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Abstract: Zirconia-reinforced lithium silicate (ZLS) ceramic is a new innovative dental material with
unique a chemical composition that is designed to combine harmoniously with the appropriate
optical properties of lithium disilicate and the enhanced mechanical strength of zirconia. A thorough
understanding of ZLS materials is essential for both clinicians and dental technicians. At present,
the mechanical behavior and optical properties of the ZLS ceramic system have not been extensively
researched, and there is still a lack of consensus regarding the fabrication process and clinical
behavior of ZLS all-ceramic restorations. The aim of the present study was to present a selection of
comprehensive information concerning zirconia-reinforced lithium silicate ceramics and their optical
and mechanical properties, as well as to assess data regarding cementation procedures and clinical
outcomes for ZLS all-ceramic restorations. Three electronic databases (PubMed, Web of Science,
and the Cochrane Library) were used for the research by two independent reviewers. The search
was limited to articles published in the English language, as well as clinical and in vitro studies of
color and studies on mechanical behavior and the cementation procedures of ZLS restorations. The
exclusion criteria comprised abstracts, questionnaire-based studies, case reports, literature reviews,
and studies that were not available in English. Zirconia-reinforced lithium-silicate-based ceramic
presents a unique and complex microstructure that increases mechanical resistance but decreases
aesthetic appearance, especially its translucency, due to tetragonal zirconia content. A material’s
thickness, the color of the underlying tooth structure, and the resin cement shade are important factors
that influence the final shade and aesthetic appearance of ZLS restorations. Mechanical properties,
which are defined by the fracture toughness, flexural strength, elastic modulus, and hardness of ZLS
ceramic are higher compared to feldspathic, lithium disilicate, and hybrid ceramics, as well as resin
nanoceramics; however, they are lower than translucent or high-translucency zirconia. Acid etching,
sandblasting, and laser etching represent the most used methods to prepare the ZLS restoration
surfaces for proper bonding procedures.

Keywords: prosthetic dentistry; hybrid ceramic system; all-ceramic restorations; optical and mechanical
properties; adhesion features

1. Introduction

In modern dentistry, the continuous development of computer-aided design (CAD)
and computer-aided manufacturing (CAM) technology has gained significant popularity
among dentists and dental technicians. This digital technology was introduced as an
alternative to classic conventional manufacturing techniques to provide access to highly
sophisticated tools for designing and fabricating a large diversity of dental restorations with
a natural appearance, adequate mechanical resistance, and a higher level of precision [1].
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At present, digital CAD/CAM systems are extremely efficient and widely used by
dentists in their daily clinical practice. This new technology has resulted in the introduction
of new types of CAD/CAM ceramic systems that have been exclusively created for this
digital system [1,2].

To fulfill the increased aesthetic demands of their patients, clinicians prefer to use the
new-generation, all-ceramic materials to create indirect restorations. Due to its increased
capacity to mimic the optical properties of natural tooth structures, lithium-disilicate-based
glass ceramic is one of the most desired restorative materials [2]. Unfortunately, the brittle
structure of this type of ceramic system may limit its clinical indications and compromise
the durability and performance of dental restorations [3].

In recent years, manufacturers have attempted to improve the strength of lithium-
disilicate-based ceramic, introducing zirconia-reinforced lithium silicate (ZLS) ceramic,
a new and innovative dental material with a unique chemical composition designed to
harmoniously combine the appropriate optical properties of lithium disilicate with the
enhanced mechanical strength of zirconia [4,5]. This new ceramic system consists of a
lithium-metasilicate (Li2SiO3) glass–ceramic matrix that is reinforced with approximately
8–12% of zirconium dioxide grains (ZrO2), presenting a fine-grained microstructure (Li2O-
ZrO2-SiO2) after the crystallization process [6,7]. Due to its increased translucency and
color variety, ZLS can potentially be used to fabricate anatomical contours or monolithic
restorations. Understanding the characteristics of ZLS ceramics is essential for clinicians
and dental technicians to ensure the best treatment outcomes for their patients.

Currently, zirconia-reinforced lithium silicate (ZLS) ceramic is widely used for the
fabrication of a large variety of all-ceramic restorations, being designed for CAD/CAM
milling—Vita Suprinity PC (Vita Zahnfabrik, Bad Säckingen, Germany); Celtra Duo (Dentsply
Sirona, Hanau-Wolfgang, Germany)—as well for pressing technique—Vita Ambria (Vita
Zahnfabrik, Bad Säckingen, Germany); Celtra Press (Dentsply Sirona, Hanau-Wolfgang,
Germany) [8–10].

Vita Suprinity PC (Vita Zahnfabrik, Bad Säckingen, Germany) is commercialized in
a pre-crystallized form, allowing for easier milling of the restoration. However, due to
the 10% weight content of zirconia, the material presents a unique homogeneous fine-
particle architecture. Thus, after the crystallization process, the ceramic restorations present
excellent optical and mechanical properties [8,10,11].

On the other hand, Celtra Duo (Dentsply Sirona, Hanau-Wolfgang, Germany) is
manufactured in crystallized form and defined by a particular, ultra-fine microstructure
due to the homogeneous distribution of zirconium dioxide grains in the glassy, amorphous
matrix of lithium silicate crystals, which are four to eight times smaller than lithium
disilicate crystals. The internal configuration of the glass–ceramic matrix, along with the
very fine structure of the lithium silicate crystals, provides the material with particular
mechanical and optical properties [8,12].

Zirconia-reinforced lithium silicate ceramics are indicated in a large variety of complex
clinical situations, ranging from inlays, onlays, partial crowns, and veneers to anterior and
posterior crowns and single-tooth restorations on implant abutments [13].

At present, clinical studies assessing the intraoral performance of ZLS restorations
remain limited; however, their attributes align closely with those of lithium disilicate
ceramics [14]. Consequently, in the context of medical education and practice, the primary
aim of this literature review is to consolidate a comprehensive understanding of zirconia-
reinforced lithium silicate ceramics, focusing on their optical and mechanical properties.
In addition, we intended to evaluate existing data on cementation techniques and the
clinical results associated with ZLS all-ceramic restorations, ensuring that emerging dental
practitioners are familiar with contemporary advancements and methodologies.
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2. Materials and Methods
2.1. Search Strategy

This literature review was performed using the PRISMA standards [15]. The search
was conducted between 1 July and 1 August using multiple databases, as follows: Medline
(National Library of Medicine) via PubMed, Web of Science, and the Cochrane Library,
including articles written in English with no timeframe. We optimized the search using
Medical Subject Headings (MeSH) terms, in conjunction with specific keywords, all linked
with Boolean operators (AND, OR). The exact terms and combinations of our search
methodology can be found in Table 1. In addition, this review was registered in the
PROSPERO database (registration ID: CRD42023469828).

Table 1. Combination of search terms used in case of each database.

Search Terms and Combinations

PubMed

“zirconia reinforced lithium silicate ceramic*”[tw] OR “zirconia reinforced lithium silicate
glass-ceramic*”[tw] OR “ZLS”[tw] AND “Computer-Aided Design”[Mesh] OR

“CAD-CAM*”[tw] AND “Optical Phenomena”[Mesh] OR “color*”[tw] OR “optical
property*”[tw] OR “light scattering”[tw] OR “light transmission”[tw]

“zirconia reinforced lithium silicate ceramic*”[tw] OR “zirconia reinforced lithium silicate
glass-ceramic*”[tw] OR “ZLS”[tw] AND “Computer-Aided Design”[Mesh] OR

“CAD-CAM*”[tw] AND “Mechanical Phenomena”[Mesh] AND “Flexural Strength”[Mesh] AND
“Mechanical Tests”[Mesh] OR “mechanical performance”[tw] OR “flexural strength”[tw] OR

“fatigue failure load”[tw] OR “surface hardness”[tw] OR “Young’s modulus”[tw]

“zirconia reinforced lithium silicate ceramic*”[tw] OR “zirconia reinforced lithium silicate
glass-ceramic*”[tw] OR “ZLS”[tw] AND “Computer-Aided Design”[Mesh] OR

“CAD-CAM*”[tw] AND “Dental Bonding”[Mesh] AND “Acid Etching, Dental”[Mesh] OR
“adhesion*”[tw] OR “surface treatment”[tw] OR “cementation*”[tw]

“zirconia reinforced lithium silicate ceramic*”[tw] OR “zirconia reinforced lithium silicate
glass-ceramic*”[tw] OR “ZLS”[tw] AND “Computer-Aided Design”[Mesh] OR

“CAD-CAM*”[tw] AND “Clinical indication*”[tw] OR “Performances”[tw]

Web of Science

“zirconia reinforced lithium silicate ceramic” OR “ZLS” AND “Computer-Aided Design” OR
“CAD-CAM” AND “Optical Phenomena” OR “color” OR “optical property” OR “light scattering”

OR “light transmission”

“zirconia reinforced lithium silicate ceramic” OR “ZLS” AND “Computer-Aided Design” OR
“CAD-CAM” AND “Mechanical Phenomena” AND “Flexural Strength” AND “Mechanical Tests”

OR “mechanical performance” OR “flexural strength” OR “fatigue failure load” OR “surface
hardness” OR “Young’s modulus”

“zirconia reinforced lithium silicate ceramic” OR “ZLS” AND “Computer-Aided Design” OR
“CAD-CAM” AND “Dental Bonding” AND “Acid Etching, Dental” OR “adhesion” OR “surface

treatment” OR “cementation”

“zirconia reinforced lithium silicate ceramic” OR “zirconia reinforced lithium silicate
glass-ceramic” OR “ZLS” AND “Computer-Aided Design” OR “CAD-CAM” AND “Clinical

indication” OR “Performances”

Cochrane Library

“zirconia reinforced lithium silicate ceramic” OR “ZLS” AND “Computer-Aided Design” OR
“CAD-CAM” AND OR “color” OR “optical property” OR “light transmission”

“zirconia reinforced lithium silicate ceramic” OR “ZLS” AND “Computer-Aided Design” OR
“CAD-CAM” AND “flexural strength” OR “fatigue failure load” OR “surface hardness” OR

“Young’s modulus”

“zirconia reinforced lithium silicate ceramic” OR “ZLS” AND “Computer-Aided Design” OR
“CAD-CAM” AND “Acid Etching” OR “adhesion” OR “surface treatment” OR “cementation”

“zirconia reinforced lithium silicate ceramic” OR “zirconia reinforced lithium silicate
glass-ceramic” OR “ZLS” AND “Computer-Aided Design” OR “CAD-CAM” AND “Clinical

indication” OR “Performances”
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2.2. Inclusion and Exclusion Criteria

The inclusion criteria were as follows: clinical and in vitro studies, articles published in
English, studies assessing the optical and mechanical properties of ZLS milled restorations,
studies assessing the cementation procedures and clinical outcome of this type of all-
ceramic restoration.

The exclusion criteria included: no full text available, survey studies or questionnaire-
based studies, case reports, literature reviews, and articles published in languages other
than English.

2.3. Study Selection and Data Extraction

In order to reduce bias, two independent reviewers (M.M. and A.K) selected data from
each included article and recorded them in an Excel worksheet (version 15.17, Microsoft,
Redmond, WA, USA). In case of disagreements/discrepancies, a third reviewer (B.S.)
mediated a consensus.

The following variables were defined in this investigation: first author’s last name,
year of publication, study groups, sample size and thickness, study assessment, results.

2.4. Risk of Bias Assessment

The risk of bias assessment included the following domains: bias arising from the
randomization process, bias due to deviations from intended interventions, bias due to
missing outcome data, bias in the measurement of the outcome, bias in the selection of the
reported result, and other bias. Based on the authors’ judgments, bias was classified as
“low”, “high”, or “some concerns”. The quality of included studies was meticulously as-
sessed using a systematic approach, focusing on clinical and in vitro studies that evaluated
ZLS’s optical and mechanical properties, as well as cementation procedures and clinical
outcomes. The review minimized selection bias through a detailed search strategy across
multiple databases and employed standardized methods to mitigate detection bias. Both
clinical and in vitro studies were included to reduce performance bias, ensuring a balanced
perspective. The assessment process, involving two independent reviewers and a third for
consensus in case of disagreements, had the purpose of reducing individual biases and
attrition bias. To address reporting bias, a wide range of studies was included to ensure
comprehensive coverage of ZLS research. As a result of this rigorous methodology, there
was a significant reduction in the risk of bias, which enhanced the reliability and validity
of the findings and allowed an unbiased understanding of ZLS in digital dentistry to be
gained. This rigorous methodology significantly minimized the risk of bias, enhancing the
reliability and validity of the findings and providing an unbiased understanding of ZLS in
digital dentistry.

3. Results

A total of 154 papers were found using the search method (PubMed = 62, Web of
Science = 87, Cochrane = 5, manual search = 0). After removing the duplicates, 103 titles
were reviewed and screened for eligibility. To identify the papers that were relevant to the
aims of the research and in accordance with the inclusion criteria, the authors individually
screened the abstracts. After the full text reading of the remaining studies, 32 publications
were eliminated as they did not meet the inclusion criteria or did not match the outcomes
of this paper (Figure 1). As a result, a total of 71 publications were included in this review
(Tables S1–S3 in Supplementary Materials).
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Figure 1. PRISMA flow diagram for research stages.

4. Discussion
4.1. Optical Properties of ZLS Ceramic Systems

When creating natural-looking restorations, choosing the accurate dental restorative
material is one of the most important factors, as it should mimic to perfection the optical
properties of the natural tooth structures [16]. A pleasant color integration of zirconia-
reinforced lithium-silicate-based restorations is determined by the multifactorial interaction
between the shades and thicknesses of the restorative material, the adhesive cement, the
color of the underlying tooth structure, surface texture, and glaze [17–20].

In addition, the complex laboratory and manufacturing procedures will influence
the final color of ZLS restorations, including their translucency [21–23]. Translucency
is an essential characteristic of a ceramic material, defining its natural appearance [24].
However, chemical composition, the size and shape of the crystals, as well as their internal
tridimensional configuration determine the clinical performance, shade, and translucency
of ZLS restorations [25,26].

Zirconia-reinforced lithium silicate glass ceramic consists of quartz crystals (56–64%),
lithium oxide (15–21%), alumina (1–4%), zirconium oxide (8–12%), potassium oxide (1–4%),
and phosphorus pentoxide (3–8%) [27,28]. The scientific data indicate differences in mi-
crostructure between zirconia-reinforced lithium silicate (ZLS) and lithium disilicate (LDS)
ceramics: (1) the size of lithium silicate crystals is approximately 0.5 µm compared to 1 µm,
which is the size of lithium disilicate crystals [29]; (2) ZLS consists of two types of crystal
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structure, while LDS contains only one type of crystal. Thus, ZLS crystals possess a unique
configuration, determining an increased mechanical resistance of the dental material, but
with a decreased translucency, due to 8% to 12% zirconia content [30]. There is evidence
in the literature showing 10wt% zirconia content has the most increased effect on the
translucency parameter [31].

The effect of material and thickness on the translucency and color stability of zirconia-
reinforced lithium silicate, lithium disilicate, and pre-shaded zirconia restorations, of 0.5,
0.7, and 1.0 mm thickness, was evaluated by Subasi et al. [32]. They concluded that the
color of monolithic restorations was influenced by the material types, as well as by their
thickness. For all the studied materials, the color changes were clinically acceptable, except
for 0.5 mm ZLS. This indicates that at decreased thickness, the color of zirconia-reinforced
lithium silicate restorations is likely to change. Nevertheless, the material’s thickness
also affected the translucency; compared to pre-shaded zirconia, ZLS restorations showed
increased translucency but were inferior to lithium disilicate restorations.

Furthermore, in a study published by Vichi et al. [33], the translucency of various
factory-crystallized lithium silicate ceramics was compared to lithium disilicate ceramics
and leucite glass ceramics, which require thermal treatment. Among the studied materials,
zirconia-reinforced lithium silicate samples had the highest opacity, while lithium disilicate
samples had the lowest.

The thickness of ceramic significantly influences the ultimate color and translucency
of the ceramic restoration, while also playing a key role in concealing any discoloration
of the underlying material. Passos and colleagues [34] conducted a study to assess the
effectiveness of monolithic zirconia-reinforced lithium silicate (ZLS) restorations of varying
thicknesses (1.0, 1.5, and 2.0 mm) and translucencies (high translucency (HT) and low
translucency (LT)) in masking different substrates such as B1, C2, silver, and gold. The
findings of their research indicated that a minimum ceramic thickness of 1.5 mm is necessary
to effectively conceal the gold substrate, while a 2.0 mm thickness is essential for masking
the C2 shade background in ceramic restorations. The study also found that none of
the zirconia-reinforced lithium silicate (ZLS) restorations, irrespective of their thickness,
were able to adequately mask the color of the silver background. Additionally, it was
observed that restorations with a thickness of only 1.0 mm, regardless of the dental material
used, did not yield satisfactory aesthetic results due to the color alterations caused by the
underlying substrates.

Besides their ability to mask underlying colors, the color stability of ceramic restora-
tions is crucial for their aesthetic integration and long-term success. Discoloration and
loss of translucency, often caused by colorant beverages, can lead to significant patient
dissatisfaction [35,36]. Aydin et al. [37] investigated the color changes in zirconia-reinforced
lithium silicate (ZLS) CAD/CAM, composite, and hybrid ceramic restorations after ex-
posure to various beverages. They found that red wine, followed by coffee, induced the
most significant discoloration in all tested materials, exceeding clinically acceptable levels.
However, ZLS CAD/CAM restorations exhibited the least color change, indicating supe-
rior color stability compared to resin-based dental materials. Other studies [38,39] have
reported similar findings, but they also noted that ZLS ceramics have lower color stability
compared to lithium disilicate. As the optical properties of dental materials could be
influenced by smokeless tobacco, its effect upon the optical properties of ZLS restorations
was investigated. According to Al Moallem et al. [40], the components of this product
determined the highest color change in ZLS and feldspathic ceramic, and the least affected
was multilayer zirconia ceramic.

Several studies have investigated the impact of aging on the optical characteristics
of zirconia-reinforced lithium silicate (ZLS) ceramics. Alp et al. [41] proved that ZLS
restorations with a thickness of 1.5 mm exhibit less translucency compared to those made
from lithium disilicate, both before and after undergoing a coffee thermocycling aging
process. This aging procedure significantly reduced the translucency of the restorations,
irrespective of the type of dental material or the surface finishing technique used, whether
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glazed or polished. However, the study noted no discernible changes in color as a result
of this process. In a study published by Arif et al. [38], the translucency of laminate
veneers (0.7 mm) and crowns (1.3 to 1.5 mm) made from different ceramic systems was
investigated. The authors concluded that coffee thermocycling impacts the translucency
of zirconia-reinforced lithium silicate (ZLS) restorations. This finding contrasts with the
results of Subasi et al. [32], who reported that coffee thermocycling does not influence the
translucency of ZLS restorations. However, additional research has indicated that coffee
thermocycling does indeed affect not only the translucency but also the opalescence of ZLS
restorations [42–44].

Cakmak et al. [45] investigated the way different shades of resin cement (Tr, A2, and
A3) and the thickness of the material (0.8 mm and 1.5 mm) influence the optical proper-
ties of zirconia-reinforced lithium silicate (ZLS) restorations, both before and after coffee
thermocycling. Their findings revealed that both the shade of the resin cement and the
thickness of the restoration material significantly impact the color of the restorations. The
greatest translucency was observed in restorations of 0.8 mm thickness combined with
Tr shade cement. The study also noted that the translucency of all tested restorations
and cement shades diminished after exposure to coffee thermocycling. However, when
exposed to ultraviolet irradiation, zirconia-reinforced lithium silicate glass ceramic exhib-
ited the most significant decrease in translucency and increase in opacity [46]. In contrast,
Comba et al. [47] investigated the effects of substrate and cement shade on the color proper-
ties of all-ceramic materials, concluding that the shade and translucency of lithium disilicate
and zirconia restorations are heavily influenced by both intrinsic and extrinsic material
properties, as well as the shade of the cement and the color of the substrate.

The translucency and optical properties of zirconia-reinforced lithium silicate (ZLS)
all-ceramic restorations are primarily determined by the material’s intrinsic characteristics,
such as its chemical composition, microstructure, and the size, shape, and distribution
of crystals within the ceramic matrix [48,49]. However, laboratory and manufacturing
processes, including firing temperature, vacuum duration, holding time, and the heating
and cooling rates of the furnace [50], play a crucial role in defining the final aesthetic
appearance of these restorations. Multiple firings can modify the crystalline structure
of the restorations, leading to changes in color [49,51], and can also affect the value of
optical parameters in ZLS restorations [52]. Nejatidanesh et al. [53] investigated the impact
of multiple firings on the translucency of high-translucency (HT) and low-translucency
(LT) lithium disilicate (LDS) and zirconia-reinforced lithium silicate glass ceramics, with
thicknesses of 0.6 mm and 1.0 mm. The samples underwent three firing cycles (sintering,
correction, and glaze firings) as per the manufacturer’s guidelines. Their findings indicated
that these consecutive firing procedures did not affect the translucency of the 1.0 mm thick
specimens but did cause alterations in the 0.6 mm thick specimens. Specifically, for the 0.6
mm thickness, the translucency of LT-LDS specimens increased, whereas the translucency
of HT-ZLS specimens decreased. This phenomenon can be attributed to the zirconia content
in ZLS ceramics, which negatively impacts the material’s translucency.

A study published by Schweitzer et al. [54] explored the impact of temperature varia-
tions on the optical properties of zirconia-reinforced lithium silicate (ZLS) ceramics. The
ceramic samples were divided into three groups, each subjected to slightly different fir-
ing temperatures, minimally exceeding 820 ◦C. The findings revealed that increasing the
temperature by 15 ◦C above the standard firing temperature recommended by the man-
ufacturer significantly altered the optical properties of the ZLS specimens. This change
manifested as an increase in brightness and a shift in the green–red coordinates towards
red, and the blue–yellow coordinates towards yellow. Those findings are confirmed by
a similar study published by Aurelio et al. [55] who observed a notable color change in
ZLS ceramics. This suggests that ZLS ceramics are highly susceptible to color alterations,
likely due to their lower glass content and higher proportion of fillers, such as metal oxides.
These fillers can contribute to the color instability of this type of dental ceramic material.
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The optical properties of zirconia-reinforced lithium silicate (ZLS) restorations are
also influenced by surface finishing procedures, which determine their texture and rough-
ness [56,57]. Common techniques for finishing the surfaces of restorations include glazing
and mechanical polishing. Ozen et al. [58] found in their study that for ZLS ceramic restora-
tions, manual polishing systems could serve as a viable alternative to glazing. This is
due to the similar outcomes in optical parameters achieved by both finishing techniques.
Furthermore, Kanat-Erturk et al. [39] observed that glazing enhances the color stability
of ZLS ceramics. In contrast, Alp et al. [41] concluded that both glazing and polishing
procedures do not significantly impact the color properties of ZLS restorations, with the dif-
ferences being imperceptible. This suggests that the choice between glazing and polishing
may be based more on preference or specific clinical considerations rather than significant
differences in optical outcomes.

Despite the generally appealing aesthetic appearance of zirconia-reinforced lithium
silicate (ZLS) glass ceramics, achieving perfect color integration of these ceramic restorations
in certain clinical situations can be challenging. This difficulty arises from the various factors
previously mentioned, each of which individually influences the translucency and color
matching of ZLS restorations. These factors include the intrinsic properties of the material,
such as its chemical composition and microstructure, as well as external influences like
firing procedures, surface finishing techniques, and exposure to different environmental
conditions. All these elements play a significant role in determining the final aesthetic
outcome of ZLS restorations.

4.2. Mechanical Properties of ZLS Ceramic Systems

A zirconia-reinforced lithium silicate ceramic system is defined by a complex and
unique microstructure, organized in a glassy matrix in which zirconia is embedded along-
side lithium orthophosphate and lithium metasilicate crystals. This particular chemical
composition in combination with the homogeneous distribution of tetragonal zirconia
grains in the ceramic matrix leads to an increase in the mechanical properties of the ZLS
ceramic system. Unlike lithium disilicate, ZLS exhibits an increased resistance to crack prop-
agation, due to the capacity of zirconia grains to transform from a tetragonal to monoclinic
phase [13]. The expansion of zirconia grains from 3% to 5% in volume creates compressive
stress in the microstructure of the ceramic material, stopping the crack propagation [59].

Over the years, different studies investigated the mechanical behavior of ZLS restora-
tions by analyzing the material’s physical properties, such as fracture toughness, flexural
strength, elastic modulus, or hardness. The majority of in vitro studies have revealed
that ZLS restorations exhibit better mechanical properties compared to lithium disilicate
ceramics [13,59–61] but worse properties compared to translucent or high-translucency
zirconia [62]. Abu-Izze et al. [63] conducted a study focusing on the fatigue strength of
minimally invasive tabletop restorations. Their research revealed that hybrid ceramics
with a thickness of 1.0 mm exhibited greater fatigue resistance compared to 0.5 mm thick
zirconia-reinforced lithium silicate (ZLS) restorations. This enhanced durability in hybrid
ceramics can be attributed to their polymeric microstructure, which, unlike ZLS, improves
the material’s resistance to bending. Furthermore, hybrid ceramics possess an elastic mod-
ulus similar to that of dentin, enabling them to better withstand occlusal forces and resist
crack propagation. In contrast, ZLS ceramic restorations tend to exhibit increased stress
concentration at the ceramic–adhesive interface. This difference in material properties high-
lights the importance of considering the specific clinical application and the mechanical
demands placed on restorations when choosing between hybrid ceramics and ZLS for
dental procedures.

Mendoca et al. [64] investigated the mechanical behavior of the monolithic crowns
fabricated from four different types of dental materials. The results indicate that lithium
disilicate and ZLS restorations possess higher fracture strength compared to hybrid high-
performance polymer composite resin and a hybrid polymer-infiltrated ceramic. Among
these materials, ZLS restorations were identified as the hardest and stiffest. Elsaka et al. [59]
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found that zirconia-reinforced lithium silicate (ZLS) restorations outperform lithium disili-
cate in fracture toughness, flexural strength, elastic modulus, and hardness, with a lower
brittleness index, indicating superior mechanical properties. This is attributed to zirconia’s
transformation toughening mechanism, enhancing resistance to crack propagation. In
contrast, Ramos et al. [13] reported similar fracture toughness between ZLS and lithium
disilicate, concluding that the addition of zirconia did not stop the crack propagation into
the ZLS microstructure.

Various studies have shown that the firing process affects the mechanical proper-
ties of zirconia-reinforced lithium silicate (ZLS). While it enhances the strength of the
restorations [32], it also reduces the Weibull modulus, indicating a decrease in material
homogeneity [52]. To address defects from the milling process, Aurelio et al. [55] suggested
an extended glaze firing protocol involving a 15-min dwell and slow cooling in a closed
furnace to 200 ◦C. This method resulted in compressive residual stress in the ZLS samples,
reducing crack propagation, in contrast to the conventional protocol that led to tensile
stresses. However, Campanelli de Morais et al. [52] found that lithium disilicate ceramics
have better mechanical strength than ZLS, regardless of the number of firings (one to seven).
Schweitzer et al. [54] also investigated the influence of minimal extended firing on ZLS’s
mechanical properties, comparing polishing and glazing finishes. They noted that a second
extended glaze firing with a minimal temperature increase of +15 ◦C improved ZLS’s
flexural strength, but multiple extended firings reduced material homogeneity, potentially
causing invisible pre-damage in the glass matrix.

When simulating the aging procedure, by coffee thermocycling, ZLS ceramic showed
the highest biaxial flexural strength values, compared to lithium disilicate and advanced
lithium disilicate glass ceramic. Yet, all tested ceramic systems showed biaxial flexural
strength values higher than 300 MPa, being suitable to fabricate crowns or three-unit fixed
partial dentures, that do not include the molars as abutments [42].

Particular caution is necessary when making intraoral adjustments to the occlusal
morphology of monolithic zirconia-reinforced lithium silicate (ZLS) restorations; the ad-
justments may reduce their fracture strength, potentially compromising their structural in-
tegrity and durability. Dentists are advised to avoid these procedures due to the detrimental
effects of carbide burs and the irregularities introduced by manual fissure deepening [34].

The thickness of all-ceramic restorations, including monolithic zirconia-reinforced
lithium silicate (ZLS), plays a crucial role in their mechanical behavior and survival rate.
Research has shown a direct correlation between the thickness of these restorations and
their mechanical resistance; as the thickness decreases, the risk of failure in monolithic ZLS
restorations increases [63,65].

In their study, Bergamo et al. [65] revealed that at the thickness of 1.0 mm and 1.5 mm,
monolithic ZLS crowns had a greater resistance compared with 0.5 mm restorations. The
restorations were tested under progressively increasing occlusal loads to mimic clinical
mouth-motion fatigue. For crowns with thicknesses of 1.0 mm and 1.5 mm, there were
no significant differences in fracture resistance at 200 N, 300 N, and 400 N, maintaining a
survival probability of 90%. In contrast, restorations with a thickness of 0.5 mm exhibited
markedly lower fracture resistance, with survival probabilities of 69%, 41%, and 19% at
200 N, 300 N, and 400 N, respectively. Regardless of thickness, all tested monolithic crowns
ultimately failed due to bulk fractures. Other studies have similarly found that fabricating
minimally invasive ZLS restorations with a thickness of 0.5 mm or less, particularly for
molars, compromises their survival due to reduced mechanical resistance to occlusal
loads [63,66].

The impact of acidic substances, like acid drinks or gastric acid, on the mechanical
behavior of zirconia-reinforced lithium silicate (ZLS) ceramics was assessed in several
studies. Picolo et al. [67] investigated how gastric acid erosion combined with mechanical
toothbrushing abrasion affects the flexural strength, surface roughness, and microhardness
of various dental materials, including ZLS, feldspathic glass ceramic, hybrid ceramic,
and resin nanoceramic. The study found that feldspathic ceramic had the lowest flexural
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strength, primarily due to the acid solution’s effect on its silica glass content. In another
study, ZLS and resin nanoceramic demonstrated the highest flexural strength, unaffected
by either erosion or abrasion. This resilience in ZLS was attributed to its 10 wt% zirconium
dioxide content, which limits crack propagation, while the 86 wt% inorganic concentration
and 14% organic phase in resin nanoceramics contribute to their strength. The research
revealed that exposure to erosive conditions, or a combination of erosive and abrasive
conditions, reduced the microhardness of ZLS, feldspathic, and hybrid ceramics. In terms
of biofilm adhesion, ZLS, feldspathic, and hybrid ceramics showed higher values compared
to resin nanoceramic materials. Interestingly, when exposed to Coca-Cola, a popular
carbonated beverage, ZLS ceramics exhibited the highest microhardness among the tested
dental materials [68].

4.3. Cementation and Adhesion Features of ZLS Ceramic Systems

Failure of all-ceramic restorations may occur due to improper cementation processes.
To achieve an accurate adhesion between the ceramics and the resin cement, chemical or
micromechanical retentions are necessary in the inner surface of the restorations [68]. The
conventional surface treatment of lithium disilicate restorations involves hydrofluoric acid
etching that determines selective morphological changes of the glassy phase, by exposing
silica, which chemically reacts with the silane-coupling agent to improve the bond between
the resin cement and the ceramic material [69,70]. Due to enhancement with zirconia grains,
ZLS ceramics may show a certain resistance to acid etching. Thus, several different surface
treatment methods have been proposed and studied in order to establish the most adequate
one, which enhances the shear bond strength of ZLS ceramics to resin cements [71]. Acid
etching, sandblasting, and laser etching represent the most used methods to prepare the
restorations surfaces for proper bonding procedures.

Acid etching is a commonly used procedure to enhance the adhesion of resin cement
to dental ceramics, by creating microirregularities or micropores in the material’s inner
surface [72].

Maawadh et al. [73] investigated the impact of four different etching durations on
the bond strength of zirconia-reinforced lithium silicate (ZLS) restorations, using 9% hy-
drofluoric acid for etching times of 10, 20, 30, and 60 s. Their findings indicated that the
optimal bond strength was achieved with an etching duration of 20–30 s. Extending the
etching time beyond 30 s adversely affected the bond strength. Specifically, increasing the
etching duration to 90 s led to a decrease in bond strength, attributed to reduced wettability
of the ceramic surface [74]. Due to the presence of tetragonal zirconia, another study
suggested that zirconia-reinforced lithium silicate (ZLS) ceramics might benefit from an
additional surface treatment designed to increase the roughness of the restoration’s inner
surface. Sandblasting has the capacity to increase the wettability and surface area, therefore
strengthening the bond; however, while potentially beneficial for bonding, this may lead to
the formation of microcracks which could contribute to the premature failure of the ceramic
restorations [75]. Researchers have conducted thorough studies on how the size of alumina
particles affects bond strength. They concluded that using particles larger than 50 µm leads
to micromorphological changes in the ceramic material, negatively impacting adhesion.
This is because larger particles create a weaker bond between the resin cement and the
dental restoration, primarily due to the deterioration they cause in the dental ceramic [76].
Ataol et al. [74] evaluated the effect of the three surface treatment methods mentioned
(etching with 9% hydrofluoric acid for 90 s, sandblasting by using 50 µm alumina particles
for 20 s, and laser etching by using 2.94 µm wavelength, at 50 Hz for 140 µs), along with two
bonding procedures (silane application and bond application). Their conclusions revealed
that the highest bond strength was achieved for the restorations treated by etching. Their
findings are consistent with other studies [71,77], which also reported that acid-etched
samples exhibited the greatest increase in bond strength. This enhanced bonding can be
attributed to the acid sensitivity of silica crystals in ZLS restorations, which improves
micromechanical retention.
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Azevedo et al. [78] treated ZLS and feldspathic glass ceramic restorations by using,
consecutively, 5% and 10% hydrofluoric acid (HF) for 20, 40, and 60 s, while the control
group was sandblasted with 50 µm aluminum oxide for 20 s. The obtained result indicated
that the highest surface roughness was achieved by sandblasting the ZLS and 10% acid
etching the feldspathic ceramic for 20 or 40 s. While increasing the roughness of the
inner surface of a restoration can improve bonding, it is not always the optimal approach.
Excessive roughness can lead to deep irregularities that may cause cracks in the ceramic
microstructure, thereby reducing its mechanical resistance. Studies have indicated that
increasing the concentration of hydrofluoric acid or prolonging the etching time does not
necessarily improve bond strength; instead, it can diminish the mechanical resistance of
glass ceramics [79]. Consequently, the recommended surface treatment for feldspathic
ceramics is etching with 5% or 10% hydrofluoric acid for 20 s. For zirconia-reinforced
lithium silicate (ZLS) ceramics, the preferred method is etching with 10% hydrofluoric acid
for 40 s.

In their study, Altan et al. [71] concluded that treating zirconia-reinforced lithium
silicate (ZLS) with laser irradiation (Er:YAG or Nd:YAG), either alone or in combination
with sandblasting, enhances bond strength compared to acid etching alone. However,
several studies have shown that the highest bond strength is achieved when the inner
surfaces of the restorations are first treated with acid etching which is then followed by
laser irradiation [71,77]. This sequential combination of acid etching and laser treatment is
believed to significantly boost bond strength due to their synergistic effects.

Applying the silane onto the etched ceramic surface is an essential step in order to
achieve a good bond strength, due to its unique chemical structure—the silanol compo-
nent which interacts with the surface of the restorations and methacrylate component that
copolymerizes with the resin cements [80]. Due to the incorporation of zirconia into the
glassy matrix of zirconia-reinforced lithium silicate (ZLS) ceramics, the use of a bifunctional
primer has been considered necessary. This primer is designed to effectively bond the two
distinct structural phases present in ZLS ceramics: zirconia and silica. The bifunctional
primer ensures adequate adhesion between these differing components, enhancing the
overall integrity and durability of the restoration. Studies have shown that, unlike sand-
blasting, the acid-etching procedure generates an increased homogeneous roughness of the
ZLS ceramic, which creates a higher bond strength [68,81]. Cinar et al. [68] evaluated the
effect of the silane treatment on the bond strength of ZLS and lithium disilicate ceramics, as
well as polymer-infiltrated ceramic, and concluded that acid etching (20 s and 60 s of 9.5%
HF) and sandblasting (50 µm alumina particles, 2 bar pressure), followed by silanization,
significantly improve the bond strength of all-ceramic restorations. For zirconia-reinforced
lithium silicate (ZLS) ceramics, the optimal shear bond strength was obtained when the
restorations were treated with hydrofluoric acid, followed by the application of silane. Ad-
ditionally, it was observed that ZLS restorations exhibited higher bond strength compared
to those made from lithium disilicate, regardless of the surface treatment method used,
whether hydrofluoric acid alone or in combination with silane application. These findings
align with other studies [82–85], which also concluded that the greatest shear bond strength
for ZLS ceramics is achieved by treating them with hydrofluoric acid (either 5% or 9% for
20 s) followed by silane application.

In contrast, some studies have related that treating the ZLS ceramics by sandblasting
with CoJet SandTM (3M, Maplewood, MN, USA), followed by silanization, results in
superior microtensile bond strength for dental restorations. This method is found to
be more effective compared to treatments involving etching with 5% hydrofluoric acid
or etching followed by silane application. The enhanced bonding is attributed to the
tribochemical silica-coating process, which effectively embeds silica particles into the
ceramic matrix. This addition of silica particles strengthens the chemical bond among the
three key components essential for optimal bond structure: the coated silica, silane, and
composite resin [86]. Pucci et al. [87] introduced a new perspective by examining how the
bonding process and aging affect the bond strength of polymer-infiltrated ceramic (PICN)
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and zirconia-reinforced lithium silicate (ZLS) ceramics. According to the manufacturer’s
guidelines, PICN should be treated with 5% hydrofluoric acid (HF) for 60 s and then
silanized for 60 s, while ZLS ceramics should be etched for 30 s and silanized for the
same duration [9,88]. However, sandblasting with aluminum oxide not only creates a
rough surface that enhances bond strength but also effectively removes residues from
the restoration’s fabrication process. These residues, if not removed, could potentially
interfere with the bonding procedure, making sandblasting a crucial step in preparing the
surface for optimal adhesion. The authors tested ceramic samples with various treatments:
5% hydrofluoric acid etching plus silanization (HF + SI), air abrasion with 50 µm Al2O3
followed by HF etching and silanization (AB + HF + SI), HF etching plus universal adhesive
(HF + UA), and air abrasion with Al2O3, HF etching, silanization, plus universal adhesive
(AB + HF + SI + UA). Samples were stored in water for 24 h and one year, following
manufacturer-recommended etching times for each material. Surprisingly, sandblasting
did not enhance shear bond strength. Both PICN and ZLS showed no bond strength
differences after 24 h in water but experienced decreased bond strength after one year. The
study concluded that the highest bond strength after a year for PICN was achieved with
HF + UA, and for ZLS with AB + HF + SI + UA.

Selecting the right luting cement is crucial for achieving optimal bond strength with
zirconia-reinforced lithium silicate (ZLS) restorations. Self-adhesive or dual-cure resin
cements are commonly chosen for cementing indirect restorations because of their user-
friendliness and superior bonding capabilities [88]. Additionally, studies have identified
MDP resin cement, which contains the adhesive monomer 10-methacryloyloxydecyl dihy-
drogen phosphate, as particularly effective for cementing ZLS restorations, owing to the
presence of zirconia grains in their glassy matrix [68,83].

Okutan et al. [89] investigated the effect of the ceramic thickness and light polymer-
ized resin cement on the shear bond strength of restorations; their conclusions showed
that for all tested materials (leucite-based glass ceramic, a polymer-infiltrated ceramic,
zirconia-reinforced lithium silicate glass ceramic), the 1 mm thick specimens showed the
highest bond strength values, whereas 2 mm thick leucite glass ceramics and ZLS ceramics
presented higher shear bond strength compared with 3 mm thick ones. Preis et al. [90]
found that there was no significant difference in marginal adaptation between cemented
ZLS crowns and their control counterparts. For successful clinical outcomes with ZLS
restorations, the preparation design is of great importance, impacting their aesthetic, biolog-
ical integration, and mechanical properties. Marginal and internal adaptations are crucial
for the clinical performance and longevity of all-ceramic restorations. Falahchai et al. [91]
examined the impact of finish line design on the marginal fit of ZLS restorations, test-
ing four different preparation designs on natural teeth: anatomical occlusal reduction
(O), with rounded shoulder (OS), with a central groove (OG), and with both rounded
shoulder and central groove (OSG). They found that the marginal gap in all groups was
<120 µm, both pre- and post-cementation, except for OSG, aligning with clinically accepted
standards [92,93]. The best marginal adaptation was observed in the minimal invasive
anatomical occlusal reduction design. As preparation complexity increased, achieving an
ideal marginal fit became more challenging. The study also noted that the marginal gap
widened by 36 to 37 µm post-cementation, highlighting the importance of careful cementa-
tion procedures. Other studies [94–97] concluded that cementation significantly impacts
the marginal adaptation of ZLS restorations, with an increase in the vertical gap due to
the thickness of the cement film. However, this vertical gap remained within clinically
acceptable standards. Research into the mechanical behavior of monolithic restorations like
crowns or endocrowns, bonded to dentin analogue materials or extracted teeth, showed that
ZLS restorations exhibit higher fatigue resistance, fracture load, and retention compared to
lithium disilicate but less than zirconia [97,98]. Prospective studies assessing the clinical
performance of zirconia-reinforced lithium silicate restorations have reported promising
results. One study noted a 94% survival rate over a 2-year follow-up, another observed a
98% success rate at 3 years, and a third study reported a 100% survival rate for pre-molar
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restorations and 69% for molar restorations at a 5-year follow-up [99–101]. These findings
highlight the effectiveness and durability of ZLS restorations in clinical applications.

The continuous innovation and adaptation to evolving scenarios in dentistry are
clearly reflected in the advancements of dental materials, particularly zirconia-reinforced
lithium silicate (ZLS) ceramics (Figure 2). This progress is paralleled in the emerging field
of teledentistry, which has gained prominence, especially in response to global challenges
like the COVID-19 pandemic [102]. With the increasing focus on understanding the optimal
application and characteristics of advanced materials such as ZLS, digital solutions for
patient care are also on the rise. The rapid growth in teledentistry—its application across
various dental disciplines—underscores this shift towards digitalization. However, much
like the meticulous procedures required for ZLS restorations, teledentistry also has its limi-
tations, emphasizing the need for a judicious blend of traditional and modern approaches.
As our understanding of ZLS materials advances, it aligns with a broader narrative within
the dental community, one that stresses ongoing education, adaptation, and a commitment
to leveraging both material and technological advancements for optimal patient care.
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5. Conclusions

Within the limitations of the present study, the literature review revealed the main
characteristics and properties of zirconia-reinforced lithium-silicate-based ceramic, and the
following conclusions could be drawn:

1. Unlike lithium disilicate glass ceramic, zirconia-reinforced lithium-silicate-based
ceramic presents a unique, complex microstructure, which increases its mechanical
resistance, but decreases its aesthetic appearance, especially its translucency, due to
tetragonal zirconia content.

2. Over the years, the mechanical behavior of ZLS restorations has been widely studied
and the results revealed that ZLS restorations exhibit better mechanical properties
compared to feldspathic, lithium disilicate, and hybrid ceramics or resin nanoceramic
but worse properties compared to translucent or high-translucency zirconia.

3. For accurate adhesion between the ZLS ceramics and the resin cement, chemical or
micromechanical retentions must be created in the inner surface of the restorations.
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