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Abstract: Background and Objectives: The development of liver fibrosis as a consequence of continuous in-
flammation represents a turning point in the evolution of chronic liver diseases. The recent developments
of artificial intelligence (AI) applications show a high potential for improving the accuracy of diagnosis,
involving large sets of clinical data. For this reason, the aim of this systematic review is to provide a
comprehensive overview of current AI applications and analyze the accuracy of these systems to per-
form an automated diagnosis of liver fibrosis. Materials and Methods: We searched PubMed, Cochrane
Library, EMBASE, and WILEY databases using predefined keywords. Articles were screened for
relevant publications about AI applications capable of diagnosing liver fibrosis. Exclusion criteria
were animal studies, case reports, abstracts, letters to the editor, conference presentations, pediatric
studies, studies written in languages other than English, and editorials. Results: Our search identified
a total of 24 articles analyzing the automated imagistic diagnosis of liver fibrosis, out of which six
studies analyze liver ultrasound images, seven studies analyze computer tomography images, five
studies analyze magnetic resonance images, and six studies analyze liver biopsies. The studies
included in our systematic review showed that AI-assisted non-invasive techniques performed as
accurately as human experts in detecting and staging liver fibrosis. Nevertheless, the findings of
these studies need to be confirmed through clinical trials to be implemented into clinical practice.
Conclusions: The current systematic review provides a comprehensive analysis of the performance of
AI systems in diagnosing liver fibrosis. Automatic diagnosis, staging, and risk stratification for liver
fibrosis is currently possible considering the accuracy of the AI systems, which can overcome the
limitations of non-invasive diagnosis methods.

Keywords: liver fibrosis; hepatic fibrosis; percutaneous liver biopsy; artificial intelligence; machine
learning; computer scan; ultrasonography; digital pathology

1. Introduction

Chronic liver diseases (CLD) represent an important public health issue, accounting
for significant morbidity and mortality globally and resulting in approximately 2 million
deaths annually [1].
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The precise etiology, geographic region, and presumably additional factors (sex, race,
and socioeconomic status) have a significant impact on the incidence and prevalence of
CLD [2].

Underlying etiology in CLD comprise alcohol-related liver disease, nonalcoholic fatty
liver disease (NAFLD), chronic viral hepatitis B and C, autoimmune liver diseases (such as
primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis), hered-
itary diseases (Wilson’s disease, haemochromatosis, and alpha1-anti-trypsin deficiency) [3].
Regardless of the etiology, the course of CLD is characterized by a lengthy process of
chronic parenchymal injury, prolonged inflammatory response, sustained activation of
hepatic fibrogenesis, and continued activation of the wound healing response [4].

The development of hepatic fibrosis is a turning point in CLD, its presence and severity
across the etiology being correlated with prognosis [3]. Liver fibrosis and fibrogenesis are key
factors of the progression of any form of CLD towards liver cirrhosis and hepatic failure [4].
Liver fibrosis is characterized by hepatocellular damage (release of signals such as reactive
oxygen species), the recruitment and activation of inflammatory cells (macrophages and
lymphocytes generate multiple types of cytokines, including transforming growth factor-β
and platelet-derived growth factor), and the excessive deposition of extracellular matrix
proteins (differentiation of hepatic stellate cells towards myofibroblasts, dysregulated by
cytokines) [5,6].

When fibrosis progresses, there is a worsening of the hepatic architecture, leading to
bridging fibrosis and, eventually, cirrhosis (diffuse nodules of regenerating hepatocytes
outlined by dense fibrotic tissue), causing hepatocellular dysfunction and distorted hepatic
vasculature, which will result in hepatic insufficiency and portal hypertension [5].

Liver biopsy is the gold standard for fibrosis assessment because it allows detailed
evaluation and localization and captures a larger amount of fibrosis [5]. However, its well-
known drawbacks have made this procedure unappealing to doctors and patients (technical
considerations, invasiveness, and potential severe complications) [7].

Considering this, efforts have been made in the last years for developing non-invasive
strategies for assessing liver fibrosis. The several broad categories include serological markers
(direct and indirect), imaging studies consisting of computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography–computed tomography (PET–CT),
and methods assessing physical properties of the liver tissue (liver stiffness, attenuation,
and viscosity) [2]. Methodologies that accurately and reproducibly evaluate liver anatomy
and function without invasive procedures are urgently needed.

A new era of precision medicine in hepatology will begin once artificial intelligence’s (AI)
ability to analyze data from digital imaging and pathology will be validated [8]. This will grad-
ually revolutionize clinical practice, both from the perspective of understanding disease
mechanisms and drug development. AI algorithms offer innovative prospects to forecast
the likelihood of progression from early-stage CLDs toward cirrhosis-related consequences,
with the goal of precision medicine [9]. For instance, certain AI programs have already been
developed and have shown promising results regarding the screening of cirrhosis compli-
cations, such as esophageal varices and hepatocellular carcinoma [10–12]. Moreover, often
requiring a thorough differential diagnosis and various imaging methods, focal liver lesions
also represent a field in which AI could provide much needed assistance, with research
suggesting an overall accuracy comparable with human experts [13]. State-of-the-art AI
technologies are also being used in predicting the overall outcome of patients with liver
tumors, as well as the overall response to therapy, by assessing the microvascular invasion
before and after therapy [14,15]. Continuing initiatives must push past the tendency to
oppose change and encourage the acceptance and use of these developing technologies.

In the last decade, AI applications used for automatic diagnosis have revolutionized
radiology. AI algorithms can analyze images, such as X-rays, CT scans, and MRIs, to diag-
nose and classify abnormalities with a better precision than human experts. Furthermore,
AI algorithms can recognize patterns and features that are not visible to human experts,
making automatic diagnosis faster and more accurate. Because this technology can im-
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prove patient outcomes and reduce healthcare costs, the aim of this systematic review is to
provide a comprehensive overview of current AI applications and analyze the accuracy of
these systems in order to perform an automated diagnosis of liver fibrosis.

2. Materials and Methods

This systematic review was conducted in accordance with the preferred reporting items
for systematic reviews (PRISMA) guidelines [16]. PubMed, EMBASE, Cochrane Library,
and WILEY databases were searched for relevant publications about AI applications used
for an autonomous diagnosis in liver fibrosis. The search terms included: (liver fibrosis OR
hepatic fibrosis) AND (artificial intelligence OR machine learning OR neural networks OR
deep learning OR automated diagnosis OR computer-aided diagnosis OR digital pathology
OR automated ultrasound OR automated computer tomography OR automated magnetic
imaging). We included articles indexed by the queried databases and returned by our search
strategies, for which the full text was available, only in English, or if an English version
was available. We considered all original research studies as eligible. Exclusion criteria
were animal studies, case reports, abstracts, letters to the editor, conference presentations,
pediatric studies, studies written in languages other than English, and editorials.

Two independent authors (S.L.P and A.I.) reviewed, for eligibility, titles, abstracts,
and the full text of eligible articles. Data extraction was also conducted independently by
both reviewers, with data on the authors’ names, year of publication, country or study
population, sample size, study design, gender ratio, number and percentage of liver fibrosis
patients, the method used to diagnose liver fibrosis, and artificial intelligence application
being analyzed. Figure 1 shows the search strategy using the PRISMA flow diagram.
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The initial search retrieved a total of 798 studies. We screened a total of 143 studies,
and we excluded 119 articles as follows: irrelevant original studies to this review topic
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(n = 75), other languages (n = 16), conference abstracts (n = 5), articles not retrieved (15), and
editorials or letters to the editor (n = 8). Finally, a total of 24 studies fulfilled our inclusion
and exclusion criteria and were included in the systematic review as demonstrated in
Figure 1.

3. Results

Histopathological analysis of liver tissue obtained via percutaneous biopsy is the
current gold standard for identifying and staging hepatic fibrosis. However, there are some
disadvantages accompanying biopsy, including peri-procedural pain, severe bleeding,
and the potential of sampling bias due to the examination of only a limited area of liver
parenchyma [17]. To overcome these drawbacks, non-invasive imaging-based approaches
have been investigated as substitutes for biopsy: conventional MRI, magnetic resonance
elastography (MRE), perfusion CT, and other experimental methods such as perfusion MRI,
MR spectroscopy, and fibro CT [18].

Deep learning (DL) methods prove useful by aiding the clinician in making decisions.
By combining the clinical point of view together with multiple paraclinical findings, such as
laboratory and imaging findings, the diagnostic value rises. DL methods should be able to
provide early identification of liver fibrosis, considering that early identification and accu-
rate staging of liver fibrosis are critical for preventing or delaying clinical decompensation
and the necessity for liver transplantation.

Clinically, it appears logical that in the case of severe liver fibrosis, the DL model fo-
cuses on both the liver and the spleen, because both organs undergo morphological changes
when cirrhosis advances, as well as complications such as ascites, collateral circulation, and
esophageal varices [19]. Therefore, these models should not only focus on the liver when
describing liver fibrosis but also on the complications caused by advanced liver disease.
These complications can be systemic, and for future perspectives, DL algorithms can be
combined with blood parameters to help stage liver disease.

3.1. Artificial Intelligence Techniques and CT Imaging

The main studies analyzing the efficiency of AI algorithms in assessing liver fibrosis
on CT images are illustrated in Table 1.

Table 1. Studies assessing AI techniques and CT imaging for the diagnosis of liver fibrosis.

First Author Year Total Number of
Images Diagnosis Main Findings

Yasaka et al. [20] 2018 496 Liver fibrosis
Magnified CT images were analyzed by deep learning

to diagnose and stage liver fibrosis, revealing a
moderate correlation with histopathological staging.

Li et al. [21] 2020 1041 Liver fibrosis
The residual neural network (ResNet) is an efficient
non-invasive diagnostic method for diagnosing liver

fibrosis using plain CT images.

Choi et al. [22] 2018 7461 Liver fibrosis The deep learning system was able to diagnose and
stage live fibrosis with high accuracy (79.4%).

Yin et al. [23] 2021 252 Liver fibrosis
By using contrast-enhanced CT images and deep

learning algorithms, liver fibrosis can be successfully
diagnosed and staged.

Yin et al. [24] 2022 252 Liver fibrosis
Splenic radiomic features are an important and useful
addition to hepatic radiomic features when staging

liver fibrosis.

Budai et al. [25] 2020 354 Liver fibrosis
In order to differentiate between low- and high-grade
fibrosis, CT texture analysis can be used for prognosis

calculations of chronic liver disease.

Wu et al. [26] 2022 112 Liver cirrhosis and
liver fibrosis

AI segmentation algorithms can be used to diagnose
liver fibrosis in a clinical context.

CT: computed tomography.
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Yasaka et al. investigated if liver fibrosis could be effectively staged through deep learning
techniques. They used a deep convolutional neural network (DCNN) trained and tested on
496 liver CT scans for the evaluation of the fibrosis stage in comparison to histopathological
results. The study revealed that liver fibrosis could be staged with moderate performance
based on dynamic contrast-enhanced portal phase CT images. For this particular AI model,
the AUCs for diagnosing significant fibrosis, advanced fibrosis, and cirrhosis were 0.74,
0.76, and 0.73, respectively. Further improvements to the model are necessary in order for
it to be used in clinical settings [20].

Li et al. conducted a study aimed at evaluating the performance of a residual neural
network (ResNet) for staging liver fibrosis through plain CT images. The study involved
liver CT scans from 347 patients with diagnosed CLD. Three different CT sections from
adjacent levels were obtained for each patient, pre-processed through manual outlining of
the interest area performed by two radiologists, and merged into a single sample for each
patient. All the values obtained by the ResNet were the result of a cross-validation that was
repeated five times between the CT image sample and the pathology report obtained from
the assessment of liver biopsies. The accuracy of the ResNet model was higher than 0.82
for each category of fibrosis assessed through the METAVIR score, thus making the ResNet
effective in evaluating fibrosis staging on plain CT images [21].

Using portal venous phase CT scans, Choi et al. created a deep learning system (DLS)
to stage liver fibrosis. The DLS consists of two separate algorithms based on a convolutional
neural network (CNN) in order to perform liver segmentation and fibrosis staging. In 707 of
891 individuals, the DLS correctly predicted the fibrosis stage, yielding a staging accuracy
of 79.4%. The DLS created in this investigation was resilient across a variety of clinical
settings and imaging situations with findings suggesting that the DLS’s accuracy in staging
fibrosis was not reliant on CT scan methodology, patient demographic variables, or the
presence of a liver focal mass. The diagnosis of intermediate stage fibrosis with the DLS
was less accurate than the diagnosis of cirrhosis; the pathologic fibrosis stage was the only
significant independent factor that significantly influenced the performance of the DLS [22].

Yin et al. used a new technique to better understand the interpretation of DL models
when they staged liver fibrosis. The liver fibrosis staging network (LFS network) was created
using contrast-enhanced CT scans taken during the portal venous phase of 252 individuals
with histologically established liver fibrosis. Gradient-weighted Class Activation Mapping
(Grad-cam) was used to locate where the LFS network focuses when predicting liver fibrosis
stages. The corresponding location map revealed that the network strongly focused on the
liver surface rather than the liver parenchyma when it came to a healthy liver, whereas
in the case of cirrhosis (F4 liver fibrosis), the network focused more on the spleen and the
central parts of the liver parenchyma [23]. The same group further used a combination of
liver and splenic CT-based radiomics analysis to quantify liver fibrosis. Radiomics analysis, as
opposed to DL, employs manually created features taken from CT scans. The model can show
which types of symptoms on images are more essential to the model, and the results paralleled
previous research. This means that the current radiomic analysis results might supplement
the Grad-cam location maps by demonstrating the emphasis of DLS for predicting liver
fibrosis stages [24].

Other directions for radiomics related studies include CT-texture analysis (CTTA)
methods for the prediction of liver fibrosis and even differentiating between fibrosis grades.
CTTA can quantify the heterogeneity and distribution of pixel or voxel grey levels on CT
images. CTTA is based on extensive quantitative imaging characteristics that are undetectable
to the naked eye and are created through numerous mathematical descriptors of the original
picture. In their work, Budai et al. used CTTA software for processing liver CT images and
predicting the fibrosis grade of each liver segment. A set of 354 CT images from 32 patients
was used to extract quantitative parameters before texture analysis was performed. Results
showed that CTTA-based models can not only detect fibrosis, but they also can differentiate
between low- or high-grade fibrosis [25].
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Wu et al. investigated the use of multi-slice spiral computed tomography (MSCT),
which is centered on an AI segmentation algorithm, to diagnose liver cirrhosis and liver
fibrosis. There were 112 patients included in the study and there were three indexes
evaluated: hepatic arterial fraction (HAF), blood flow (BF), blood volume (BV), and mean
transit time (MTT). Both patients with moderate liver fibrosis and those with substantial
hepatic fibrosis had significantly higher HAF levels than those in the control group. Other
indexes also achieved significant performance with authors concluding that larger sample
sizes are needed to improve this method [26].

3.2. Artificial Intelligence Techniques and MRI Imaging

We found five studies assessing the accuracy of AI algorithms in diagnosing liver
fibrosis on MRI images, as depicted in Table 2.

Table 2. Studies assessing AI techniques and MRI imaging for the diagnosis of liver fibrosis.

First Author Year Total Number of
Images Diagnosis Main Findings

Nowak et al. [27] 2021 713 Liver cirrhosis
Two pre-trained convolutional neural networks were
successfully used to detect liver cirrhosis on standard

T2-weighted MRIs.

Kato et al. [28] 2007 52 Liver fibrosis The computer algorithm revealed a potential usefulness
for the diagnosis of hepatic fibrosis.

Hectors et al. [29] 2021 355 Liver fibrosis
Deep learning algorithm, based on gadoxetic

acid-enhanced MRI data, was comparable to MR
elastography analysis.

Strotzer et al. [30] 2022 112 Liver cirrhosis and
liver fibrosis

A multiphase Gd-EOB-DTPA-enhanced liver MRI was
used to diagnose fibrosis stage or cirrhosis.

Soufi et al. [31] 2019 51 Liver fibrosis
PLSR-based SSM could help to better understand the
variations associated with liver fibrosis staging and

diagnosis.

MRI: Magnetic resonance imagine; MR: magnetic resonance; Gd-EOB-DTPA: Gadolinium ethoxybenzyl-
diethylenetriaminepentaacetic acid; PLSR: partial least squares regression; SSM: statistical shape models.

Nowak et al. conducted a study analyzing how a deep transfer learning (DTL) method
can identify liver cirrhosis in standard transverse T2-weighted MRI images with accuracy
compared to the assessments made by two radiologists. The study used two CNNs which
were trained on a large natural data set of images obtained from the ImageNet archive.
Then the transfer learning method was applied: the pre-trained CNN was adapted to
identify liver cirrhosis in T2-weighted MRI scans. The AI was tested on 713 MRI scans
from patients, 553 with confirmed liver cirrhosis and 160 with no history of liver disease.
The DTL analysis utilized a single-slice MRI image, taken at the level of the caudate lobe
for each entry. Two separate processing pipelines were used to analyze the images. The
first one consisted of images priorly processed through a segmentation network and the
second one utilized unsegmented images. The accuracy with which the DTL analysis
correctly identified the presence of liver cirrhosis on the testing images was 0.97 for the
pre-segmented set and 0.95 for the unsegmented set [27].

In the study conducted by Kato et al., the goal was to assess if the finite difference
method paired with an artificial neural network (ANN) could be useful in identifying
fibrosis in various acquisitions of MRI images. The study included 52 patients who under-
went partial hepatectomy surgery for various liver tumors. The results obtained by the
algorithm were compared to assessments made by two radiologists, and the fibrotic stage
was also determined by a pathologist through semi-quantitative methods. On the samples,
10 areas of interest were marked by a radiologist prior to analysis. The ANN calculated
seven texture parameters for each of the pre-determined areas on the samples and then
compiled a probability for the presence of fibrosis in the whole liver. The AI model proved
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to be superior to the radiologists’ assessment, although no strong correlation between the
radiologists’ grading and the ANN’s output could be established [28].

Hectors et al. created a DL algorithm based on gadoxetic acid-enhanced hepatobiliary
phase (HBP) MRI in order to stage liver fibrosis. A secondary objective was to compare the
diagnostic performance of DL vs. MRE. To reduce bias generated by the manual extraction
of features and region of interest (ROI) placement as well as interobserver variability, it
would be desired that DL models work fully automated. DL adopting CNNs can collect
texture information in the initial convolutional layers, allowing picture texture analysis
without the requirement for hand-crafted feature extraction. The group discovered that the
algorithm performed well for predicting fibrosis severity with AUCs ranging from 0.77–0.91
for various fibrosis stages. Upon validation in different sets, the DL method may serve for
noninvasive assessment of liver fibrosis without any need for extra MRI equipment, mainly
because it had a similar performance compared to MRE [29].

Another MRI–DL technique combination which was recently introduced showed
promising results in grading liver fibrosis after automatic segmentation of the liver. The
method also uses a type of CNN for processing MRI Gadolinium ethoxybenzyl-diethylene-
triaminepentaacetic acid (Gd-EOB-DTPA)-enhanced liver images from 121 livers patho-
logically confirmed as fibrotic or even cirrhotic (Ishak scores 0–6). It has been shown that
CNNs with a U-shaped architecture are efficient at both segmenting organs and classifying
them based on those segments. Because the model assigns an Ishak fibrosis score to each
individual voxel, it is possible to make location-specific predictions about the amount of
fibrosis. The approach functioned effectively, especially in situations where there was no
fibrosis (Ishak 0) or cirrhosis (Ishak 6). Moderate fibrosis stages had a lower prediction rate,
for which the authors suggest that the model’s capacity could be improved by integrating
alternative sequences, such as T2 or diffusion-weighted imaging (DWI) [30].

Soufi et al. implemented a statistical shape modeling (SSM) technique based on partial
least squares regression (PLSR), which directly uses the fibrosis stage as data to comprehend
the liver shape and calculate a PSLR score. This was further used on the test data set to predict
the fibrosis stage associated with this score in contrast-enhanced MR images. The SSM based
on PLSR showed locally detailed variations in addition to generally recognized differences as-
sociated with liver fibrosis, such as shrinking of the entire right lobe or growth of the enlarged
left lobe. The anterior section of the right lobe shrinks, while the caudate lobe and posterior
part of the right lobe increase. As future perspectives, this method can be deeper explored
by integrating the PLSR scores with other image features reflecting liver parenchyma prop-
erties, for example DL models combining CNNs as well as physiological information, such
as serum or blood parameters, to increase fibrosis classification accuracy [31].

3.3. Artificial Intelligence Techniques and Ultrasonography

The main studies analyzing the accuracy of AI algorithms in detecting liver fibrosis on
ultrasonography images are illustrated in Table 3.

The study conducted by Brattain et al. focused on developing an automated frame-
work aimed to assess fibrosis grades in Sheer Wave Elastography (SWE) samples. The algo-
rithm was meant to assess the quality of the SWE image, to automatically select an area of
interest, and to decide whether that area presents a lesser or greater stage of fibrosis than
stage F2. The study utilized several AI methods, and the best results were obtained by
using the CNN model, with a performance assessed through the area under the curve of
0.89 [32].

Other imaging studies are also combined with machine learning (ML), as in, for exam-
ple, the study conducted by Li et al. in which multiparametric ultrasound features served
as input data for multiple ML algorithms. The types of parameters that were measured
consisted of ultrasound images, radiofrequency data, and contrast-enhanced micro-flow
images focused on a 2 cm ROI from the sixth liver segment. All these acquisitions, together
with the ML models, are described as ultrasomics—a clinical decision support system
based on large amounts of data which can predict liver fibrosis staging, necroinflammatory
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activity, and steatosis degree. The models combining morphological and hemodynamic
characteristics performed better. This discovery indicates that using multiparametric ul-
trasomics from various pathophysiological procedures might improve the effectiveness of
the clinical decision support system. The authors conclude that multicentric, whole-liver
studies should be considered to increase the robustness of the multiparameter ultrasomics
analysis [33].

Table 3. Studies assessing artificial intelligence techniques and ultrasonography for the diagnosis of
liver fibrosis.

First Author Year Total Number of
Images Diagnosis Main Findings

Brattain et al. [32] 2018 3392 Liver fibrosis
A new method of diagnosis for liver fibrosis that is based

on a single image per decision compared to previous
methods which used 10 images per decision.

Li et al. [33] 2019 144 Chronic hepatitis B Machine-learning-based analysis of ultrasonography
images can help stage liver fibrosis.

Xie et al. [34] 2022 640 Chronic hepatitis B
and cirrhosis

The GoogLeNet model shows promising results in terms
of recognition of lesions and diagnosis.

Zhang et al. [35] 2012 239 Liver fibrosis or
cirrhosis

The ANN model presented high sensitivity and specificity
for the non-invasive diagnosis of liver fibrosis.

Lee et al. [36] 2020 13,608 Liver fibrosis Deep convolutional neural network accurately classified
the ultrasonography images for cirrhosis diagnosis.

Gatos et al. [37] 2017 126 chronic liver disease
Color information quantification, from SWE images, by
machine-learning can dissociate between chronic liver

disease and healthy patients.

ANN: artificial neural network.

Xie et al. used four network model structure schemes—AlexNet, VGG-16, VGG-19,
and GoogLeNet—to find the most appropriate CNN model for ultrasound images of liver
fibrosis analysis. Therefore, 640 samples in total from 780 individuals with cirrhosis and
chronic hepatitis B were chosen for analysis. The GoogLeNet model was chosen as the best
network model, because it performs recognition more accurately than other models. With
a batch size of 32, a learning rate of 0.0005 as the parameter of the model, and a total of
10 iterations, the GoogLeNet model has the best classification and recognition effect in the
analysis of ultrasound images of liver fibrosis and may eliminate the subjectivity of manual
classification and increase the precision of assessing the severity of liver fibrosis, allowing
for complete liver fibrosis prevention and therapy [34].

Zhang et al. looked to demonstrate, in their study, how an ANN may provide a du-
plex US-based non-invasive grading evaluation for hepatic fibrosis using data from 239
patients with different stages of liver fibrosis, with respect to cirrhosis. Five ultrasonographic
measurements—the liver parenchymal, spleen thickness, hepatic vein waveform, hepatic
artery pulsatile index (HAPI), and hepatic vein damping index (HVDI)—were chosen as the
input neurons, because statistical analysis revealed a difference between the fibrosis group
and the cirrhosis group in these five variables. This model can accurately identify liver
cirrhosis when utilizing ultrasonography, according to certain predictive indices, including
sensitivity, specificity, misdiagnosis rate (MR), and ROC curves for the ANN [35].

Using a total of 13,608 ultrasound scans from 3446 patients who had surgical resection,
biopsy, or transient elastography, Lee et al. aimed to develop a CNN for METAVIR score
prediction using B-mode ultrasound images. The AUC of the CNN was 0.866 for the classifi-
cation of significant fibrosis (F2 or greater) in the test set, and for the classification of liver
cirrhosis (F4), the algorithm achieved an AUC of 0.857. Most importantly, when utilizing
US pictures to identify cirrhosis (F4), the CNN surpassed five radiologists. In the simulated
US examination utilizing the test set, the CNN system had an AUC of 0.857, which was
higher than that of each radiologist (AUC range, 0.656–0.816) [36].
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Gatos et al., with the clinical data of 126 patients, used an algorithm based on ML and
a stiffness value clustering to classify CLD using ultrasonic SWE imaging. Two radiologists’
clinical evaluations produced accuracy results of 75.3% and 76.6%, as well as sensitiv-
ity/specificity results of 72.2/80.1 and 73.8/81.3, respectively, proving that, in identifying
healthy people from CLD patients, the proposed system performed better than all clinical
and automated investigations and expert radiologists [37].

3.4. Artificial Intelligence Techniques and Liver Biopsy

Table 4 illustrates the main findings of studies analyzing the efficiency of AI algorithms
in detecting liver fibrosis on liver biopsies.

Table 4. Studies assessing artificial intelligence techniques and liver biopsy studies for the diagnosis
of liver fibrosis.

First Author Year Total Number of
Images Diagnosis Main Findings

Astbury et al. [38] 2021 20 Liver cirrhosis
Standardization between staining methods is still very

important, as computational tools cannot yet normalize
samples when performing analysis.

Sarvestany et al. [39] 2022 1703 Liver fibrosis MLAs are able to help differentiate between patients with
different prognoses concerning chronic liver disease.

Matalka et al. [40] 2006 260 Liver fibrosis

The automated quantification system differentiated
between normal biopsies and samples with liver fibrosis,
with an accuracy of 98.46%, and classified each sample

with fibrosis according to the Ishak scoring system, with a
precision of 94.69%.

Qiu et al. [41] 2020 369 Liver fibrosis
Radiomics analysis of liver images can accurately

diagnose liver disease, resulting in a superior diagnosis
tool compared to liver biopsy.

Wei et al. [42] 2019 141 Liver fibrosis
The multi-variable model developed can be useful for the

evaluation of the clinical evolution of patients with
chronic HBV-induced liver fibrosis.

Wang et al. [43] 2018 1990 Chronic hepatitis B
Deep learning Radiomics of elastography (DLRE) is

useful for the non-invasive staging of liver fibrosis in
patients infected with HBV.

MLAs: Machine learning algorithms; HBV: Hepatitis B virus.

Astbury et al. examined the effectiveness of a DL model with simple color space
thresholding and human assessment in determining scar percentage in picrosirius red (PSR)-
stained liver sections obtained from 20 cirrhotic explant livers. A quantitative evaluation
of collagen or elastin throughout the entire region can be carried out using a color space
threshold based on hue, saturation, and brightness (HSB). As opposed to HSB thresholding,
computational approaches, particularly those based on AI, should allow the collection
of data from liver biopsies while also minimizing the subjectivity inherent in the scoring
process. Despite the issue seemingly favoring computational methods, there was significant
residual inconsistency in the calculated scar percentage by the DL algorithm, and human
observers consistently outperformed these methods. Because intra- and interlaboratory
staining variation significantly reduces consistent PSR quantitative measurements using
computer-aided methods and the section age may contribute to intra-laboratory variation
if a standard timeframe between sectioning and staining is not respected, these findings
suggest that quality control measures such as staining standardization and color adjustment
will be necessary if AI-assisted scoring of stains is to be widely used [38].

Sarvestany et al. conducted a retrospective cohort study aimed to identify patients
with liver fibrosis of any cause by using ML algorithms (MLAs). The study used 1703 liver
biopsy specimens and associated demographic data and laboratory parameters provided
by the Toronto Liver Clinic and McGill University Health Centre for testing the MLAs.
The five validation sets comprised biopsies and data originating from the same health care
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facilities. Five standard MLAs as well as a combination of standard MLAs were used to
differentiate between F0, F1, and F2 fibrosis stages regarded as one category and stages
F3 and F4 considered as the other category. The ensemble of five MLAs proved superior
to the other MLAs studied and also to other fibrosis detection methods that are not based
on imaging techniques, such as APRI, FIB-4, or ENS, in identifying stages F3 and F4. The
study claims that such MLAs could be used in the future for the screening of cirrhosis and
advanced stage fibrosis [39].

The study conducted by Matalka et al. used an automated quantification system (AQS)
to evaluate the degree of fibrosis in specimens of liver biopsy. The aim of the AQS was
to identify the architecture of the fibrosis in tested samples through the recognition of
textures and shapes that were representative of the fibrous expansion in the parenchyma.
All images were pre-processed for clarity and brightness and segmented for better analysis
of structural differences differentiating fibrosis stages. The AQS performed two different
tasks: the first one being to differentiate between samples without fibrosis and fibrous
samples of any stage and the second one to classify each fibrous sample to one of the six
categories of the Ishak scoring system. The study included 260 samples, 50 without fibrosis
and 210 with various Ishak stages of fibrosis, divided into a training and a testing set. The
AQS differentiated non-fibrous samples from samples with varying degrees of fibrosis with
an accuracy of 98.46%. Regarding the second stage of the AQS process, the accuracy for
the testing lot was 94.69%. To further test the model, nine more samples were introduced
in the algorithm, and the results obtained from the AQS were compared to those of two
pathologists. The correlation between the AQS and the pathologists’ results were 0.9648
and 0.9125, respectively, after correcting the overlapping of the 5th and 6th Ishak stages in
the ASQ analysis [40].

Qiu et al. developed a radiomics model in order to accurately stage liver fibrosis and
detect early-stage cirrhosis, using a feature extraction technique from the DWI-MRI images
of 369 patients from a single hospital. A biopsy with histopathology interpretation was
used as the standard reference, with 108 patients presenting with liver fibrosis and early-
stage cirrhosis and 146 with a healthy liver. Two radiologists performed volume of interest
(VOI) extraction from these MRI images [35]. For maximal accuracy, the research team
compared two analysis plans, of which the most proficient one achieved an AUC of 0.973
(95% CI 0.946–1.000) for the training dataset and an AUC of 0.948 (95% CI 0.903–0.993) for
the independent testing dataset used for validation. At the time, the ML-assisted DWI-MRI
diagnostic tool demonstrated utility in assessing liver fibrosis staging, with the goal of
eventually replacing invasive biopsy for this purpose [41].

Wei et al. conducted a prospective study in which an ANN was constructed in order
to isolate and predict biomarkers for fibrosis reversal in 141 treatment-naïve HBV patients
with fibrosis S2/S3 staging between two treatment groups [42]. One consisted of 2 years
of Entecavir therapy, and the other was Entecavir alternating with Entecavir combined
with pegylated interferon (Peg-IFN). Patients included in the study were assessed using
serum biomarkers every 6 months and liver biopsies at baseline and after 1.5 years post-
treatment. The dataset was randomly divided into a training (80% patients) and testing
set (20% of patients) and detected AST (aspartate aminotransferase), PLT (platelet count),
WBC (white blood cell), CHE (cholinesterase), LSM (liver stiffness measurement), ALT
(alanine aminotransferase), and gender as statistically significant parameters for liver
fibrosis reverse prediction, using cross-sectional validation for the ANN’s performance. As
a result, with a sensitivity and specificity of 83.1% and 85.2%, respectively, and an AUC of
0.809 in accurately classifying fibrosis with liver biopsy as the gold standard, these markers
could constitute an accurate tool for predicting fibrosis reverse after antiviral therapy [42].

Wang et al. proposed a radiomics-based DL-algorithm for assessing liver fibrosis
staging that was trained and validated with 1990 images from 398 patients of shear wave
elastography and achieved an AUC of 0.97 for F4, 0.98 for ≥F3, and 0.85 for F2 [43]. Its
performance was compared to that of conventional 2D-SWE and serum biomarkers (APRI
model, using ASL, ALT, and FIB-4), using liver biopsy as a reference standard. The DL
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classifier performed better than 2D-SWE and biomarkers for all fibrosis types when more
than one elastography image per patient was used as input, with the exception of F2 fibrosis,
where the fibrosis heterogeneity is greater. There was no statistically significant difference
between DLRE and 2D-SWE. The images were randomly, without overlap, divided into
training (1330 images from 266 patients) and testing (660 images from 132 patients). The
2D-SWEs were manually cropped into an ROI, and that was used as the input layer of the
DL. The DLRE’s accuracy, as expected, increased with the number of ROI input images in
the training set, up to three images, with no significant improvement in the AUC between
three and five images [43].

This DL classifier represented a diagnostic efficacy of fibrosis staging similar to the
histopathological interpretation and performed significantly better than conventional 2D
elastography and biomarkers. Another valuable feature was the DLRE’s diagnostic con-
sistency when given data from various hospitals, suggesting the classifier’s robustness.
However, testing other ethnic groups could bring different results [43].

4. Discussion

Most studies assessing computer-aided diagnostic tools for fibrosis detection and
staging need a reference standard to compare their accuracy with, namely, biopsy with
histopathological interpretation. Different types of ML-algorithms have been used for
maximal diagnostic accuracy, such as DL (CNN-based classifiers), support vector ma-
chines (SVM), automated quantification systems, and random forest classifiers. In most
cases, model overfitting of feature selection was avoided by using independent validation
sets [20,39,40,42], and/or other methods, such as the RELIEFF algorithm, bootstrapping,
and k-fold cross-validation [21,42]. However, some studies with low AUCs and an appro-
priate population size for ML-algorithm performance should consider these methods for
validation.

The AI’s diagnostic performance was compared to radiologists’ interpretation per-
formance and other non-invasive tests that represent current fibrosis staging guidelines,
such as aspartate aminotransferase-to-platelet ratio index (APRI), Fibrosis-4 score (FIB-4),
and alpha-fetoprotein (AFP) [39,43], as well as imaging techniques, such as 2D elastogra-
phy [44] and MRE [30], demonstrating the AI’s diagnostic superiority. These comparisons
are significant because, while AI-assisted tools may not be accurate enough to replace the
gold standard, they may outperform other non-invasive alternatives.

Additionally, an inappropriate population study size could raise the error probability
in the statistical analysis. Studies presenting such an issue would need a global database
expansion [28,38,44] or merely regarding subgroups, such as additional data on cirrhotic
patients [32]. Furthermore, while some studies used controls, other classifiers have been
trained on unbalanced data with no control patients or in regard to cirrhosis and fibrosis
patient distribution.

Different AI-assisted non-invasive techniques have achieved different diagnostic
performances. While some studies showed high AUCs of 0.948 (95% CI 0.903–0.993)
when using DWI-MRI images’ features when extracting features from SWE for maximal
classification accuracy [41], others had a low AUC only ranging from 0.72 to 0.77 for the
classification of fibrosis stages F0 vs. F1-4 and moderate performance and stages F0-1 vs.
F2-4, F0-2 vs. F3-4, and F0-3 vs. 4. This shows the level of influence on diagnosis accuracy
that different types of image techniques have, with elastography being shown to be more
prone to disease heterogeneity errors [45]. However, elastography diagnostic accuracy can
be raised with the use of SVM [46,47] and DL.

On the same note, a systematic review concluded that AI-assisted ultrasonography of
NAFLD showed the highest diagnostic performance of all AI-assisted tools for NAFLD or
NASH diagnosis or fibrosis detection [48]. It yielded a sensitivity and specificity of 0.97
(95% CI: 0.91–0.99) and 0.98 (95% CI: 0.89–1.00), respectively, an AUC of 0.98, and low
heterogeneity. The next highest in terms of diagnostic performance was the AI-supported
clinical diagnosis of NAFLD, with a sensitivity and specificity of 0.75 (95% CI: 0.66–0.82)
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and 0.82 (95% CI: 0.74–0.88), respectively, and an AUC of 0.85 with a slightly higher degree
of heterogeneity. AI-supported clinical data sets performed comparably to conventional TE
and slightly lower than MRI. Consequently, the information gathered on patient admission
could be used as a screening method for at-risk patients for NAFLD. On the other hand,
AI-assisted diagnostic tools for NASH diagnosis and fibrosis staging achieved a sensitivity
of 80% (95% CI: 0.75–0.85) and a specificity of 0.69 (95% CI: 0.53–0.82).

This integration of clinical features (e.g., BMI, laboratory markers, gender, and comor-
bidities) along with the non-invasive procedures as input to the AI classifier with great
diagnostic results has been successfully achieved in other studies [33,39]. Radiomics feature
selection in combination with ML algorithms has been used, with ROI or VOI selection
from 2D-SWE and DWI-MRI images made by experienced radiologists [24,41,43].

AI-based systems can help overcome the limitations of non-invasive methods by
providing a more accurate and reliable diagnosis and staging of liver fibrosis. By combining
the technology used in NAFLD and liver cirrhosis automatic diagnosis, researchers can
develop AI-based systems that can accurately diagnose and stage liver fibrosis. Moreover,
with the increasing availability of electronic health records, AI-based systems can be used
to identify patients at high risk of developing liver fibrosis and provide timely interventions
to prevent disease progression [49].

A timely and accurate diagnosis of liver fibrosis is essential for avoiding poor prognosis.
However, liver biopsy, the current gold standard for diagnosis, is invasive and costly, with
limited accuracy due to sampling error and intra- and interobserver agreement. Hence, the
ability to assess fibrosis staging, steatosis, and inflammation with non-invasive techniques
is crucial. Several studies have shown that ML algorithms can accurately diagnose fibrosis
staging, with DL (CNN-based classifiers), SVM, and random forest classifiers achieving
high accuracy. Although these AI-assisted tools may not replace liver biopsy, they can
outperform other non-invasive alternatives, such as biomarkers and imaging techniques.
AI-assisted non-invasive techniques have immense potential in accurately diagnosing liver
fibrosis, allowing for timely risk factor modification and appropriate treatment. Researchers
must expand the global database and validate the models using independent validation
sets, additional data on controls, and increase the population study size to reduce the error
probability in statistical analysis.

Due to the high prevalence of CLD, together with the lack of an adequate non-invasive
diagnosis tests that would try to replace the liver biopsy, the subject of implementing AI
algorithms into the diagnosis and management of liver fibrosis is of great importance. In
this systematic review, the main imaging and diagnosis methods of liver fibrosis have been
included, namely liver ultrasound, CT, MRI, and liver biopsy.

Nevertheless, the findings of the previously mentioned studies need to be confirmed
through clinical trials. However, many studies had discrepancies regarding methodology,
design, and outcomes. For this reason, international collaboration on AI systems can
improve outcomes and provide a useful tool to human radiologists.

5. Conclusions

The current systematic review provides a comprehensive analysis of the performance
of AI systems in diagnosing liver fibrosis. Automatic diagnosis, staging, and risk strat-
ification for liver fibrosis is currently possible considering the accuracy, sensibility, and
specificity of AI systems, which is comparable to human experts.
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