
at a high level, as shown by previous research [64]. The upstream regulatory region of
the ermB gene in pneumococcus plays a crucial role in determining the mode of ermB
production, either inducible or constitutively generated at high levels. The regulatory gene
consists of many components, including a brief leader peptide called ermBL, which contains
its ribosome binding site (RBS1). Additionally, it has a non-translational loop-stream
structure, followed by certain coding sequences of ermB (ermB’). Finally, it includes another
RBS2 [62,65]. Moreover, the presence of ermBL2, an extra leader peptide, is essential for the
stimulation of gene expression mediated by erythromycin [66]. When the expression of
ermB is capable of being induced, it is hypothesized that the stalling of ribosomes and the
stability of mRNA play a role in regulating its expression [67–69]. Erythromycin-induced
ribosome stalling at the eleventh codon (Asp) of ermBL leads to a conformational change in
the mRNA, facilitating the accessibility of the ermB-RBS2 for the translation of ermB [65].

Translational attenuation leads to the repression of erm gene expression in the absence
of an inducing agent [62]. The ribosome binding site 2 (GGAG) and the AUG start codon of
the ermB mRNA were masked by a stem-loop structure. In the presence of erythromycin, a
distinct stem-loop structure undergoes modification, resulting in the exposure of the RBS2
and start codon sequences of the ermB gene, therefore initiating the production of ermB [65].

7.2.2. Active Efflux Pumps

The phenomenon of antibiotic efflux involves the active transport of medicines from
the intracellular environment to the extracellular environment via the use of efflux pumps,
as seen in Figure 2 [70]. Occasionally, heightened quantities of antibiotics may surpass
this mechanism; nevertheless, the incidence of resistance is on the rise [10]. The macrolide
efflux (mef E/mef A/mel) genes are responsible for encoding efflux pumps in pneumococcus
(Figure 5) [8,62]. The mef A gene is responsible for encoding the resistance mechanism.
Historically, this often resulted in a minimal degree of resistance [10].

The mef E/mel operon encodes the mechanism of pneumococcal macrolide efflux,
which occurs via a process that remains incompletely elucidated [71]. In order for S.
pneumoniae to develop resistance to macrolides, the presence of both mef E and mel genes is
required. Both genes are situated on the macrolide efflux genetic assembly (mega) element.
The expression of the gene is regulated by a promoter that is activated by macrolide
antibiotics with 14- and 15-membered rings, such as clarithromycin, azithromycin, and
erythromycin [62,72].

The mef E gene in S. pneumoniae is responsible for encoding a protein consisting of
405 amino acids. This protein belongs to the major facilitator superfamily and functions as
an efflux pump, using the energy derived from the proton motive force to expel molecules
from the cells. Mel, also known as msrD, is a homologous counterpart of the S. aureus
gene mrsA. The genetic sequence encodes for a protein belonging to the ATP-binding
cassette (ABC) transporter family, although it does not possess the typical hydrophobic
and membrane-binding domains often seen in such proteins. According to previous
research [62], it is anticipated that Mel would engage in interactions with transmembrane
complexes that are encoded by chromosomes.

The combination of Mef E and mel has a synergistic effect, resulting in the development
of bacterial resistance to macrolides. Additionally, they serve as the constituents of the
efflux pump in S. pneumoniae. The mechanism of macrolide efflux in S. pneumoniae involves
the transportation of macrolides from ribosomes by the mel protein, which then displaces
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the macrolide molecules to mef E for efflux [62,73]. In addition, the mef E/mel gene promotes
the development of resistance to the human antimicrobial peptide LL-37 by stimulating the
production of efflux pumps. The results suggest that the efflux pump is activated during
nasopharyngeal colonization [74].

7.3. Fluoroquinolones

Fluoroquinolones are potent antibacterial agents that specifically inhibit the activity
of DNA gyrase and DNA topoisomerase IV enzymes [36,75]. Gyrase is responsible for
the introduction of negative super-coils into DNA, which serves to alleviate the torsional
stress that is believed to build up before the formation of transcription and replication
complexes [76]. Topoisomerase IV has substantial decatenation activity. The inhibition
of gyrase and topoisomerase IV, which are essential enzymes, is expected to impede
bacterial proliferation (Figure 6). In contrast, fluoroquinolones exert a detrimental effect on
cellular function by forming drug/enzyme/DNA complexes that encapsulate the enzymes
responsible for DNA replication. These complexes are stabilized by proteins, therefore
facilitating the repair of double-stranded DNA breaks [77,78].

Medicina 2023, 59, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. Mechanisms of action and resistance for fluoroquinolones. Mutations in the gyrA, parC, 
and parE genes, as well as efflux and acquisition of plasmid-encoded genes, are involved in the 
resistance mechanisms of fluoroquinolone among S. pneumoniae. 

DNA gyrase is responsible for introducing negative superhelical twists to the double 
helix structure of bacterial DNA before the initiation of replication, with the purpose of 
facilitating the efficient separation of daughter chromosomes [79]. The aforementioned 
mechanism plays a crucial role in the commencement of DNA replication as it facilitates 
the binding of initiation proteins. The DNA gyrase, which is composed of two monomeric 
GyrA and two monomeric GyrB subunits, is encoded by the GyrA and GyrB genes, re-
spectively [80]. The process of segregating into two daughter cells at the conclusion of a 
replication cycle is facilitated by decatenation, which involves the removal of interlinking 
between daughter chromosomes. This decatenation process is executed by an enzyme 
called topoisomerase IV. Topoisomerase IV consists of a dimeric assembly including two 
ParC subunits (known as GrlA in the context of Staphylococcus aureus) and two ParE sub-
units (referred to as GrlB in the context of Staphylococcus aureus). The production of these 
entities is facilitated by the ParC and ParE genes, as stated in reference [81]. 

The resistance of pneumococcus to fluoroquinolones is comparatively lower when 
compared to the other two agents. This is mostly attributed to the restricted use of this 
antibiotic owing to its association with the development of articular cartilage injury in 
weight-bearing joints in animal models [82,83]. S. pneumoniae acquires resistance to fluo-
roquinolones via three main mechanisms: the accumulation of mutations in its genome, 
the increased efflux of the drug, and the acquisition of plasmid-encoded genes (refer to 
Table 1 and Figures 2 and 4) [84]. 

7.3.1. Mutations 
The genes gyrA and gyrB are responsible for encoding DNA gyrase, while parC and 

parE are responsible for encoding topoisomerase IV [85]. Mutations in the gyrA, parC, and 
parE genes may occur spontaneously or gradually [84,86]. As a consequence, alterations 
occur in the quinolone-resistance-determinant region (QRDR) of gyrA and/or parC, lead-
ing to modifications in the fluoroquinolone binding site and a reduction in the affinity of 
the drug for the enzyme–DNA complex (Figure 6). The development of resistance to 
ciprofloxacin is exclusively attributed to mutations that arise specifically at the parC gene. 

Figure 6. Mechanisms of action and resistance for fluoroquinolones. Mutations in the gyrA, parC, and
parE genes, as well as efflux and acquisition of plasmid-encoded genes, are involved in the resistance
mechanisms of fluoroquinolone among S. pneumoniae.

DNA gyrase is responsible for introducing negative superhelical twists to the double
helix structure of bacterial DNA before the initiation of replication, with the purpose of
facilitating the efficient separation of daughter chromosomes [79]. The aforementioned
mechanism plays a crucial role in the commencement of DNA replication as it facilitates
the binding of initiation proteins. The DNA gyrase, which is composed of two monomeric
GyrA and two monomeric GyrB subunits, is encoded by the GyrA and GyrB genes, re-
spectively [80]. The process of segregating into two daughter cells at the conclusion of a
replication cycle is facilitated by decatenation, which involves the removal of interlinking
between daughter chromosomes. This decatenation process is executed by an enzyme called
topoisomerase IV. Topoisomerase IV consists of a dimeric assembly including two ParC
subunits (known as GrlA in the context of Staphylococcus aureus) and two ParE subunits
(referred to as GrlB in the context of Staphylococcus aureus). The production of these entities
is facilitated by the ParC and ParE genes, as stated in reference [81].

The resistance of pneumococcus to fluoroquinolones is comparatively lower when
compared to the other two agents. This is mostly attributed to the restricted use of this
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antibiotic owing to its association with the development of articular cartilage injury in
weight-bearing joints in animal models [82,83]. S. pneumoniae acquires resistance to fluoro-
quinolones via three main mechanisms: the accumulation of mutations in its genome, the
increased efflux of the drug, and the acquisition of plasmid-encoded genes (refer to Table 1
and Figures 2 and 4) [84].

7.3.1. Mutations

The genes gyrA and gyrB are responsible for encoding DNA gyrase, while parC and
parE are responsible for encoding topoisomerase IV [85]. Mutations in the gyrA, parC, and
parE genes may occur spontaneously or gradually [84,86]. As a consequence, alterations
occur in the quinolone-resistance-determinant region (QRDR) of gyrA and/or parC, leading
to modifications in the fluoroquinolone binding site and a reduction in the affinity of
the drug for the enzyme–DNA complex (Figure 6). The development of resistance to
ciprofloxacin is exclusively attributed to mutations that arise specifically at the parC gene.
Nevertheless, the development of resistance to the most recent fluoroquinolones has been
shown to be associated with parC and gyrA mutations [10,84,86].

7.3.2. Efflux and Acquisition of Plasmid-Encoded Genes

S. pneumoniae may develop resistance to fluoroquinolones via the upregulation of the
efflux mechanism, which is attributed to alterations in regulatory genes [87]. According to
existing literature, there is a prevailing belief that the regulatory gene known as pmrA plays
a significant role in regulating the production of efflux pumps. However, it is worth noting
that the genes patA and patB have also been associated with the emergence of resistance to
fluoroquinolone antibiotics [86,87].

The phenomenon of plasma-mediated resistance to quinolones occurs via the produc-
tion of Qnr proteins by plasmids [10]. Nevertheless, the precise mechanism behind the
transferable resistance and the incidence of fluoroquinolone-resistant plasmids in clinical
environments remain unclear [88].

8. Current Trends versus New Trends in Terms of Diagnostics

At present, the diagnosis of AMR is commonly conducted by two established methods:
whole genome sequencing for antimicrobial susceptibility testing (WGS-AST) and direct
AST. Regrettably, the conventional method of assessing levels of antibiotic resistance,
known as AST, has proven to be ineffective and has failed to provide an understanding of
the mechanisms behind AMR [32,89]. The WGS-AST method provides a quick, dependable,
and precise diagnostic tool for AMR. However, the effective extraction of data requires the
use of extensive and complex datasets with large dimensions. Consequently, the use of AI
technology has led to the implementation of the subsequent methodologies [90,91].

9. Role of Artificial Intelligence in Overcoming AMR

In recent times, there has been significant evidence showcasing the commendable
efficacy of artificial intelligence (AI) in the management and control of AMR. AMR AI solu-
tions play a role in improving doctors’ prescriptions and easing their work. One instance of
the use of sequencing-based AI applications is the investigation of AMR [92]. Furthermore,
the acquisition of clinical data from available health records in AI systems serves to develop
clinical decision support systems that might potentially aid physicians in monitoring trends
related to AMR and promoting the judicious use of antibiotics. In addition, the utilization
of AI applications is prevalent in the field of synergistic drug combination studies and
the advancement of innovative antibiotics [93]. Random forests (RF), naïve Bayes (NB),
decision trees (DT), support vector machines (SVM), and artificial neural networks (ANN)
are among the most commonly used AI approaches for AMR [32,94].

Despite the increasing significance of AI technology as a means for AMR predictions,
more efforts are required to further this field. While the use of the IR-spectrometer approach
or AI-based FAST has the potential to enhance the efficiency of AST, it should be noted
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that the workflows associated with these methods may be too complex for individuals
without professional expertise to effectively implement [89]. In addition, the development
of a comprehensive WGS-AST model for numerous species using a limited training dataset
necessitates the creation of a substantial database that can support advanced artificial
intelligence techniques such as transfer learning and other methodologies [93]. In order to
effectively tune its crucial parameters and be applicable to specific species, the WGS-AST
model requires a substantial training dataset. Consequently, this will become imperative
for future endeavors.

10. Strategies to Curb the Resistance Issue

Currently, the use of antibiotics is the only method accessible for treating pneumococcal
diseases [95]. Without intervention, it is predicted that AMR will cause 10 million deaths
annually by 2050 [96]. Developing a new antibiotic that targets MurJ might help combat
bacterial resistance. MurJ is important in peptidoglycan biogenesis because it acts as the
flippase of Lipid II across the cytoplasmic membrane [97,98]. Peptidoglycan is the cell wall
layer that protects bacteria from being lysed. In order to synthesize the peptidoglycan, MurJ
must flip Lipid II across the membrane [99]. Therefore, a new antibiotic targeting the MurJ
will disturb the peptidoglycan synthesis, hence making it unable to protect bacteria from
being lysed. Another strategy to curb the resistance issue is by decreasing antibiotic usage.
This can be performed via educational initiatives and through guidelines for healthcare
workers. Furthermore, ongoing surveillance is also necessary in order to identify the
presence of resistance in new strains or increase the rate of resistance in current bacterial
strains [8].

11. Conclusions

Streptococcus pneumoniae is a bacterial pathogen that has persistent mechanisms to
avoid eradication. Fluoroquinolones had the lowest rates of S. pneumoniae resistance
emergence among the three major antibacterial agents. S. pneumoniae has evolved many
methods to counteract the action of antimicrobials such as β-lactams, macrolides, and
fluoroquinolones. It is hypothesized that a genetic modification in penicillin-binding
proteins is responsible for the phenotypic expression of resistance to β-lactam antibiotics.
Two mechanisms of macrolide resistance are alterations in the ribosomal target site and
the presence of active efflux pumps. In the context of fluoroquinolone resistance, it is
seen that many factors contribute to this phenomenon, including the accumulation of
mutations in the bacterial genome, enhanced efflux mechanisms, and the acquisition of
genes encoded by plasmids. Despite the growth of AI technology in the field of AMR, there
remains a significant amount of work that must be undertaken in order to further advance
this domain. Hence, the development of a novel and effective therapeutic intervention is
essential to combating the bacterial infection.
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